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ROBUST BAYESIAN ESTIMATION IN A NORMAL MODEL
WITH ASYMMETRIC LOSS FUNCTION

Abstract. The problem of robust Bayesian estimation in a normal model
with asymmetric loss function (LINEX) is considered. Some uncertainty
about the prior is assumed by introducing two classes of priors. The most
robust and conditional Γ -minimax estimators are constructed. The situa-
tions when those estimators coincide are presented.

1. Introduction and notation. In Bayesian statistical inference the
goal of research are optimal decisions under a specified loss function and a
prior distribution over the parameter space. However the arbitrariness of a
unique prior distribution is a permanent problem. Robust Bayesian inference
deals with the problem of expressing uncertainty of the prior information
using a class Γ of priors and of measuring the range of a posterior quantity
while the prior distribution Π runs over the class Γ . It is interesting not
only in calculating the range but also in constructing optimal procedures.

In the problem of estimation of an unknown parameter two concepts
of optimality are considered: the idea of conditional Γ -minimax estimators
(see DasGupta and Studden [4], Betro and Ruggeri [1]) and the idea of
stable estimators developed in Mȩczarski and Zieliński [6] and Boratyńska
and Mȩczarski [3]. The first concept is connected with the problem of ef-
ficiency of the estimator with respect to the posterior risk when the priors
run over Γ . The second one is connected with the problem of finding an
estimator with the smallest oscillation of the posterior risk when the priors
run over Γ . Sometimes those two estimators coincide (see Mȩczarski [5] and
Boratyńska [2]).

In all papers mentioned above the quadratic loss function was consid-
ered. However in many situations a quadratic loss function seems inappro-
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priate in that it assigns the same loss to overestimates as to equal under-
estimates.

In this paper we estimate an unknown parameter θ and consider the
asymmetric loss function (LINEX)

L(θ, d) = exp(a(θ − d))− a(θ − d)− 1,

where a is a known parameter and a 6= 0. Exhaustive motivations to use
LINEX are presented in Varian [7] and Zellner [8]. We find the conditional
Γ -minimax estimators and the stable estimators, and present conditions
when those estimators coincide, in a normal model with two classes of con-
jugate priors given below.

Let X1, . . . , Xn be i.i.d. random variables with normal N(θ, b2) distri-
bution where θ is unknown and b2 is known. Set X = (X1, . . . , Xn). Let
Πµ0,σ0 = N(µ0, σ

2
0) be a fixed prior distribution of θ.
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If X = x then the posterior distribution is the normal distribution

N(µ0 + vnλ0, λ0) = N(m0 + wn − aλ0/2, λ0),

where λ0 = λ(σ0) and m0 = m(µ0). The posterior risk of an estimator θ̂
with LINEX loss function is equal to

Eea(θ−θ̂) − aEθ + aθ̂ − 1,

where Ey(θ) denotes the expected value of a function y(θ) when θ has the
posterior distribution. Thus under the prior Πµ0,σ0 ,

Eeaθ = exp(aµ0 + (a2/2 + avn)λ0) = exp(am + awn)

and
Eθ = µ0 + vnλ0 = m0 + wn − aλ0/2.

The minimum of the posterior risk as a function of θ is reached for

θ̂ =
1
a

lnEeaθ.

Thus the Bayes estimator with LINEX loss function is given by the formula

θ̂ Bayµ0,σ0
=

1
a

lnEeaθ = µ0 + (a/2 + vn)λ0 = m0 + wn.
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Now suppose that the prior distribution is not exactly specified and
consider two classes of prior distributions of θ:

Γµ0 = {Πµ0,σ : Πµ0,σ = N(µ0, σ
2), σ ∈ (σ1, σ2)},

where σ1 < σ2 are fixed and σ0 ∈ (σ1, σ2), and

Γ ∗
σ0

= {Πµ,σ0 : Πµ,σ0 = N(µ, σ2
0), µ ∈ (µ1, µ2)},

where µ1 < µ2 are fixed and µ0 ∈ (µ1, µ2). The classes Γµ0 and Γ ∗
σ0

express
two types of uncertainty about the elicited prior.

Let Rx(µ, σ, θ̂ ) denote the posterior risk of the estimator θ̂ when the prior
is normal N(µ, σ2). The posterior risk can be expressed by two formulas as
a function of λ and m:

R(µ0, σ, θ̂) = %µ0(λ, θ̂)

= exp(−aθ̂ + aµ0 + (a2/2 + avn)λ)− a(µ0 + λvn) + aθ̂ − 1

and

R(µ, σ0, θ̂) = %∗σ0
(m, θ̂)

= exp(−aθ̂ + am + awn)− a(m + wn) + a2λ0/2 + aθ̂ − 1.

Observe that λ is an increasing function of σ and therefore if σ ∈ (σ1, σ2)
then λ ∈ (λ1, λ2), where λi = λ(σi), i = 1, 2. Similarly, m is an increasing
function of µ and therefore if µ ∈ (µ1, µ2) then m ∈ (m1,m2), where mi =
m(µi), i = 1, 2. The ranges of the posterior risk of the estimator θ̂ when the
prior runs over Γµ0 and Γ ∗

σ0
are

rµ0(θ̂) = sup
λ∈(λ1,λ2)

%µ0(λ, θ̂)− inf
λ∈(λ1,λ2)

%µ0(λ, θ̂)

and

r∗σ0
(θ̂) = sup

m∈(m1,m2)

%∗σ0
(m, θ̂)− inf

m∈(m1,m2)
%∗σ0

(m, θ̂),

respectively.

2. The range of the posterior risk for the Bayes estimator.
Consider the prior Πµ0,σ0 , note that Πµ0,σ0 ∈ Γµ0 and Πµ0,σ0 ∈ Γ ∗

σ0
, and

consider the Bayes estimator

θ̂ Bayµ0,σ0
= µ0 + (a/2 + vn)λ0 = m0 + wn.

The posterior risk of this estimator under an arbitrary prior Πµ0,σ ∈ Γµ0 is

%µ0(λ, θ̂ Bayµ0,σ0
) = exp((a2/2 + avn)(λ− λ0))− avn(λ− λ0) + a2λ0/2− 1.

Denote it by f(λ). Now computations lead to the following form of the
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oscillation of %µ0 for θ̂ Bayµ0,σ0
while λ runs over (λ1, λ2):

rµ0(θ̂
Bay
µ0,σ0

) =


f(λ2)− f(λ1) if −a/2 ≤ vn < 0 and a > 0, or

0 < vn ≤ −a/2 and a < 0, or λ̂ < λ1,
f(λ2)− f(λ̂) otherwise,

where

λ̂ = λ0 + (a2/2 + avn)−1 ln
vn

a/2 + vn
.

Thus

rµ0(θ̂
Bay
µ0,σ0

)

=


ez(λ1−λ0)[ezδ − 1]− avnδ if −a/2 < vn < 0 and a > 0, or

0<vn≤−a/2 and a<0, or λ̂<λ1,
a2δ/2 if vn = −a/2,
ez(λ2−λ0) + avn(λ̂− λ2 − 1/z) otherwise,

where z = a2/2 + avn and δ = λ2 − λ1.
Consider the class Γ ∗

σ0
. The posterior risk of this estimator under an

arbitrary prior Πµ,σ0 ∈ Γ ∗
σ0

is

%∗σ0
(m, θ̂ Bayµ0,σ0

) = e−a(m0−m) + a(m0 −m) + a2λ0/2− 1

and the oscillation of %∗σ0
is equal to

r∗σ0
(θ̂ Bayµ0,σ0

) =
{

e−a(m0−m2) + a(m0 −m2)− 1 for m0 ≤ m̂,
e−a(m0−m1) + a(m0 −m1)− 1 for m0 > m̂,

where

m̂ = m1 +
1
a

ln
exp(am2 − am1)− 1

a(m2 −m1)
.

3. Most stable and conditional Γ -minimax estimators. Now the
problem is to find most stable estimators θ̂µ0 and θ̂∗σ0

, i.e. those satisfying

inf
θ̂

rµ0(θ̂ ) = rµ0(θ̂µ0) and inf
θ̂

r∗σ0
(θ̂) = r∗σ0

(θ̂ ∗σ0
)

and to find the conditional Γ -minimax estimators θ̃µ0 and θ̃∗σ0
, i.e. those

satisfying

inf
θ̂

sup
σ∈[σ1,σ2]

Rx(µ0, σ, θ̂ ) = sup
σ∈[σ1,σ2]

Rx(µ0, σ, θ̃µ0)

and

inf
θ̂

sup
µ∈[µ1,µ2]

Rx(µ, σ0, θ̂ ) = sup
µ∈[µ1,µ2]

Rx(µ, σ0, θ̃
∗
σ0

).

We use the following theorem proved by Mȩczarski [5].
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Theorem 1 (Mȩczarski [5]). Let Γ = {Πα : α ∈ [α1, α2]} be a set of
prior distributions, where α is a real parameter. Let %(α, d) be the posterior
risk of a decision d based on an observation x when the prior is Πα. Assume
that the function %(α, d) satisfies the following conditions:

1. %(α, ·) is a strictly convex function for any α;
2. for any d the minimum point αmin(d) of %(·, d) is unique and αmin is

a strictly monotone function of d;
3. for any α and d such that αmin(d) = α we have

∀d1 < d2 ≤ d
%(α, d2)− %(α, d1)

d2 − d1
<

%(αmin(d2), d2)− %(αmin(d1), d1)
d2 − d1

and

∀d2 > d1 ≥ d
%(α, d2)− %(α, d1)

d2 − d1
>

%(αmin(d2), d2)− %(αmin(d1), d1)
d2 − d1

;

4. the function %(α1, d)− %(α2, d) is a monotone function of d.

Then

(i) if there exists d̂ such that

sup
α∈[α1,α2]

%(α, d̂) = %(α1, d̂) = %(α2, d̂)

then d̂ is the most stable;
(ii) if d̂ satisfying (i) belongs to LΓ = {d : ∀x ∈ X ∃α ∈ [α1, α2] d(x) =

dBayα (x)} then d̂ is conditional Γ -minimax.

We now prove our results.

Theorem 2. If the class of priors is Γ ∗
σ0

then

θ̂∗σ0
= θ̂ Bayµ1,σ0

+
1
a

ln
exp[a(m2 −m1)]− 1

a(m2 −m1)

and θ̃∗σ0
= θ̂∗σ0

for all values x of the random variable X.

P r o o f. Let us check the conditions of Theorem 1 for

%∗σ0
(m, θ̂) = exp(−aθ̂ + am + awn)− a(m + wn) + a2λ0/2 + aθ̂ − 1.

The function %∗σ0
(m, ·) is convex and

∂%∗σ0
(m, θ̂)

∂m
= a exp(−aθ̂ + am + awn)− a,

thus the minimum point mmin(θ̂) = θ̂ − wn, and mmin is an increasing
function of θ̂.
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To check condition 3 it is enough to show the inequalities

∀θ1 < θ2 ≤ θ̂ eaθ̂ e−aθ2 − e−aθ1

θ2 − θ1
< −a

and

∀θ2 > θ1 ≥ θ̂ eaθ̂ e−aθ2 − e−aθ1

θ2 − θ1
> −a.

These hold by the Lagrange formula. The last condition of Theorem 1 is
also true, thus θ̂∗σ0

is a solution of the equation

%∗σ0
(m1, θ̂) = %∗σ0

(m2, θ̂).

To obtain the conditional Γ -minimax estimator note that for all values x of
the random variable X we have θ̂∗σ0

(x) ∈ [θ̂ Bayµ1,σ0
(x), θ̂ Bayµ2,σ0

(x)].

Theorem 3. Let the class of priors be Γµ0 . Then the most stable esti-
mator θ̂µ0 of θ in the class of all estimators of θ exists only for the values
of X satisfying

vn(vn + a/2) > 0 or vn = −a/2.

For vn(vn + a/2) > 0,

θ̂µ0 = θ̂ Bayµ0,σ1
+

1
a

ln
e(λ2−λ1)(a

2/2+avn) − 1
avn(λ2 − λ1)

.

For vn = −a/2 the range of the posterior risk does not depend on the value
of θ̂.

The conditional Γ -minimax estimator is

θ̃µ0 =


θ̂µ0 if vn(vn + a/2) > 0 and

exp[(λ1 − λ2)(a2/2 + avn)] + avn(λ2 − λ1)) ≥ 1,
θ̂ Bayµ0,σ2

otherwise.

The most stable estimator in the class

L = {θ̂ : ∀x ∃σ ∈ [σ1, σ2] θ̂(x) = θ̂ Bayµ0,σ(x)}

is equal to the conditional Γ -minimax estimator in the class of all estima-
tors.

P r o o f. Let us check the conditions of Theorem 1 for

%µ0(λ, θ̂) = exp(−aθ̂ + aµ0 + (a2/2 + avn)λ)− a(µ0 + λvn) + aθ̂ − 1.

The function %µ0(λ, ·) is convex and

∂%µ0(λ, θ̂)
∂λ

= (a2/2 + avn) exp(−aθ̂ + aµ0 + λ(a2/2 + avn))− avn.
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Thus the minimum point is

λmin(θ̂) =
aθ̂ − aµ0 + ln vn

a/2+vn

a2/2 + avn

and λmin exists iff vn(vn + a/2) > 0.
For vn satisfying vn(vn + a/2) ≤ 0 the function %µ0(·, θ̂) is an increasing

function of λ and the oscillation of the posterior risk

rµ0(θ̂) = − avn(λ2 − λ1) + exp(−aθ̂ + aµ0 + (a2/2 + avn)λ1)

× [exp((a2/2 + avn)(λ2 − λ1))− 1]

is a monotone function of θ̂ (decreasing for a > 0 and −a/2 < vn ≤ 0,
constant for vn = −a/2 and increasing for a < 0 and 0 ≤ vn < −a/2).
Thus the most stable estimator does not exist for vn(vn + a/2) ≤ 0 and
vn 6= −a/2. For vn = −a/2 the oscillation rµ0(θ̂) = a2(λ2 − λ1)/2 does not
depend on the value of θ̂. The conditional Γ -minimax estimator θ̃µ0 is equal
to θ̂ Bayµ0,σ2

.
Let us consider the situation when vn(vn + a/2) > 0. The minimum

point λmin and the function %µ0(λ2, ·)−%µ0(λ1, ·) are monotone functions of
θ̂. Condition 3 of Theorem 1 is similar to that in Theorem 2 so we obtain
the most stable estimator as a solution of the equation

%µ0(λ1, θ̂µ0) = %µ0(λ2, θ̂µ0).

To find the conditional Γ -minimax estimator we check when θ̂µ0 ∈ L.
For vn + a/2 > 0 we have θ̂ Bayµ0,σ1

< θ̂ Bayµ0,σ2
. Solving the inequalities

θ̂ Bayµ0,σ1
≤ θ̂µ0 ≤ θ̂ Bayµ0,σ2

we obtain the condition

(∗) exp[(λ1 − λ2)(a2/2 + avn)] + avn(λ2 − λ1) ≥ 1.

For vn + a/2 < 0 we have θ̂ Bayµ0,σ1
> θ̂ Bayµ0, σ2

. Solving the inequalities

θ̂ Bayµ0,σ1
≥ θ̂µ0 ≥ θ̂ Bayµ0,σ2

we also obtain (∗). Thus if vn(vn + a/2) > 0 and (∗) is true then θ̃µ0 = θ̂µ0 .
If vn + a/2 > 0 and vn > 0 and (∗) is not true then

θ̂ Bayµ0,σ1
< θ̂ Bayµ0,σ2

< θ̂µ0

and

sup
λ∈[λ1,λ2]

%µ0(λ, θ̂) =
{

%µ0(λ2, θ̂) if θ̂ ≤ θ̂µ0 ,
%µ0(λ1, θ̂) if θ̂ ≥ θ̂µ0 ,

and the oscillation rµ0(θ̂) is a decreasing function for θ̂ < θ̂µ0 .
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If vn + a/2 < 0 and vn < 0 and (∗) is not true then

θ̂ Bayµ0,σ1
> θ̂ Bayµ0,σ2

> θ̂µ0

and

sup
λ∈[λ1,λ2]

%µ0(λ, θ̂) =
{

%µ0(λ1, θ̂) if θ̂ ≤ θ̂µ0 ,
%µ0(λ2, θ̂) if θ̂ ≥ θ̂µ0 ,

and the oscillation rµ0(θ̂) is an increasing function for θ̂ > θ̂µ0 .
Thus if vn(vn +a/2) > 0 and (∗) is not true then θ̃µ0 = θ̂ Bayµ0,σ2

and θ̂ Bayµ0,σ2

is the most stable estimator in the class L.
The monotonicity of the function rµ0 shows that θ̂ Bayµ0,σ2

is also the most
stable estimator in the class L for vn(vn + a/2) ≤ 0.
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