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APPROXIMATION OF FINITE-DIMENSIONAL

DISTRIBUTIONS FOR INTEGRALS

DRIVEN BY α-STABLE LÉVY MOTION

Abstract. We present a method of numerical approximation for stochastic
integrals involving α-stable Lévy motion as an integrator. Constructions
of approximate sums are based on the Poissonian series representation of
such random measures. The main result gives an estimate of the rate of
convergence of finite-dimensional distributions of finite sums approximating
such stochastic integrals.

Stochastic integrals driven by such measures are of interest in construc-
tions of models for various problems arising in science and engineering, often
providing a better description of real life phenomena than their Gaussian
counterparts.

1. Introduction. Recent studies of various physical and biological prob-
lems (see, e.g., Buldyrev et al. (1993) and Wang (1992)), signal processing
(Shao and Nikias (1993)), various extremal events models (Embrechts et

al. (1997)) etc. reinforce the need for infinite variance stochastic models,
including processes with discontinuous trajectories. Of particular interest
are problems involving α-stable processes. Such processes also appear in
stochastic models described by stochastic integrals with respect to α-stable
random measures.

In this paper we are particularly concerned with the constructive meth-
ods of investigation of stochastic integrals driven by α-stable random mea-
sures. Such models only begin to find their way into different branches of
applied probability and statistics (some examples are presented in Janicki
and Weron (1994a), (1994b)).
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The main goal of this work is to prove a convergence result justifying
numerical methods proposed, based on discretization of the time parameter
t and simulation of α-stable random measures, and providing approximate
sums for stochastic integrals with α-stable integrators defined by an α-stable
Lévy motion process {Zα(t) : t ≥ 0}. We are interested in construction of
sequences {Xn(t)}

∞
n=1 of real-valued processes which converge to a stochastic

integral X = {X(t)} of the form

(1.1) X(t) =

t\
0

f(s−) dZα(s), t ∈ [0, 1].

A good introduction to α-stable processes is the review article by Weron
(1984) with more comprehensive and up-to-date treatment in the mono-
graphs of Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994a).

The stochastic process described above can be regarded as a special
case of general process driven by semimartingales, i.e. as a process of the
following form:

X(t) =

t\
0

f(s−) dY (s), t > 0,

where {Y (t)} stands for a given semimartingale process.

In fact, it is not difficult to notice that an α-stable Lévy motion belongs
to the class of semimartingale processes. It is enough to observe that any
Lévy process {Z(t) : t ≥ 0} (defined, e.g., in Protter (1990), Chapter I)
can be described by its characteristic function given by the Lévy–Khinchine
formula

EeiθZ(t) = exp(tψ(θ)),

where

ψ(θ) = ibθ −
1

2
cθ2 +

∞\
−∞

(
eiθx − 1−

iθx

1 + x2

)
dν(x).

Here ν denotes the Lévy measure of the random variable Z(1), i.e. a deter-
ministic measure with the following properties: ν ≥ 0,

T
|x|≤1

x2 dν(x) < ∞,

ν({0}) = 0, and ν({x : |x| > δ}) <∞ for all δ > 0.

Lévy processes are semimartingales (see, e.g., Protter (1990), Chapter
I) and an α-stable Lévy motion process {Zα(t) : t ≥ 0} can be considered
as an example of a Lévy process. Simply, in this case the Lévy measure
dν(u) = dνα(u) takes the form

dνα(u) =

{
α{C+

I(0,∞)(u) + C−
I(−∞,0)(u)}|u|

−α−1du, 0 < α < 2,
0, α = 2,

where C+ and C− are nonnegative constants such that C+ + C− > 0.
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So, when studying convergence of sums approximating (1.1) one can
lean on some results concerning the stability properties of integrals (1.1) in
the space D([0, 1],R) (see, e.g., Kurtz and Protter (1991) or Kasahara and
Maejima (1986)). Alternatively, we propose rather elementary convergence
results for constructive methods and algorithms specific to the case of α-
stable random measures, providing additional information on the speed of
convergence.

It is well known that any distribution on the space D([0, 1],R) is com-
pletely determined by its finite-dimensional distributions (see Parthasarathy
(1967), Chapter VII), so we propose a method of numerical approximation
of finite-dimensional distributions of the process (1.1), based on the use of
the so-called series representation of α-stable random variables and mea-
sures (see LePage (1980), (1989)). Our approach is based on Ferguson and
Klass (1972), and on further developments by Rosinski (1990). We are con-
cerned with representations of α-stable random variables X as a.s.-limits of

sequences of sums Xn :=
∑n

j=1 ξjτ
−1/α
j , where the τj ’s are the arrival times

of a Poisson process and the ξj ’s are appropriately chosen random variables.
After evaluating the expectation E |Xn+m − Xn|

2 for n > 0, m > 0, it is
possible to establish an upper bound for

P{ max
1≤k≤2w

|Xn(2
−wk)−X(2−wk)| > d},

with any d > 0, where the distribution of the vector {X(2−wk)}2
w

k=1 coincides
with the appropriate finite-dimensional distribution of the stochastic integral
(1.1) and the variables Xn(2

−wk), constructed by means of LePage-type
sums, converge to the X(2−wk)’s.

We provide the appropriate convergence result with rather sharp esti-
mation of the error.

2. Series representations of stable random variables. The most
common and convenient way to introduce an α-stable random variable is to
define its characteristic function.

The characteristic function φX = φ = φ(θ) of an α-stable random vari-
able X involves four parameters: α—the index of stability, β—the skewness
parameter, σ—the scale parameter and µ—the shift. This function is given
by

log φ(θ) = −σα|θ|α{1− iβ sgn(θ) tan(απ/2)} + iµθ

when α ∈ (0, 1) ∪ (1, 2], β ∈ [−1, 1], σ ∈ R+, µ ∈ R, and by

log φ(θ) = −σ|θ|+ iµθ

when α = 1, which gives the well-known symmetric Cauchy distribution
(notice that the case of α = 1 with β 6= 0 is not considered here).
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For a random variable X distributed according to the law derived from
φ = φX we use the notation LX = Sα(σ, β, µ) or Law(X) = Sα(σ, β, µ).
When µ = β = 0, i.e., X is a symmetric α-stable random variable, we will
write LX = SαS. For convenience we denote by Sα,β the law Sα(1, β, 0).

With the use of the Central Limit Theorem it is possible to describe the
asymptotic behavior of α-stable variables. Namely, if LX = Sα(σ, β, µ) and
α ∈ (0, 2), then

(2.1)
lim
x→∞

xαP{X > x} = Cα
1 + β

2
σα,

lim
x→∞

xαP{X < −x} = Cα
1− β

2
σα,

where

(2.2) Cα =
(∞\

0

x−α sin(x) dx
)−1

.

Notice also that if LX = SαS, then X belongs to Lα′

for α′ ∈ (0, α),
and

‖X‖α,∞ := (sup
x>0

[xαP{|X| > x}])1/α <∞.

To introduce series representations of α-stable random variables we need
the sequence {τ1, τ2, . . .} composed of the arrival times or successive jump
times of a right continuous Poisson process with unit rate; e.g., for j ≥
1, τj =

∑j
i=1 λi, where {λ1, λ2, . . .} is a sequence of independent random

variables with common exponential distribution

P{λi > x} = e−x, x ≥ 0.

Thus,

P{τj ≤ x} =

y\
0

yj−1

(j − 1)!
e−y dy, x ≥ 0,

and the random variable τj has the density

(2.3) fj(x) = xj−1e−x
I[0,∞)(x)/Γ (j).

Further on by a series representation of a given α-stable random variable

X we mean a series
∑∞

j=1 τ
−1/α
j ξj such that

lim
J→∞

J∑

j=1

τ
−1/α
j ξj = X a.s.,

where {ξ1, ξ2, . . .} stands for an appropriately chosen sequence of i.i.d. ran-
dom variables which is assumed to be independent of the sequence {τj}.

LePage (1980) remarked that the series representations of the kind dis-
cussed here provide a fine insight into the structure of stable distributions.
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In the symmetric case we have a stronger result (see Theorem 5.1 in
Ledoux and Talagrand (1991)).

Theorem 2.1. Let α ∈ (0, 2) and η be a symmetric real-valued random

variable such that E |η|α < ∞. Denote by {ηj} a sequence of independent

copies of η assumed to be independent of {τj}. Then

lim
M→∞

sup
N≥M

∥∥∥
N∑

j=M

τ
−1/α
j ηj

∥∥∥
α,∞

= 0,

and the almost surely convergent series

X =

∞∑

j=1

τ
−1/α
j ηj

defines an α-stable random variable LX = Sα(σ, 0, 0) with σ = C
−1/α
α ‖η‖α

and Cα from (2.1)–(2.2).

In that case it is enough to take the Rademacher sequence for {ηi}, that
is, a sequence of independent copies of η defined by

P{η = 1} = 1/2 = P{η = −1}.

Generally, by Theorem 5.1.2 of Samorodnitsky and Taqqu (1994), we
have

Theorem 2.2. Let α ∈ (0, 1) ∪ (1, 2) and ξ be a real-valued random

variable such that E |ξ|α < ∞. Denote by {ξj} a sequence of independent

copies of ξ assumed to be independent of {τj}. Then the almost surely

convergent series

X =

{∑∞
j=1 τ

−1/α
j ξj for α ∈ (0, 1),

∑∞
j=1(τ

−1/α
j ξj − k

(α)
j ) for α ∈ (1, 2),

where

k
(α)
j =

α

α− 1
(j(α−1)/α − (j − 1)(α−1)/α)Eξ,

defines an α-stable random variable LX = Sα(σ, β, 0) with σ = C
−1/α
α ‖η‖α

and Cα from (2.2) and β = E (|ξ|α sgn(ξ))(E |ξ|α)−1.

In order to remove the centering constants k
(α)
j from the above series

representation we propose the following choice of ξ. Let P{ξ = t1} = p1
and P{ξ = t2} = p2, where

t1 = (1 + β)1/(α−1), t2 = −(1− β)1/(α−1),

p1 = −t2/(t1 − t2), p2 = 1− p1.

Then we have
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Corollary 2.1. Let α ∈ (1, 2) and β ∈ (−1, 1), and let {ξj} denote a

sequence of independent copies of ξ, independent of {τj}. Let

(2.4) Y :=

∞∑

j=1

ξjτ
−1/α
j .

Then the series defining Y converges a.s. to a stable random variable Y

with characteristic function

(2.5) φ(θ) = exp{−σα|θ|α(1− iβ sgn(θ) tan(απ/2))},

where the parameters α, β, σ satisfy

σα = C(α, β),

C(α, β) = 2K(α)p1t1,

K(α) = −αΓ (−α) cos(απ/2),

which means that LY = Sα(σ, β, 0).

P r o o f. Let λ be the law of ξ. Then F defined by

F (A) =

∞\
0

\
{t1,t2}

IA(svu
−1/α) dλ(v) du = p1Fst1(A) + p2Fst2(A),

for A such that 0 6∈ A, is the Lévy measure of a stable law. Therefore,\
{|x|>1}

|x|p dF (x) <∞ whenever p ∈ (1, α),

and we are in a position to apply Theorem 3.1 of Rosinski (1990). First of
all note that

p1t1 + p2t2 = 0,(2.6)

p1t
〈α〉
1 + p2t

〈α〉
2 = β(p1|t1|

α + p2|t2|
α),

where t〈α〉 = |t|α sgn(t). It follows from (2.6) that the centering constant
appearing in Theorem 3.1 of Rosinski (1990) vanishes. Consequently, series
(2.4) converges a.s. to a random variable X with

L̂(X)(θ) = exp
{ ∞\

−∞

(eiθx − 1− iθx) dF (x)
}
.

Now, noticing that for c ∈ R the formula

Fc(A) =

∞\
0

IA(cu
−1/α) du, A ∈ B(R \ {0}),

defines the Lévy measure of a stable law on R, which is concentrated on
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R \ {0} and
∞\
−∞

(eiθx − 1− iθx) dFc(x) = αΓ (−α)|cθ|αe−i sgn(cθ)απ/2,

we get
∞\
−∞

(eiθx − 1− iθx) dF (x)

= p1αΓ (−α)|θ|
α|t1|

α

(
cos

(
απ

2

)
− i sin

(
απ

2

)
sgn(θ)

)

+ p2αΓ (−α)|θ|
α|t2|

α

(
cos

(
απ

2

)
+ i sin

(
απ

2

)
sgn(θ)

)

= −K(α)|θ|α(p1|t1|
α + p2|t2|

α)

(
1− iβ sgn(θ) tan

(
απ

2

))

and (2.5) follows.

For α ∈ (0, 1) it is enough to take for {ξj} a sequence of independent
copies of a random variable ξ defined by

P{ξ = 1} =
1 + β

2
, P{ξ = −1} =

1− β

2
,

and notice that

Cα =
1

C(α, 0)
=

1− α

Γ (2− α) cos(απ/2)
.

A notable shortcoming of the above result is the exclusion of the case
|β| = 1. However, as Corollary 2.2 below demonstrates, this cannot be
remedied as long as we insist that Eξ = 0. Before formulating the next
proposition we state a simple lemma in which the τj ’s and ξj ’s are as above.

Lemma 2.1. For α > 0 set Tn =
∑n

j=1 ξjτ
−1/α
j . If E |ξ|α = ∞, then the

sequence {T1, T2, . . .} diverges a.s.

P r o o f. The event Ω0 = {ω : limn→∞ τn(ω)/n = 1} has probability one.
Therefore, to prove that {Tn} diverges a.s., it suffices to show that it diverges
a.s. for sequences {τn(ω)} with ω belonging to Ω0. Fix such a sequence.

Then the summands of Tn are independent and τ
−1/α
j > 2−1/αj−1/α even-

tually. Consequently,

P{|ξjτ
−1/α
j | > 2−1/α} ≥ P{|ξj |

α > j}.

Now the assertion follows from the three series theorem and the fact that
Eζ < ∞ if and only if

∑∞
j=1 P{ζ > j} < ∞ for any positive random

variable ζ.
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Corollary 2.2. Let α ∈ (1, 2) and Eξ = 0. Set Tn =
∑n

j=1 ξjτ
−1/α
j .

(i) If {Tn} converges a.s., then its limit T∞ is a strictly stable random

variable.

(ii) If T∞ is nondegenerate, then its skewness parameter β belongs to

(−1, 1).

P r o o f. Let λ denote the law of ξ and D = supp(λ).

(i) By Lemma 2.1, E |ξ|α < ∞, so the series
∑∞

j=1 εjξjτ
−1/α
j , with

{ε1, ε2, . . .} denoting a sequence of i.i.d. Rademacher random variables in-
dependent of all the other sequences introduced so far, converges a.s. to
a symmetric stable random variable (Theorem 1.5.1 of Samorodnitsky and
Taqqu (1993)).

By Corollary 3.6 of Rosinski (1990), G defined by

G(A) =

∞\
0

\
D

IA(vu
−1/α) dλ(v) du, 0 6∈ A,

is a Lévy measure and thus the symmetrization of G is the Lévy measure
of a stable law. Consequently, G is the Lévy measure of a stable law. (See
Corollaries 6.3.1 and 6.3.2 of Linde (1986).) Thus,\

{|x|>1}

|x|p dG(x) <∞ for all p ∈ (1, α),

and it remains to apply Theorem 3.1 of Rosinski (1990).

(ii) By applying the same argument as in the proof of Corollary 2.1 one
gets

log L̂(T∞)(θ) =

∞\
−∞

(eiθx − 1− iθx) dG(x)

=
\
D

∞\
−∞

(eiθx − 1− iθx) dGv(x) dλ(v)

=
\
D

αΓ (−α)|vθ|αei sgn(vθ)απ/2 dλ(v)

= −K(α)|θ|α
{ \

D

|v|α dλ(v) − i sgn(θ) tan(απ/2)
\
D

v〈α〉 dλ(v)
}
.

Recall that Gv is the Lévy measure defined by Gv(A) =
T∞
0
IA(vu

−1/α) du.
If T∞ is nondegenerate, then

T
D
|v|α dλ(v) > 0 and T∞ has the skewness

parameter

β =

T
D
v〈α〉 dλ(v)T

D
|v|α dλ(v)

.

Thus, the requirements |β| = 1 and
T
D
v dλ(v) = 0 are incompatible.
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Now some comment is in order. If α < 1, then there is a clear difference
between totally skewed (|β| = 1) and remaining stable random variables.
If LX = Sα(σ, 1, 0) and LY = Sα(σ, β, 0) with 0 < α < 1 and |β| < 1,
then supp(LX) = [0,∞) and supp(LY ) = (−∞,∞). By contrast, if α > 1,
each α-stable random variable has positive density on the whole line. In the
light of this, Corollaries 2.1 and 2.2 exhibit a qualitative distinction between
totally skewed and remaining stable random variables in the case of α > 1.

Corollary 2.1 also raises the question whether the series representation
of stable vectors taking values in Banach spaces can be so modified that no
centering is needed.

3. α-Stable integrals. Denote by (Ω,F ,P) the underlying probability
space and by L0(Ω,F ,P) the set of all real random variables defined on it.
Let (E, E ,m) be a measure space, and let

Ef = {A ∈ E : m(A) <∞}

be the subset of E of sets of finite m-measure.

A stochastic process {Lα,β(t) : t ≥ 0} is called an α-stable Lévy motion

if

1. Lα,β(0) = 0 a.s.,

2. {Lα,β(t) : t ≥ 0} has independent increments,

3. the stationary increments Lα,β(t)−Lα,β(s) are distributed according
to the law Sα((t− s)1/α, β, 0) for all 0 ≤ s < t <∞.

Since each Lévy process admits a unique modification which has cad-
lag trajectories (see Protter (1990), Section I.4), we can assume that the
trajectories of an α-stable Lévy motion are cadlag functions.

Observe that each α-stable Lévy motion has stationary increments. It is
a Brownian motion when α = 2. The α-stable Lévy motions are SαS when
β = 0.

An independently scattered σ-additive set function

M : Ef ∋ A 7→M(A) ∈ L0(Ω,F ,P)

such that for each A ∈ Ef ,

Law(M(A)) = LM(A) = Sα((m(A))1/α, β, 0)

is called an α-stable random measure on (E, E) with control measure m and
skewness intensity β. The measureM is called an SαS random measure if
the skewness intensity β is zero.

The definition of the α-stable stochastic integral

I(f) =
\
E

f(x) dM(x)
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with respect to an α-stable random measure on (E, E) for a measurable
function f ∈ Lα(E, E ,m) is quite well known (see, e.g., Samorodnitsky and
Taqqu (1994)). Let us briefly recall this definition in the case of (E, E ,m) =
([0, 1],B,Leb).

In this case, for any 0 ≤ a < b ≤ 1, we just have

M([a, b))
d
= Lα,β(b)− Lα,β(a)

d
= Lα,β(b− a),

with

Law(M([a, b))) = Sα((b− a)1/α, β, 0).

So, further on instead of dM(s) we write dLα,β(s).
Let us formulate a basic property of α-stable random variables in a form

suitable for our purposes: if LX = Sα,β and Xi are independent copies of
X, then

(3.1)

I∑

i=1

fih
1/αXi

d
=

( I∑

i=1

|fi|
αh

)1/α

X

for any sequence {fi} of real numbers and h > 0.
This explains immediately that if f I ∈ Lα([0, 1],B,Leb) is a step func-

tion of the form

(3.2) f I(t) =

I∑

i=1

f I
i I[ti,ti+1)(t),

for ti = (i− 1)h, h = 1/I, then, with Xi as above, we get

I(f I) =

1\
0

f I(s) dLα,β :=

I∑

i=1

f I
i h

1/αXi

d
=

I∑

i=1

f I
i (Lα,β(ti)− Lα,β(ti−1)),

where

Law(I(f I)) = Sα(‖f‖α, β, 0).

We will call I(f I) a stochastic integral of f (with respect to an α-stable
Lévy motion process).

Further on we assume for any f ∈ Lα([0, 1],B,Leb) to be given a se-
quence {f I} of step functions from Lα([0, 1],B,Leb) such that

lim
I→∞

‖f − f I‖α = 0.

The sequence of integrals {I(f I)}I=1,2,... is well defined. It is a Cauchy
sequence in the complete space Sα,β of α-stable random variables with the
metric induced in L0(Ω,F ,P) by convergence in probability. So, there exists
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a random variable I(f) which is the limit of {I(f I)} in this space. There-
fore the α-stable stochastic integral of any function f ∈ Lα([0, 1],B,Leb) is
defined by

I(f) := lim
I→∞

I(f I) in probability.

Notice also that, by Breiman (1992), Chapter VIII, one can derive the
following estimate:

(3.3) P
{∣∣∣

1\
0

f(s) dLα,β(s)−

1\
0

f I(s) dLα,β(s)
∣∣∣ ≥ δ

}
≤ Kδ

1/δ\
0

(1− ψI(v)) dv,

where ψI = ψI(v) stands for the characteristic function of the difference of
I(f) and I(f I).

Our main goal is to propose an algorithm for approximate construction
of the stochastic process

(3.4) X(t) = I(f ; t) =

t\
0

f(s) dLα,β(s) for t ∈ [0, 1].

It is well known that the process {X(t)} defined by (3.4), being an in-
finitely divisible process with stationary increments, is a cadlag process, i.e.,
its trajectories belong to the space D([0, 1],R) (see Protter (1990), Chapter
I). Let us recall that such processes can be characterized by the following
theorem (Parthasarathy (1967), Chapter VII).

Theorem 3.1. The class BD of the Borel subsets of D([0, 1],R) coincides
with the smallest σ-algebra of subsets of D([0, 1],R) with respect to which

the maps πt : x 7→ x(t) are measurable for all t ∈ [0, 1]. If µ and ν are

two measures on D([0, 1],R) then a necessary and sufficient condition for

µ = ν to hold is that µt1,...,tk = νt1,...,tk for all k and t1, . . . , tk from [0, 1],
where µt1,...,tk and νt1,...,tk are the measures in R

k induced by µ and ν,
respectively , through the map πt1,...,tk : x 7→ (x(t1), . . . , x(tk)).

This theorem leads to our idea of approximating X(t) = I(f ; t) defined
by (3.4) by means of finite-dimensional random vectors {X(ti)}

I
i=1 in the

following way.
Having a step function f I = f I(t) on [0, 1] of the form (3.2), and such

that

P

{∣∣∣
1\
0

f(s) dLα,β −

1\
0

f I(s) dLα,β

∣∣∣ ≥ δ
}
≤ ε

for any fixed δ > 0 and given ε > 0 (the choice of I can be controlled
by (3.3)), we construct inductively the (I + 1)-dimensional random vector

{XI,J
i }Ii=0 in the following way:

(3.5) XI,J
0 = 0 a.s., XI,J

i := XI,J
i−1 + f I

i h
1/α∆LJ

i , i = 1, . . . , I,
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where

(3.6) ∆LJ
i := C(α, β)−1/α

J∑

j=1

ξi,jτ
1/α
i,j ,

and {ξi,j}
I,J
i=1,j=1, {τi,j}

I,J
i=1,j=1 are independent copies of the random vari-

ables ξ and τj which were defined in the previous section.
Notice that h−1/α∆LJ

i can be regarded as a good approximation for the
α-stable random measure M([ti−1, ti)) of the interval [ti−1, ti), so one can

expect that {XI,J
i } is a good approximation for {I(f I ; ti)} and thus also for

{I(f ; ti)} for a function f from Lα([0, 1],B,Leb), in the sense of convergence
in probability.

Notice also that

(3.7) I(f I ; ti)−XI,J
i =

i∑

l=1

f I
l h

1/α(Xl −∆LJ
l ).

The theorem providing an estimate allowing one to control the parameter
J is proved in the next section.

4. Convergence of approximations for stable integrals. What we
now need is an estimation of the probability of generating an approximate
trajectory of I(f I ; t) which deviates too far away from a real trajectory. Let
δ and ε be arbitrary, small enough, positive numbers. It seems reasonable
to require that

(4.1) P{∃i∈{1,...,I} : |I(f I ; ti)−XI,J
i | > δ} < ε.

It will follow from our main theorem that, given positive δ, ε and natural
number I, (4.1) holds if J satisfies

RJ (α, β) < ‖f I‖−2
α δ2I2/α−1ε,

where

(4.2) RJ (α, β) = C(α, β)−2/α(1− β)1/(α−1)
∞∑

j=J+1

(j − 2/α)−2/α.

Theorem 4.1. Let α ∈ (1, 2) and |β| 6= 1, or α ∈ (0, 1) and β ∈ [−1, 1],

or α ∈ (0, 2) and β = 0. Let XI,J
i be the random variables defined by (3.5).

Then

I(f I ; ti) = lim
J→∞

XI,J
i a.s.

Moreover , for any positive δ and J > 2/α we have

P{∃i∈{1,...,I} : |I(f I ; ti)−XI,J
i | > δ} < ‖f I‖2αδ

−2I1−2/αRJ (α, β),

where RJ (α, β) is given by (4.2).
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P r o o f. I. First we prove some technical results concerning the case of
α ∈ (1, 2) and |β| 6= 1.

For C(α, β) and the ξj ’s, τj ’s as in Corollary 2.1, and h > 0, define

LJ
α,β(h) := h1/αC(α, β)−1/α

J∑

j=1

ξjτ
−1/α
j .

Now we prove that for any J > 2/α and m > 0,

(4.3) E |LJ+m
α,β (h)− LJ

α,β(h)|
2 < h2/αRJ(α, β).

Write

E |LJ+m
α,β (h)− LJ

α,β(h)|
2 = E

∣∣∣h1/αC(α, β)−1/α
J+m∑

j=J+1

ξjτ
−1/α
j

∣∣∣
2

= h2/αC(α, β)−2/α
E |ξj |

2
Eτ

−2/α
j .

The last equality is justified by the fact that for j 6= k we have

E (ξjξk(τjτk)
−1/α) = E (ξjξk)E ((τjτk)

−1/α) = EξjEξkE ((τjτk)
−1/α) = 0.

Since E |ξj |
2 = E |ξ|2 = t21p1 + t22p2 = (1− β2)1/(α−1), we get

(4.4) E |LJ+m
α,β (h)− LJ

α,β(h)|
2

= h2/αC(α, β)−2/α(1− β2)1/(α−1)
∞∑

j=J+1

Eτ
−2/α
j .

By (2.3), Eτ
−2/α
j = Γ (j − 2/α)/Γ (j) whenever j > 2/α. It is obvious that

Γ (j − 2/α)/Γ (j) = (j − 2/α)−2/α for α = 2, so, after some calculations, we
derive the inequality

Γ (j − 2/α)/Γ (j) < (j − 2/α)−2/α for all α ∈ (1, 2)

and thus for j > 2/α we have

(4.5) Eτ
−2/α
j ≤ (j − 2/α)−2/α.

Combining (4.4) and (4.5) we get (4.3).
Noticing that

Lα,β(h)
d
= h1/αC(α, β)−1/α

∞∑

j=1

ξjτ
−1/α
j ,

we derive the a.s.-convergence of {LJ
α,β(h)} to Lα,β(h) from Corollary 2.1.

Using Theorem 3.1 of Rosinski (1990), one can easily check that the conver-
gence is also in Lα′

for each α′ ∈ (1, α). Namely, for any J > 2/α, h > 0
and α′ ∈ (1, α), we get

P{|Lα,β(h)− LJ
α,β(h)| > η} ≤ η−2h2/αRJ (α, β),(4.6)
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E{(|Lα,β(h)− LJ
α,β(h)|

α′

)1/α
′

} ≤ h1/α(RJ (α, β))
1/2 .

To get (4.6) it is enough to notice that for any δ ∈ (0, η) and m > 0,

P{|Lα,β(h) − LJ
α,β(h)| > η}

≤ P{|Lα,β(h)− LJ+m
α,β (h)| > δ}+ (η − δ)−2h2/αRJ(α, β),

and let first m→ ∞ and then δ → 0.
Taking now into account (3.1) and (3.7), by the Kolmogorov inequality

and the above argument we can write, for any J > 2/α,

P{∃i∈{1,...,I} : |I(f I ; ti)−XI,J
i | ≥ δ}

= P
{

max
1≤H≤I

:
∣∣∣

H∑

i=1

f I
i h

1/α(L
(i)
α,β(1) −∆LJ

i )
∣∣∣ ≥ δ

}

≤ δ−2‖f I‖2αh
2/α−1RJ (α, β).

This completes the proof in the case of α ∈ (1, 2) and |β| 6= 1.
II. Now we deal with the case of α ∈ (0, 1) and β arbitrary from [−1, 1].

This means that we admit here totally skewed α-stable stochastic integrals.
Since now Eξ = β, the above procedure cannot be applied. However, we

can proceed as follows. First note that

E |LJ+m
α,β (h)− LJ

α,β(h)| ≤ h1/αQJ(α)

for J > 1/α, where

QJ (α) = Cα

∞∑

j=J+1

(j − 1/α)−1/α.

As in the previous case, our objective is to determine the values of J for
which

(4.7) P{∃i∈{1,...,I} : |I(f I ; ti)−XI,J
i | > δ} < ε.

The above inequality will be satisfied if we have

P{∀i∈{1,...,I} : |I(f I ; ti)−XI,J
i | ≤ δh} > 1− ε.

It is enough to have

(1− P{|Lα,β(h)− LJ
α,β(h)| ≥ δh})I > 1− ε.

As in the previous case we see that

P{|Lα,β(h)− LJ
α,β(h)| > η} ≤ η−1h1/αQJ (α).

Consequently, all the J satisfying the condition

QJ (α) > δI(1−1/α)(1− (1− ε)2)

also satisfy (4.7).
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III. The proof in the case of α ∈ (0, 2) and β = 0 now seems quite
obvious.

Notice that approximating sums XI,J
i defined by (3.5) are well suited

for computer simulations. In particular, it is possible to apply some of sta-
tistical estimation methods providing more information on the approximate
stochastic integrals constructed (some of those techniques are widely utilised
in Janicki and Weron (1994a)).

Remark 4.1. Making use of the sets {XI,J
i }Ii=1 of random variables

defined by (3.5), (3.6) for given natural numbers I, J , and applying obvious
interpolation techniques it is possible to get a sequence {IJ (f I ; t) : t ∈ [0, 1]}
of processes approximating the stochastic integral {I(f I ; t) : t ∈ [0, 1]} as
J → ∞. The problem of estimation of the rate of convergence of these
approximations in the Skorokhod topology of the space D([0, 1],R) seems to
be an open question.
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