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ASYMPTOTIC DICHOTOMY FOR NONOSCILLATORY
SOLUTIONS OF A NONLINEAR DIFFERENCE EQUATION

Abstract. A nonlinear difference equation involving the maximum func-
tion is studied. We derive sufficient conditions in order that eventually pos-
itive or eventually negative solutions tend to zero or to positive or negative
infinity.

Nonlinear difference equations involving three or more functional val-
ues of the state variable are important as they appear naturally as discrete
analogs and as numerical schemes of differential equations which model var-
ious natural phenomena. For an introductory exposition, the readers may
consult, e.g., Kocic and Ladas [2]. In this paper, we are concerned with the
nonlinear difference equation

(1) ∆2(xn − pnxn−τ ) + qn max
n−σ≤s≤n

xs = 0, n = 0, 1, . . . ,

where τ > 0, σ ≥ 0, and {pn}∞n=0, {qn}∞n=0 are real sequences. For σ = 0,
the above equation reduces to the linear equation

(2) ∆2(xn − pnxn−τ ) + qnxn = 0, n = 0, 1, 2, . . . ,

which has been studied by Zhang and Cheng [5]. For σ = 0 and {pn} ≡ 0,
(1) reduces further to the second order linear difference equation

(3) ∆2xn + qnxn = 0, n = 0, 1, 2, . . . ,

which has been studied by a number of authors.
Let µ = max{τ, σ}. If a real sequence x = {xn}∞n=−µ satisfies the func-

tional relation defined by (1), then it is said to be a solution of (1). Since
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(1) is a recurrence relation, it is not difficult to see that when initial condi-
tions x−µ, x−µ+1, . . . , x1 are given, we can successively calculate x2, x3, . . .
in a unique manner. An existence and uniqueness theorem can thus be
formulated and proved.

We will be interested in the asymptotic behavior of eventually positive
or eventually negative solutions of equation (1). In particular, sufficient
conditions for such solutions to tend either to zero or to infinity are derived.
Before doing so, we first discuss the question of existence of eventually pos-
itive or eventually negative solutions.

First of all, eventually positive (and hence eventually negative) solutions
of (3) exist when {qn} satisfies appropriate conditions (see e.g. [1, 3, 4]).
Furthermore, an eventually positive nondecreasing solution of (2) is also an
eventually positive solution of (1). Existence criteria for eventually positive
nondecreasing solutions of (2) can be found in [1, 3–5]. As another example,
the constant sequence {1} is a solution of the equation

(4) ∆2(xn − n(n− 1)xn−τ ) + 2 max
n−σ≤s≤n

xs = 0, n = 0, 1, 2, . . .

For pn ≡ p and qn ≡ q, we can also look for solutions of the form ±λ−n.
Care must be taken, however, to distinguish the cases λ ∈ (0, 1) and λ > 1.
Suppose we try to look for an eventually positive solution of the form λ−n

where 0 < λ < 1. Substitution of λ−n into (1) leads to the equation

Γ (λ) ≡ (1− pλτ )(1− 1/λ)2 + q = 0.

Since Γ (0+) = ∞ and Γ (1−) = q, if we assume that q < 0, then Γ (λ) will
have a root λ∗ in (0, 1) and hence λ−n

∗ is a desired solution. Similarly, if we
look for a solution of the form λ−n where λ > 1, then substitution of λ−n

into (1) leads to

Ψ(λ) = (1− pλτ )(1− 1/λ)2 + qλσ = 0.

Since Ψ(1+) = q, any set of conditions on p, q, τ and σ which yields
q limλ→∞ Ψ(λ) < 0 will also yield a desired solution. For instance, the
conditions τ = σ and qp > 0 will do the job. We can also look for eventually
negative solutions of (1) in a similar manner. For instance, if pn ≡ p > 0,
qn ≡ q > 0 and τ > 0, then (1) has an eventually negative solution of the
form −λ−n where λ > 1.

Now that we have demonstrated the existence of an eventually positive
or an eventually negative solution {xn}, we will show that its “companion”
sequence {zn} defined by

(5) zn = xn − pnxn−τ , n = 0, 1, 2, . . . ,

has the following monotonicity properties.
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Lemma 1. Suppose that there is a positive number p such that 0 ≤ pn ≤ p
for n ≥ 0, and that qn ≥ 0 for n ≥ 0 as well as

(6)
∞∑

n=0

qn = ∞.

Then for any eventually positive solution {xn} of (1), its companion se-
quence {zn} defined by (5) satisfies either

(i) zn < 0, ∆zn < 0, ∆2zn ≤ 0 for all large n, and limn→∞ zn =
limn→∞∆zn = −∞; or

(ii) zn < 0, ∆zn > 0, ∆2zn ≤ 0 for all large n, and limn→∞ zn =
limn→∞∆zn = 0.

P r o o f. In view of (1) and (6), {∆2zn} is eventually nonpositive and not
identically zero for all large n. Hence limn→∞∆zn = −∞ or limn→∞∆zn

= L. In the former case, clearly conclusion (i) must hold. In the latter, we
consider three subcases: (a) L < 0, (b) L = 0, and (c) L > 0. If L < 0, then
limn→∞ zn = −∞. But then in view of

zn = xn − pnxn−τ > −pnxn−τ ≥ −pxn−τ ,

we see that limn→∞ xn = ∞, so that by summing (1) from a sufficiently
large integer N to n− 1, we have

∆zn = ∆zN −
n−1∑
j=N

qj max
j−σ≤s≤j

xs → −∞

as n → ∞. This is a contradiction. By a similar reasoning, the case L > 0
is also impossible. Finally, suppose limn→∞∆zn = 0. Clearly ∆zn > 0
for all large n, and hence limn→∞ zn is either ∞, > 0, or ≤ 0. If it is
either infinite or positive, then xn ≥ xn − pnxn−τ ≥ zn ≥ Γ > 0 for all
large n, so that ∆zn → −∞ as before. If limn→∞ zn = M < 0, then
M ≥ zn > −pnxn−τ ≥ −pxn−τ for all large n. Hence xn−τ > −M/p > 0
for all large n, so that ∆zn → −∞ as before. The only case possible is
limn→∞ zn = 0. The proof is complete.

We remark that under the same conditions as in Lemma 1, we can ob-
tain a dual statement: for an eventually negative solution {xn} of (1), its
companion sequence {zn} satisfies either (i) zn > 0, ∆zn > 0, ∆2zn ≥ 0 for
all large n, and limn→∞ zn = limn→∞∆zn = ∞; or (ii) zn > 0, ∆zn < 0,
∆2zn ≥ 0 for all large n, and limn→∞ zn = limn→∞∆zn = 0.

We remark further that if in addition to the assumptions of Lemma 1
we also assume that there is a positive integer N such that

(7) pN+jτ ≤ 1, j = 0, 1, 2, . . . ,
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then the conclusion (ii) must hold for an eventually positive solution of (1).
Otherwise there is a positive number α and an integer J such that zn < −α
for n ≥ J. Thus

xn = zn + pnxn−τ < −α + pnxn−τ , n ≥ J.

Pick an integer M so large that N + Mτ ≥ J. Then for any integer k ≥ 1,

xN+Mτ+kτ = zN+Mτ+kτ + pN+Mτ+kτxN+Mτ+(k−1)τ

< −α + xN+Mτ+(k−1)τ < . . . < −kα + xN+Mτ ,

contrary to the fact that {xn} is eventually positive.

Lemma 2. In addition to the assumptions of Lemma 1, assume that there
is an integer N such that (7) holds. Then the companion sequence {zn} of an
eventually positive solution {xn} of (1) satisfies conclusion (ii) of Lemma 1.

As a dual result, we easily see that under the conditions of Lemma 2, the
companion sequence {zn} of an eventually negative solution will satisfy zn >
0, ∆zn < 0, ∆2zn ≥ 0 for all large n, as well as limn→∞ zn = limn→∞∆zn

= 0.

We now show that under the conditions of Lemma 1, an eventually pos-
itive solution either diverges to ∞ or else its lower limit is zero.

Theorem 1. Let the conditions of Lemma 1 hold. If {xn} is an eventu-
ally positive solution of (1), then either limn→∞ xn = ∞ or lim infn→∞ xn

= 0.

P r o o f. If conclusion (i) of Lemma 1 holds, then

zn > −pnxn−τ ≥ −pxn−τ

for all large n. But since limn→∞ zn = −∞, we must have limn→∞ xn = ∞.
If conclusion (ii) holds, then by summing (1) from a sufficiently large integer
N, we see that

∆zn+1 +
n∑

i=N

qi max
i−σ≤s≤i

xs = ∆zN , n ≥ N.

Since limn→∞∆zn = 0, we see that
∞∑

i=N

qi max
i−σ≤s≤i

xs < ∞,

which implies lim infn→∞ xn = 0. The proof is complete.

We remark that if {pn} is unbounded, then the conclusion of Theorem 1
may not hold. As an example, the solution {1} of (4) does not satisfy the
alternative of Theorem 1.
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We remark further that since the conditions of Lemma 2 prevent con-
clusion (i) of Lemma 1 from happening, they also rule out the conclusion
limn→∞ xn = ∞ of Theorem 1.

Theorem 2. Suppose the conditions of Lemma 2 hold. If {xn} is an
eventually positive solution of (1), then lim infn→∞ xn = 0.

It is desirable to strengthen the alternative in Theorem 1. One way to
achieve this is to replace the condition (6) by a stronger one.

Theorem 3. Suppose that there is a positive number p such that 0 ≤
pn ≤ p for n ≥ 0, and that qn ≥ q > 0 for n ≥ 0. Then for any eventually
positive solution {xn} of (1), either limn→∞ xn = ∞ or limn→∞ xn = 0.

P r o o f. If conclusion (i) of Lemma 1 holds, then zn > −pnxn−τ ≥
−pxn−τ for all large n. But since limn→∞ zn = −∞, we must have
limn→∞ xn = ∞. Suppose (ii) of Lemma 1 holds. If {xn} does not con-
verge to zero, then there is a sequence {n(i)}∞i=0 of integers such that
n(i + 1) − n(i) > σ and xn(i) > δ > 0 for i = 0, 1, 2, . . . As seen in the
proof of Theorem 1, we have

∞∑
n=n(0)

qn max
n−σ≤s≤n

xs < ∞.

On the other hand,
∞∑

n=n(0)

qn max
n−σ≤s≤n

xs ≥
∞∑

i=1

n(i)+σ∑
j=n(i)

qj max
j−σ≤s≤j

xs ≥
∞∑

i=1

qδ(σ + 1) = ∞,

which is a contradiction.

We remark that under the same conditions as in Theorem 3, an eventu-
ally negative solution may have an infinite lower limit and also a zero upper
limit simultaneously. As an example, the equation

∆2(xn − 4xn−2) + 15
4 max

n−2≤s≤n
xs = 0, n = 0, 1, 2, . . . ,

satisfies the assumptions of Theorem 3, yet it has an eventually negative
solution {xn} = {−2n(1+ (−1)n)− 2−n} which satisfies lim supn→∞ xn = 0
and lim infn→∞ xn = −∞.

However, if we impose the additional assumption that there is an integer
N such that (7) holds, then as seen in Lemma 2, {xn} cannot diverge to ∞.

Theorem 4. In addition to the assumptions of Theorem 3, assume that
there is an integer N such that (7) holds. Then every eventually positive
solution of (1) converges to 0.

We remark that under the conditions Theorem 4, eventually negative
solutions of (1) may not converge to 0. An example is provided by the
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equation

∆2(xn − xn−2) + 3
4 max

n−2≤s≤n
xs = 0, n = 0, 1, 2, . . . ,

which has a divergent and eventually negative solution {−1− (−1)n−2−n}.
So far we have been concerned with conditions which are sufficient for

eventually positive solutions to have zero lower limits. Our last result pro-
vides a sufficient condition for such solutions to diverge.

Theorem 5. In addition to the assumptions of Lemma 1, assume that
σ > τ and

(8) lim sup
n→∞

n−1∑
i=n+τ−σ

(i + 1 + σ − n− τ)qi > p.

Then every eventually positive solution of (1) diverges to ∞ and every even-
tually negative solution diverges to −∞.

P r o o f. Let {xn} be an eventually positive solution of (1). If conclusion
(ii) of Lemma 1 holds, then zn < 0, ∆zn > 0 and

zn = xn − pnxn−τ > −pnxn−τ ≥ −pxn−τ

for all large n. In view of (1), we see further that

∆2zn −
qn

p
zn−(σ−τ) ≤ ∆2zn + qn max

n−σ≤s≤n

−zs+τ

p

≤ ∆2zn + qn max
n−σ≤s≤n

xs = 0

for all large n. Writing zn as −un, we see that {un} is positive decreasing
and

∆2un ≥
qn

p
un−(σ−τ)

for all large n. Hence
n−1∑

t=n−(σ−τ)

n−1∑
i=t

∆2ui ≥
n−1∑

t=n−(σ−τ)

n−1∑
i=t

qi

p
ui−(σ−τ),

or

(σ − τ)∆un − un + un−(σ−τ) ≥
n−1∑

i=n−(σ−τ)

(i + 1− n + σ − τ)
qi

p
ui−(σ−τ)

for all large n. Since {un} is eventually positive decreasing, we see that

un−(σ−τ) ≥
n−1∑

i=n−(σ−τ)

(i + 1− n + σ − τ)
qi

p
ui−(σ−τ),
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and hence,

1 >

n−1∑
i=n−(σ−τ)

(i+1−n+σ−τ)
qi

p
·
ui−(σ−τ)

un−(σ−τ)
>

n−1∑
i=n−(σ−τ)

(i+1−n+σ−τ)
qi

p
,

contrary to (8). The case where {xn} is eventually negative is similar. The
proof is complete.
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