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O. HERNÁNDEZ-LERMA (México)
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INFINITE-HORIZON MARKOV CONTROL PROCESSES

WITH UNDISCOUNTED COST CRITERIA:

FROM AVERAGE TO OVERTAKING OPTIMALITY

Abstract . We consider discrete-time Markov control processes on Borel
spaces and infinite-horizon undiscounted cost criteria which are sensitive
to the growth rate of finite-horizon costs. These criteria include, at one
extreme, the grossly underselective average cost criterion and, at the other,
the excessively overselective strong overtaking optimality introduced in the
economics literature by Ramsey. Between these two we have the overtaking

(or catching-up) optimality of Gale and von Weizsäcker, Flynn’s opportunity
cost and F -strong average optimality , Dutta’s D-strong average optimality,
Veinott’s bias-optimality, and Yushkevich’s canonical policies. In this paper
we give conditions for the existence of optimal policies for each of these
criteria, and show how they are interrelated, among other things.

1. Introduction. There are (deterministic and stochastic) control
problems in engineering, economics and many others areas, in which it is
not possible to specify a priori the optimization “horizon” or “termina-
tion time”, and one is led to consider infinite-horizon problems. These are
roughly classified as discounted and undiscounted .

The former have a well-understood, unique meaning: at each decision
time the running cost (or cost-per-stage) is multiplied by a discount factor,
and then the control problem is to minimize the expected total discounted
cost over the set of all admissible control policies.

The undiscounted case, on the other hand, is not that simple for, to begin
with, it can mean different things. For instance, in the case in which the
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discount factor “vanishes” [see (11)–(12) below, with α = 1], the criterion
to be minimized turns out to be the expected total cost , which is just the
limit of finite-horizon costs as the horizon, say N, tends to infinity. This
criterion, however, is not quite convenient in some applications [e.g., in
queueing problems—see Ephremides and Verdú (1989), Stidham and Weber
(1993)], one of the main “inconveniences” being that it does not take into
account the rate at which the N-horizon costs vary as N → ∞.

But then criteria which are sensitive to these cost rates—which are

precisely the criteria we are interested in—can be defined in many differ-
ent ways, from the grossly underselective average cost (AC) criterion to
the extremely overselective strong overtaking optimality (strong OO) intro-
duced by Ramsey (1928). Between these two extremes lie, for instance,
the overtaking optimality (OO) of Gale (1967) and von Weizsäcker (1965);
Flynn’s (1980) opportunity cost (OC-) and F-strong average optimality

(F-strong AO); Dutta’s (1991) D-strong average optimality (D-strong AO);
Veinnott’s (1966) bias-optimality ; and Yushkevich’s (1973) canonical poli-

cies.

In this paper we consider discrete-time Markov control processes (MCPs)
with Borel state and action spaces, and the main objective is to give condi-
tions for the existence of optimal policies for each of the above-mentioned
criteria and to study how these criteria are interrelated. For instance, under
appropriate hypotheses, one of our main results (Theorem 3.5) states the
existence of canonical policies and that, moreover, “canonical”, “F-strong
AO” and “AC-optimal” are all equivalent notions. Similarly, we show the
existence of “D-strong AO” policies in the class of “stationary policies”
(see Theorem 4.9), and that the latter are equivalent to “bias-optimal”,
“OO” and “OC-optimal” policies (Theorem 4.12).

The remainder of the paper is organized into six sections. In Section
2 we introduce the MCP we will be dealing with, together with our hy-
potheses (Assumptions 2.4, 2.5 and 2.8) and other relevant information.
Sections 3 and 4 present our main results on AC-like and growth-sensitive
criteria, respectively; Section 4 also includes an example showing that with-
out appropriate assumptions, some of the main results may not be true.
The proofs of all our results are given in Section 5. In Section 6 we present
an example that illustrates how to verify our assumptions. The paper con-
cludes in Section 7 with some general remarks and a brief discussion of some
related open problems.

Remark 1.1. The reader should be warned that not everyone uses the
same definitions for the several optimality criteria presented here. For in-
stance, what we call “strong overtaking optimality” is referred to as “over-
taking optimality (OO)” by Fernández-Gaucherand et al. (1994), and our
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“OO” is sometimes called “catching-up” in the economics literature, for
instance, in Dutta (1991) and Gale (1967).

Remark 1.2. Terminology and notation. A Borel subset of a complete
and separable metric space is called a Borel space. A topological space,
say X, is always endowed with the Borel σ-algebra BX . If X and Y are
Borel spaces, a stochastic kernel on X given Y is a function P (B | y) such
that P (· | y) is a probability measure on X for every fixed y ∈ Y , and
P (B | ·) is a (Borel-)measurable function on Y for every fixed B ∈ BX .
We denote by N (respectively N0) the set of positive (resp. nonnegative)
integers. Other terminology and notation we use is quite standard in the
MCP literature: see Araposthatis et al. (1993), Bertsekas and Shreve (1978),
Dynkin and Yushkevich (1979), Hernández-Lerma (1989), Hernández-Lerma
and Lasserre (1996), etc.

2. Preliminaries. We consider a (discrete-time) Markov control model

(X,A, {A(x) : x ∈ X}, Q,C) satisfying the following conditions. The state

space X and the control (or action) set A are both Borel spaces and, in
addition, X is locally compact. For every state x ∈ X, A(x) is a non-empty
Borel subset of A; the elements of A(x) are the feasible actions if the system
is in the state x. The set K := {(x, a) : x ∈ X, a ∈ A(x)} of feasible state-

action pairs is assumed to be a Borel subset of X ×A and to contain the
graph of a measurable map from X to A. Finally, the transition law Q is
a stochastic kernel on X given K, and the one-stage cost C is a real-valued
measurable function on K.

For every n ∈ N0, let Hn be the family of admissible histories up to time
n; that is, H0 := X, and Hn := K×Hn−1 if n ≥ 1.

Definition 2.1. A (randomized) policy is a sequence π = {πn} of
stochastic kernels πn on A given Hn such that πn(A(xn) |hn) = 1 for ev-
ery n-history hn = (x0, a0, . . . , xn−1, an−1, xn) in Hn. We denote by Π the
set of all policies. A deterministic policy is a sequence {fn} of measurable
maps f : Hn → A such that fn(hn) ∈ A(xn) for all hn ∈ Hn. [A deter-
ministic policy {fn} can be identified with the randomized policy π = {πn}
such that πn(· |hn) is the probability measure concentrated at fn(hn) for
all n ∈ N0]. Let F be the set of all decision functions, i.e., measurable
functions f : X → A such that f(x) ∈ A(x) for all x ∈ X. Then a sequence
{fn} of functions in F is called a (deterministic) Markov policy . Finally, a
(deterministic) stationary policy {fn} is a Markov policy such that fn ≡ f
is independent of n. We will identify F with the set of all stationary policies.

Remark 2.2. (a) Every initial state x and policy π induce a probability
measure Pπ

x on the measurable space (Ω,G), where Ω := (X×A)∞ and G
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is the corresponding product σ-algebra; the expectation operator is denoted
by Eπ

x [see Bertsekas and Shreve (1978), Dynkin and Yushkevich (1979), . . .].

(b) For a stationary policy (or decision function) f ∈ F we write

C(x, f) := C(x, f(x)) and Q(· |x, f) := Q(· |x, f(x)), x ∈ X.

To state the assumptions used in this paper, let us first introduce the
following definition [see Meyn and Tweedie (1993), Glynn and Meyn (1996)].

Definition 2.3. LetV(·) ≥ 1 be a given measurable function onX, and
let L∞

V
be the normed linear space of all measurable functions u : X → R

with

‖u‖V := sup
x∈X

|u(x)|

V(x)
<∞.

For every u in L∞

V
define a new function Tu on X by

(1) Tu(x) := inf
a∈A(x)

[
C(x, a) +

\
X

u(y)Q(dy |x, a)
]
, x ∈ X.

The following Assumptions 2.4 and 2.5 guarantee that, inter alia, for
every x ∈ X, the minimum is actually attained on the right-hand side
of (1)—in which case we write “min” instead of “inf”—and that, moreover,
T maps L∞

V
into itself.

Assumption 2.4. For every x ∈ X:

(a) A(x) is a compact subset of A;

(b) C(x, ·) is l.s.c. (lower semicontinuous) on A(x);

(c)
T
X
u(y)Q(dy |x, a) is continuous in a ∈ A(x) for every bounded and

measurable function u on X;

(d)
T
X
V(y)Q(dy |x, a) is continuous in a ∈ A(x), where V is the func-

tion in Definition 2.3;

(e) supa∈A(x) |C(x, a)| ≤ V(x).

We shall next require the function V in Assumption 2.4 to satisfy a
Lyapunov stability condition as in Glynn and Meyn (1996), or Meyn and
Tweedie (1993), p. 367. In the statement of Assumption 2.5 we use the
terminology from the latter references.

Assumption 2.5. (a) The function V in Assumption 2.4 satisfies the
following: for each f ∈ F there is a petite set Cf and constants Bf < 1 and
bf <∞ such that, for all x ∈ X [using the notation of Remark 2.2(b)],

(2)
\
X

V(y)Q(dy |x, f) ≤ BfV(x) + bf1Cf
(x),

where 1Cf
denotes the indicator function of Cf .
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(b) For every stationary policy f the corresponding Markov (state) pro-
cess {xt} is ψ-irreducible, for some σ-finite measure ψ (independent of f)
on X, and aperiodic.

Proposition 2.6. Assumptions 2.4 and 2.5(a) imply the following :

(a) For every u in L∞

V
there exists a decision function f (depending of u)

such that

(3) Tu(x) = C(x, f) +
\
X

u(y)Q(dy |x, f) for all x ∈ X.

(b) T maps L∞

V
into itself , i.e., if u is in L∞

V
, then so is Tu.

(c) There exist constants B < 1 and b <∞, and a subset C of X (which
is petite with respect to Q(· |x, g) for some decision function g) such that

(4)
\
X

V(y)Q(dy |x, a) ≤ BV(x) + b1C(x) for all (x, a) ∈ K.

As shown by Glynn and Meyn (1996) [see also Meyn and Tweedie (1993)],
Assumption 2.5 has the following important consequences (which are used
in the proof of our main results):

Theorem 2.7. Assumption 2.5 implies that for every stationary policy f :

(a) {xt} is a positive Harris-recurrent chain with a unique invariant

probability measure Qf .

(b)
T
X
V dQf <∞.

(c) {xt} is V-uniformly ergodic, i.e., there exist positive constants

γf < 1 and Mf <∞ such that

(5)
∣∣∣
\
X

u(y)Qn(dy |x, f)−
\
X

u dQf

∣∣∣ ≤ ‖u‖VMfγ
n
f V(x)

for all x ∈ X, n ∈ N0, and u in L∞

V
.

(d) There exists a function hf in L∞

V
such that the pair (J(f), hf ), with

J(f) :=
T
X
C(y, f)Qf (dy), satisfies the Poisson equation

(6) J(f) + hf (x) = C(x, f) +
\
X

hf (y)Q(dy |x, f) for all x ∈ X;

moreover , hf can be defined as

(7) hf (x) :=
∞∑

t=0

Ef
x [C(xt, f)− J(f)], x ∈ X.

Our final assumption concerns the constants γf and Mf in (5).

Assumption 2.8. M := supFMf and γ := supF γf satisfy

(8) M <∞ and γ < 1.
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For examples of control models in which Assumptions 2.4, 2.5 and 2.8
hold, see, for instance, Gordienko and Hernández-Lerma (1995b) and Vega-
Amaya (1996).

The key ergodicity-related facts we use in our proofs below are (5), (6)
and (8). Alternative approaches to obtain these—for MCPs with bounded

costs—appear, for instance, in Hernández-Lerma (1989), Hernández-Lerma,
Montes-de-Oca and Cavazos-Cadena (1991), Nowak (1992), and the papers
cited there. See also Remark 2.10 below.

Remark 2.9. (a) Let ψ and Qf (f ∈ F) be as in Assumption 2.5(b) and
Theorem 2.7(a) respectively. We shall occasionally use the fact that, for ev-
ery f ∈ F, ψ is absolutely continuous with respect to Qf , i.e., Qf (B) = 0 im-
plies ψ(B) = 0 [Meyn and Tweedie (1993), Proposition 10.1.2; Orey (1971),
Theorem 7.2]. Moreover, we shall consider two functions in L∞

V
to be

Qf -equivalent if they are equal Qf -almost everywhere (Qf -a.e.); moreover,
for each fixed decision function f , we do not distinguish between Qf -equi-
valent functions.

(b) For any stationary policy f , if h1 and h2 are two functions in L∞

V
that

satisfy the Poisson equation (6), then h1 and h2 coincide except perhaps for
an additive constant; in fact,

(9) h1(x)− h2(x) =
\
X

[h1(y)− h2(y)]Qf (dy) for all x ∈ X.

Indeed, if for all x ∈ X,

J(f) + hi(x) = C(x, f) +
\
X

hi(y)Q(dy |x, f), i = 1, 2,

then u := h1 − h2 satisfies

u(x) =
\
X

u(y)Q(dy |x, f).

Therefore u(x) = Ef
xu(xn) for all x ∈ X and n ∈ N0, which [letting n→ ∞

and using (5)] yields (9). The last fact we used can be explicitly stated as:

(c) By (5), limn→∞Ef
xu(xn) =

T
X
u dQf for all f ∈ F and u ∈ L∞

V
.

(d) The following facts will be used repeatedly in the proofs of our re-
sults: from Proposition 2.6(c), we have, for all u ∈ L∞

V
and x ∈ X,

lim sup
n→∞

sup
π∈Π

Eπ
x |u(xn)| ≤ ‖u‖Vb(1−B)−1,

which in turn implies

lim
n→∞

1

n
sup
π∈Π

Eπ
x |u(xn)| = 0.

This follows directly from the inequality Eπ
x |u(xn)| ≤ ‖u‖VEπ

xV(xn) and
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an inductive argument using (4), which yields

Eπ
x |u(xn)| ≤ ‖u‖V

[
BnV(x) + b

n−1∑

k=0

Bk
]
.

Remark 2.10. An important particular case of Assumption 2.5, espe-
cially when one deals with bounded cost functions, is the case in which V(·)
is a bounded function. In such a situation, L∞

V
becomes the space of bounded

measurable functions on X, and the V-uniform ergodicity (5) reduces to the
usual uniform ergodicity condition

‖Qn(· |x, f)−Qf (·)‖TV ≤Mfγ
n
f ,

where ‖ · ‖TV denotes the total variation norm for finite signed measures.
Moreover, for every stationary policy f ∈ F, the following conditions are
equivalent [Meyn and Tweedie (1993), Theorem 16.0.2]:

(a) {xt} is uniformly ergodic;
(b) {xt} is aperiodic and there is a bounded solution V ≥ 1 to the in-

equality (2);
(c) {xt} is aperiodic and Doeblin’s condition holds; that is, there exists a

probability measure λf on BX, positive numbers ε < 1 and δ, and an integer
m ≥ 1 such that

inf
x∈X

Qm(B|x, f) > δ whenever λf (B) > ε.

3. Average-cost optimality criteria. For every n ∈ N, let

(10) Jn(π, x) := Eπ
x

n−1∑

t=0

C(xt, at)

be the expected total cost when using the policy π, given the initial state
x0 = x. As already mentioned in the introduction, the basic problem is how
to define suitable optimality criteria in the infinite-horizon case, n = ∞.
A standard way of doing this is to introduce a discount factor α, with
α ∈ (0, 1), and define the infinite-horizon α-discounted cost

(11) Vα(π, x) := lim
n→∞

Eπ
x

n−1∑

t=0

αtC(xt, at).

Although this criterion will be useful in later sections, the main concern in
this paper is the case of undiscounted (α = 1) cost criteria. Thus we might
consider the infinite-horizon expected total cost

(12) V (π, x) := lim
n→∞

Jn(π, x).

This, however, is not quite what we are interested in because for many
applications Jn(π, x) diverges for some or all policies, or the limit in (12)
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may not exist [as, say, in the examples in Puterman (1994), Section 5.1]. It
turns out to be more useful to look for optimality criteria which are sensitive
to the rate at which Jn(π, x) varies as n→ ∞.

One such criterion is the long-run expected average cost (AC) [perhaps
introduced by Bellman (1957)]

(13) J(π, x) := lim sup
n→∞

1

n
Jn(π, x),

with corresponding AC-value function

(14) J∗(x) := inf
Π

J(π, x), x ∈ X.

Definition 3.1. A policy π∗ is said to be average cost optimal

(AC-optimal) if

(15) J∗(x) = J(π∗, x) for all x ∈ X.

AC-optimality is a widely used criterion in many applications [for in-
stance, in the analysis of communication networks and queueing systems:
Ephremides and Verdú (1989), Stidham and Weber (1993), . . .], but it has
the disadvantage of being grossly underselective, i.e., the AC-criterion may
not distinguish between policies which have quite different finite-horizon be-
havior. At the other extreme we have the excessively overselective criterion—
introduced by Ramsey (1928)—of strong overtaking optimality , which will
be discussed in Section 4.

We next define related optimality criteria using the AC-value function
in (14) and the n-stage value function

(16) J∗

n(x) := inf
Π

Jn(π, x), x ∈ X,

with Jn(π, x) as in (10).

Definition 3.2. A policy π∗ is said to be F -strong average optimal

(abbreviated F-strong AO or F-SAO)—“F” for Flynn (1980)—if

(17) lim
n→∞

1

n
[Jn(π

∗, x)− J∗

n(x)] = 0 for all x ∈ X.

Remark 3.3. (a) Note that for any policy π and initial state x,

lim sup
n→∞

1

n
J∗

n(x) ≤ J(π, x),

which implies [by (14)]

lim sup
n→∞

1

n
J∗

n(x) ≤ J∗(x).

(b) If π∗ is F-SAO, then it is AC-optimal. In fact, from (a) and (17),

lim sup
n→∞

1

n
J∗

n(x) = J(π∗, x) = J∗(x) for all x ∈ X.
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We shall now introduce the notion of canonical triplets [cf. Yushkevich
(1973)], which requires the following terminology. Let h : X → R be a
given measurable function, and define the n-stage expected total cost , with
terminal cost function h, as

(18) Jn(π, x, h) := Eπ
x

[ n−1∑

t=0

C(xt, at) + h(xn)
]
, n ∈ N, x ∈ X,

with corresponding value function

(19) J∗

n(x, h) := inf
Π

Jn(π, x, h), x ∈ X.

Definition 3.4. Let ̺ and h be two given real-valued functions on X,
and let f be a stationary policy. Then (̺, h, f) is said to be a canonical

triplet if

(20) Jn(f, x, h) = J∗

n(x, h) = n̺(x) + h(x) for all x ∈ X, n ∈ N0.

A stationary policy is said to be canonical if it enters into some canonical
triplet.

One of the main objectives of this paper is to show the existence of a
canonical triplet (̺, h, f) with ̺ a constant function, say ̺(·) ≡ ̺∗. This is
more precisely stated in part (a) of the following theorem, where it is also
shown that, under the assumptions given in Section 2, for a policy to be
canonical, F-SAO and AC-optimal are all equivalent concepts.

Theorem 3.5. Suppose that Assumptions 2.4, 2.5 and 2.8 hold. Then:

(a) There exists a constant ̺∗, a function h in L∞

V
and a stationary

policy f such that (̺∗, h, f) is a canonical triplet , i.e.,

(21) Jn(f, x, h) = J∗

n(x, h) = n̺∗ + h(x) for all x ∈ X, n ∈ N0.

Equivalently , (̺∗, h, f) satisfies the Average Cost Optimality Equation
(ACOE)

̺∗ + h(x) = min
a∈A(x)

[
C(x, a) +

\
X

h(y)Q(dy |x, a)
]

(22)

= C(x, f) +
\
X

h(y)Q(dy |x, f).

Moreover , f is AC-optimal and the AC-value function is ̺∗, i.e.,

(23) J(f, x) = J∗(x) = ̺∗ for all x ∈ X.

(b) The following statements are equivalent :

(i) f is AC-optimal ;
(ii) f is a canonical policy ;
(iii) f is F-SAO.
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Remark 3.6. (a) The equivalence of (21) and (22) is well known:
for a proof in the case of a bounded one-stage cost function see, for in-
stance, Yushkevich (1973), Dynkin and Yushkevich (1979), or Arapostathis
et al. (1993); for general C, a proof may be found in Montes-de-Oca and
Hernández-Lerma (1996) or Hernández-Lerma and Lasserre (1996), Sec-
tion 5.2.

(b) From the results in the last two references [or in Gordienko and
Hernández-Lerma (1995a)] it can be seen that the statements in Theorem
3.5(b) are also equivalent to: f ∈ F is asymptotically optimal, by which we
mean the following [see Dynkin and Yushkevich (1979)]:

J(f, x) ≤ lim inf
n→∞

1

n
Jn(π, x) for all π ∈ Π, x ∈ X.

(c) Note that if h1 is a function that solves the ACOE (22), then so does
h1+c for any real constant c. Thus we can take the function h in Theorem
3.5(a) satisfying h(z)=0 where z is an arbitrary but fixed state. Conversely:

(d) The same argument used in the proof of parts (a)–(b) of Theorem 3.5
[see (55) and (57)] can be used to show that if h1 and h2 are two functions

in L∞

V
that satisfy the ACOE , i.e., for all x ∈ X,

̺∗ + hi(x) = min
a∈A(x)

[
C(x, a) +

\
X

hi(y)Q(dy |x, a)
]
, i = 1, 2,

then h1 and h2 are the same function except perhaps for an additive constant.

4. Growth-sensitive criteria. In this section we discuss several cri-
teria which are “sensitive” to the growth rate of the finite-horizon costs.
We begin with the excessively overselective criterion of strong overtaking

optimality .

Definition 4.1. (a) A policy π∗ is said to overtake a policy π if for
every initial state x there exists an N = N(π∗, π, x) such that

(24) Jn(π
∗, x) ≤ Jn(π, x) for all n ≥ N.

(b) π∗ is called strong overtaking optimal (strong OO) if it overtakes any
other policy π.

Note that if both sequences in (24) converge, then overtaking is equiv-
alent to the comparison of π∗ and π according to the total cost criterion
(12). Moreover, strong overtaking optimality is obviously stronger than
AC-optimality. There are, on the other hand, many well-known, elementary
examples showing that strong OO policies need not exist [Brown (1965),
Puterman (1994)]. In fact, in many applications this criterion is bound
to be very restrictive to be useful; thus we consider the following weaker
criteria:
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Definition 4.2 [Gale (1967), von Weizsäcker (1965)]. A policy π∗ is said
to be overtaking optimal (OO) if for every policy π, initial state x, and ε > 0
there exists an N = N(π∗, π, x, ε) such that

(25) Jn(π
∗, x) ≤ Jn(π, x) + ε for all n ≥ N.

Definition 4.3. (a) [Flynn (1980)] Let

(26) OC(π, x) := lim sup
n→∞

[Jn(π, x)− J∗

n(x)]

be the opportunity cost (OC) of the policy π given the initial state x, and
define the OC-value function as

(27) OC∗(x) := inf
Π

OC(π, x), x ∈ X.

A policy π∗ is said to be opportunity cost optimal (OC-optimal) if

(28) OC(π∗, x) = OC∗(x) for all x ∈ X.

(b) [Dutta (1991)] Given a policy π and the initial state x, let [with J∗

as in (14)]

Du(π, x) := lim sup
n→∞

[Jn(π, x)− nJ∗(x)],(29)

Dl(π, x) := lim inf
n→∞

[Jn(π, x)− nJ∗(x)](30)

be the upper D-strong average cost (“D” for Dutta) and the lower D-strong

average cost of π at x, respectively. Then a policy π∗ is said to be D-strong

average optimal (D-strong AO) if

(31) Du(π∗, x) = inf
Π

Du(π, x) for all x ∈ X.

Moreover, if for all x ∈ X,

(32) inf
Π

Du(π, x) = inf
Π

Dl(π, x) =: D∗(x),

then D∗ is called the D-strong average value function.

Remark 4.4. Define the upper and lower limit functions

Lu(x) := lim sup
n→∞

[J∗

n(x)− nJ∗(x)],(33)

Ll(x) := lim inf
n→∞

[J∗

n(x)− nJ∗(x)].(34)

A straightforward calculation shows that for any policy π and initial state
x for which |Du(π, x)| < ∞, the opportunity cost and the upper D-strong
average cost—see (26) and (29)—are related as follows:

(35) Du(π, x)− Lu(x) ≤ OC(π, x) ≤ Du(π, x) − Ll(x).
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The following proposition summarizes some basic relations between the
optimality criteria introduced in this section. Its proof is omitted since it
follows from direct arguments.

Proposition 4.5. (a) If π∗ is OO , then π∗ is both D-strong AO and

OC-optimal. Conversely :

(b) If π∗ is D-strong AO and the equality in (32) holds, then π∗ is OO

[hence π∗ is OC-optimal by (a)]. Similarly , if π∗ is OC-optimal and

(36) inf
Π

OC(π, x) = inf
Π

OCl(π, x) for all x ∈ X,

where

(37) OCl(π, x) := lim inf
n→∞

[Jn(π, x)− J∗

n(x)],

then π∗ is OO [hence π∗ is D-strong AO ];

(c) If OC(π, ·) < ∞, then π is F-SAO. Similarly , if Du(π, ·) < ∞ and

Ll(·) > −∞, then π is F-SAO.

(d) If π is not AC-optimal at x [i.e., J(π, x) > J∗(x)] then

Du(π, x) = ∞ and OC(π, x) = ∞.

Remark 4.6. (a) Condition (36) holds if, for instance, OC∗(x) = 0 for
all states x. This follows from the fact that OC(π, x) ≥ OCl(π, x) ≥ 0.

(b) From Proposition 4.5(a)–(b), if (32) and (36) both hold , then the con-
cepts of overtaking optimality (OO), D-strong average optimality (D-strong
AO) and opportunity cost optimality (OC–optimality) are all equivalent.
In Theorem 4.12 we show that this equivalence also holds if we restrict
ourselves to work with stationary policies.

(c) It follows from Proposition 4.5(a), (d) that when dealing with OO,
D-strong AO and AC-optimality one can essentially restrict the analysis to
average cost (AC-) optimal policies. In the terminology of Gale (1967) and
Dutta (1991), a policy π for which Du(π, x) < ∞ is said to be a “good”
policy.

For every stationary policy f , let (J(f), hf ) be as in Theorem 2.7(d),
i.e., a solution to the Poisson equation (6), and define

hf (x) := hf (x)−
\
X

hf (y)Qf (dy), x ∈ X,(38)

h(x) = inf{hf (x) : f ∈ F and J(f) = ̺∗}, x ∈ X,(39)

where ̺∗ is the (constant) AC-value function in (23). Note that, by Theo-
rem 3.5(a), we may also write ̺∗ as

(40) ̺∗ = inf{J(f) : f ∈ F}.
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Definition 4.7. A stationary policy f is said to be bias-optimal if it
attains the infimum in (39), i.e.,

J(f) = ̺∗ and hf (x) = h(x) for all x ∈ X.

Remark 4.8. (a) From (18), we have Jn(f, x, h) = Jn(f, x) + Ef
xh(xn)

for every f ∈ F. Thus, under the hypotheses of Theorem 3.5, it follows from
(21) and Remark 2.9(c) that if f ∈ F is AC-optimal, then

Du(f, ·) = Dl(f, ·) = hf (x),

which, together with Proposition 4.5(d), implies

h(x) = inf
F

Du(f, x) for all x ∈ X.

(b) To summarize, we may combine Theorem 3.5 and Proposition 4.5 to
see that, under Assumptions 2.4, 2.5, and 2.8, the implications in Diagram 1
below hold. Moreover, if we restrict ourselves to work only with stationary
policies, it is shown in Theorem 4.12 that also Diagram 2 holds.

Diagram 1. We have

strong OO ⇒ OO ⇒ OC-optim. ⇒ F-SAO ⇔ canonical

⇓ m

D-strong AO AC-optim.

Diagram 2. In F, we have

OO ⇔ D-strong AO ⇔ OC-optim. ⇔ bias-optim.

Theorem 4.9. Under the hypotheses of Theorem 3.5 (i.e., Assump-

tions 2.4, 2.5 and 2.8), there exists a stationary policy f∗ that is D-strong

AO in F, i.e.,

(41) Du(f∗, x) = inf
F

Du(f, x) =: D0(x) <∞ for all x ∈ X,

and it is the unique solution of the ACOE (22) for which

(42)
\
X

D0(y)Qf∗(dy) = 0.

Lemma 4.10. Under the hypotheses of Theorem 4.9, for each AC-optimal

stationary policy f the following hold :

(a) OC(f, ·) ≤ ‖Du(f, ·)‖Vb(1−B)−1, where b and B are the constants

in (4), which are the same as in Remark 2.9(d);
(b) Du(f, ·) = Lu(·) + OCl(f, ·) = Ll(·) + OC(f, ·);
(c) OCl(f, ·) = kf = lim infn→∞ [Jn(f, ·) − J∗

n(·)] Qf -a.e. for some

constant kf ≥ 0.
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Remark 4.11. Let (̺∗, h, f) be a canonical triplet with
T
X
hdQf = 0.

An important problem related to Lemma 4.10 is the convergence of the value
iteration algorithm. This is usually established by showing the convergence
to a constant of the so-called error functions

(43) en(x) := n̺∗ + h(x) − J∗

n(x), n ∈ N0, x ∈ X,

which, by (21), can also be written as

(44) en(x) = J∗

n(x, h) − J∗

n(x) = Jn(f, x)− J∗

n(x) + Ef
xh(xn).

The relation with Lemma 4.10 is that, since limn→∞Ef
xh(xn)=

T
X
hdQf

= 0, we have

lim
n→∞

en(x) = kf for all x ∈ X

if and only if

OC(f, x) = OCl(f, x) = lim
n→∞

[Jn(f, x)− J∗

n(x)] = kf for all x ∈ X.

Moreover, any of these conditions combined with Lemma 4.10(b) implies
the following facts:

(i) L(x) := Lu(x) = Ll(x) for all x ∈ X;
(ii) Du(f, ·) = L(·) + kf .

Finally, we have the theorem announced in Remark 4.8(b) [see Dia-
gram 2].

Theorem 4.12. Under the assumptions of Theorem 4.9 the following

statements are equivalent :

(i) f is D-strong AO in F;
(ii) f is bias-optimal ;
(iii) f is OO in F;
(iv) f is OC-optimal in F and OC(f, x) <∞ for all x ∈ X.

Consequently , from Theorem 4.9, there exists a stationary policy f that sat-

isfies conditions (i)–(iv).

Remark 4.13. Brown (1965) provides a very nice example showing that
the results in Theorems 4.9 and 4.12 cannot be extended to the class Π of
all policies without additional hypotheses to Assumptions 2.4, 2.5 and 2.8.
In fact, in his example there exists a stationary policy which is Blackwell

optimal but it is not overtaking optimal in the class of all policies. We are
grateful to Prof. A. S. Nowak for bringing Brown’s example to our attention.

To close this section we present a slightly modified example by Nowak
(1992), showing that in general, i.e., without the appropriate assumptions,
some of the implications in Diagrams 1 and 2 may not hold. Specifically, we
show the existence of a stationary policy f∗ which is F-SAO and canonical,
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but is neither OO nor OC-optimal. Moreover, there is another stationary
policy f which is AC-optimal and F-SAO but is not canonical. To make
the computations in the example we use the following two well-known facts
from elementary stochastic Dynamic Programming:

(i) For any stationary policy f the n-stage expected total cost [see (10)]
can be computed recursively as

(45) Jn(f, x) = C(x, f)+
\
X

Jn−1(f, y)Q(dy |x, f) for all x ∈ X, n ∈ N;

recall that J0(π, ·) := 0 for any policy π. Similarly,
(ii) the n-stage value function [see (16)] satisfies

J∗

n(x) = min
a∈A(x)

[
C(x, a) +

\
X

J∗

n−1(y)Q(dy |x, a)
]

(46)

= (TJ∗

n−1)(x) for all x ∈ X, n ∈ N,

where T is the operator in (1).

Example 4.14. Consider a MCP with state space X = N0, and control
(or action) sets A(·) = A = {1, 2}. The state x = 0 is absorbing with zero
cost, i.e. [writing Q({y} |x, a) as Q(y |x, a)],

(47) C(0, ·) = 0 and Q(0 | 0, ·) = 1.

On the other hand, if x ≥ 1, then

(48) C(x, 1) = 1/x− 1, Q(0 |x, 1) = 1,

and

(49) C(x, 2) = 0, Q(x+ 1 |x, 2) = 1.

From (47), Jn(π, 0) = 0 for every policy π and n ∈ N0, so that J∗

n(0) = 0
for all n ∈ N0. Moreover, since J∗

0 (x) := 0 for all x ∈ X, we may use (46)
to obtain

J∗

n(x) = (x+ n− 1)−1 − 1 for all x ≥ 1, n ≥ 1.

Similarly, from (45), the stationary policies f∗(·) ≡ 2 and f(·) ≡ 1 satisfy

Jn(f
∗, x) = 0 for all n ∈ N0, x ∈ X,

and

Jn(f, x)=1/x−1 for all n ∈ N, x ≥ 1 and Jn(f, 0)=0 for all n ∈ N0.

In particular, from (26), the corresponding opportunity costs are

OC(f∗, x) = 0 for all x ∈ X,

and

OC(f, x) = 1/x− 1 for all x ≥ 1, OC(f, 0) = 0.
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Now, straightforward calculations show f∗ is a canonical policy since
(̺∗, h, f∗), with ̺∗ = 0, h(0) = 0 and h(x) = −1 for x ≥ 1, is a canonical
triplet. Further, as h(·) is a bounded function (hence it is in L∞

V
), f∗ is also

AC-optimal and F-SAO. However, f∗ is not OO because

lim inf
n→∞

[Jn(f, x)− Jn(f
∗, x)] = 1/x− 1 < 0 for x > 1,

and, therefore, f∗ does not satisfy (25). In addition, f∗ is not OC-optimal
since

OC∗(x) ≤ OC(f, x) < OC(f∗, x) for all x > 1.

Finally, as f has a finite opportunity cost, it follows [by Proposition 4.5(c)
and Remark 3.3(b)] that f is F-SAO and AC-optimal; however, f is not

canonical.

5. Proofs

Proof of Proposition 2.6. (a) Let u be an arbitrary function in L∞

V
, and

let m := ‖u‖V. Then

uV (x) := u(x) +mV(x)

is a nonnegative function in L∞

V
. Since every nonnegative measurable func-

tion on X is the limit of an increasing sequence of measurable bounded func-
tions, a straightforward argument using Assumption 2.4(c) and the Mono-
tone Convergence Theorem shows that, for every x ∈ X,\

X

uV (y)Q(dy |x, ·) is l.s.c. on A(x).

Combining this fact with Assumptions 2.4(b) and (d) we see that

C(x, ·) +
\
X

u(y)Q(dy |x, ·)

= C(x, ·) +
\
X

uV (y)Q(dy |x, ·) −m
\
X

V(y)Q(dy |x, ·)

is l.s.c. on A(x) for every x ∈ X. The last fact together with Assump-
tion 2.4(a) yields—by a well-known Measurable Selection Theorem [see e.g.
Himmelberg et al. (1976), Rieder (1978)]—the existence of a decision func-
tion f ∈ F that satisfies (3).

(b) Now, since
∣∣∣
\
X

u(y)Q(dy |x, a)
∣∣∣ ≤ m

\
X

V(y)Q(dy |x, a),

we may use Assumptions 2.4(e) and 2.5(a) to conclude that Tu is in L∞

V
.

(c) Finally, Assumptions 2.4(a) and (d) yield—using the Measurable
Selection Theorem again—that there is g ∈ F such that
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sup
a∈A(x)

\
X

V(y)Q(dy |x, a) =
\
X

V(y)Q(dy |x, g)

for every x ∈ X, which combined with Assumption 2.5(a) implies (4) with
constants B = Bg and b = bg, and “petite set” C = Cg.

To prove Theorem 3.5 we shall use the following result whose proof is
omitted here because it is essentially the same as that of Theorem 2.6 in
Gordienko and Hernández-Lerma (1995a).

Lemma 5.1. Under the hypotheses of the Theorem 3.5 there is a real

number ̺∗, a function h in L∞

V
, and a stationary policy f that satisfy the

Average Cost Optimality Inequality (ACOI)

̺∗ + h(x) ≥ min
a∈A(x)

[
C(x, a) +

\
X

h(y)Q(dy |x, a)
]

(50)

= C(x, f) +
\
X

h(y)Q(dy |x, f) for all x ∈ X.

Moreover , f is AC-optimal and ̺∗ is the AC-value function, i.e. [as in (23)],

(51) J(f, x) = J∗(x) = ̺∗ for all x ∈ X.

We next proceed to prove Theorem 3.5.

Proof of Theorem 3.5. (a) Let ̺∗, h and f be as in Lemma 5.1; we shall
prove that equality holds in (50), for which we use the Poisson equation (6).

First note that integration of both sides of (6) with respect to the in-
variant probability measure Qf and the use of (51) yield

(52) J(f) =
\
X

C(y, f)Qf (dy) = ̺∗.

Hence, in lieu of (6), the Poisson equation when using the policy f can be
written as

(53) ̺∗ + hf (x) = C(x, f) +
\
X

hf (y)Q(dy |x, f), x ∈ X,

for some function hf in L∞

V
. Thus, from (50) and (53), the function u in

L∞

V
defined as

u(x) := h(x) − hf (x), x ∈ X,

satisfies

(54) u(x) ≥
\
X

u(y)Q(dy |x, f) x ∈ X.

Iterating this inequality (or noting that {u(xn)} is a P f
x -super-martingale)

yields

u(x) ≥ Ef
xu(xn) for all x ∈ X, n ∈ N0,

and letting n→ ∞ we obtain [by (5) or Remark 2.9(c)]
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(55) u(x) ≥
\
X

u(y)Qf (dy) for all x ∈ X.

Therefore, defining k := infX u(x), we get k ≥
T
X
u(y)Qf (dy) ≥ k, which

implies that u(·) = k (Qf -a.e.). In other words [see Remark 2.9(a)], h and
hf differ only by the constant k, so that (53) can be written as

(56) ̺∗ + h(x) = C(x, f) +
\
X

h(y)Q(dy |x, f) for all x ∈ X;

that is, equality holds in (50). This proves that (̺∗, h, f) satisfies the
ACOE (22), and the other statements in part (a) of the theorem follow
from Lemma 5.1. [Concerning the equivalence of (21) and (22), see Re-
mark 3.6(a).]

(b) We prove this part showing that the implications (i)⇒(ii)⇒(iii)⇒(i)
hold.

(i)⇒(ii). This proof is very similar to that of part (a). Namely, if
f ∈ F is AC-optimal, then we have (52) and (53). Now, from (53) and
Proposition 2.6(a), there is a stationary policy f ′ such that

̺∗ + hf (x) ≥ min
a∈A(x)

[
C(x, a) +

\
X

hf (y)Q(dy |x, a)
]
,(57)

= C(x, f ′) +
\
X

hf (y)Q(dy |x, f ′) for all x ∈ X.

Hence, using Lemma 5.1, we find that f ′ is AC-optimal, that is, it satisfies
(51). Finally, write down the Poisson equation for f ′ and compare it with
(57) [see (54), (55)] to conclude that hf and hf ′ are equal, except perhaps
for an additive constant. Thus (̺∗, h, f), with h = hf , satisfies the ACOE.

(ii)⇒(iii). Let f ∈ F be a canonical policy. Thus, from (21), for all
x ∈ X and n ∈ N0,

(58) Jn(f, x)+E
f
xh(xn) = inf

Π

[Jn(π, x)+E
π
xh(xn)] ≤ J∗

n(x)+sup
Π

Eπ
xh(xn).

Therefore

0 ≤ Jn(f, x)− J∗

n(x) ≤ sup
Π

Eπ
xh(xn)− Ef

xh(xn),

and upon multiplying by 1/n and letting n→ ∞, Remark 2.9(d) yields

lim
n→∞

1

n
[Jn(f, x)− J∗

n(x)] = 0 for all x ∈ X.

That is, f is F-SAO. (Observe that we also obtain limn→∞
1
n
J∗

n(x) = ̺∗ for
all x ∈ X.)

(iii)⇒(i) follows from Remark 3.3(b).
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Remark 5.2. Let F∗ be the set of all AC-optimal stationary policies.
Then, by Theorem 3.5(b), and letting T be as in (1), we may write F∗ as

F∗ = {f ∈ F : f is canonical [i.e., (21) holds]}(59)

=
{
f ∈ F : C(x, f) +

\
X

h(y)Q(dy |x, f) = Th(x) for all x ∈ X
}
.

Observe also that if f is in F∗, then—by (21) and (23)—we may rewrite
(29) and (30) as

Du(f, x) = Dl(f, x) = lim
n→∞

[Jn(f, x)− n̺∗](60)

= lim
n→∞

[h(x) −Eπ
xh(xn)] =: D(f, x) for all x ∈ X,

where, by (5),

(61) D(f, x) = h(x)−
\
X

h(y)Qf (dy) for all x ∈ X.

Finally, it is interesting to note that the following proof of existence of a
D-strong AO policy in F is exactly the same as Nowak’s (1992) proof that
there exists an OO policy (in F)! This immediately suggests of course the
equivalence, in Theorem 4.12, of D-strong average optimality and overtaking
optimality in F.

Proof of Theorem 4.9. If f ∈ F is a stationary policy which is not

AC-optimal (i.e., J(f) > ̺∗, or equivalently, f 6∈ F∗), then Proposition
4.5(d) yields Du(f, ·) = ∞. Hence, to minimize Du(·, x) over F we may
restrict ourselves to look for a minimizer in the set F∗ of AC-optimal policies.
Thus, from (59)–(61) we wish to find f∗ ∈ F∗ such that

D(f∗, x) = inf
F∗

D(f, x) = h(x) + inf
F∗

[
−
\
X

h(y)Qf (dy)
]

for all x ∈ X.

In other words [as in Nowak (1992)], the problem of minimizing D(·, x)
over F∗ for all x ∈ X is equivalent to looking for an AC-optimal policy in a
new Markov control model (X,A, {A∗(x) : x ∈ X}, Q, Ĉ), where

A∗(x) :=
{
a ∈ A(x) : C(x, a) +

\
X

h(y)Q(dy |x, a) = Th(x)
}
, x ∈ X,

Ĉ(x, a) := −h(x), a ∈ A∗(x), x ∈ X,

and X, A and Q are the same as in the original Markov control model.
Moreover, under the hypotheses of Theorem 4.9, the new control model ob-
viously satisfies the assumptions of Theorem 3.5 withA(·) and C replaced by

A∗(·) and Ĉ, respectively. Therefore, there exists an AC-optimal stationary
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policy f∗ ∈ F∗ for the new model, i.e.,

(62) D(f∗, x) = h(x)−
\
X

h(y)Qf∗(dy) = inf
F∗

D(f, x) for all x ∈ X.

This shows that f∗ is D-strong AO in F∗ [see (59) and (60)]. But, clearly,
f∗ is also D-strong AO in the set F of all stationary policies since (as already
noted) if f is in F \ F∗, then Du(f, ·) = ∞. Thus, we have

(63) Du(f∗, x) = inf
F

Du(f, x) for all x ∈ X.

Finally, the last statement in Theorem 4.9 follows from (42) and Re-
mark 3.6(d).

Proof of Lemma 4.10. Let f be an AC-optimal stationary policy. Then,
by Theorem 3.5(b), it enters into some canonical triplet (̺∗, f, h), where
the function h can be chosen satisfying

T
X
h(y)Qf (dy) = 0; that is, h(·) =

hf (·) = Du(f, ·); see Remark 4.8(a).
(a) From (58), we have

0 ≤ Jn(f, x)− J∗

n(x) ≤ sup
Π

Eπ
xh(xn)− Ef

xh(xn),

which, from Remark 2.9(c)–(d), implies that

OC(f, x) ≤ ‖h‖Vb(1−B)−1 for all x ∈ X.

(b) Now consider the error functions en in (43) and observe that [by
(33), (34)]

lim sup
n→∞

en(x) = h(x)− Ll(x) = OC(f, x) for all x ∈ X,

and

lim inf
n→∞

en(·) = h(x)− Lu(x) = OCl(f, x) for all x ∈ X.

Combining these facts with (60), which yields Du(f, ·) = h(·), we obtain (b).
(c) As is well known [see Lemma 5.6.4 in Hernández-Lerma and

Lasserre (1996), or Lemma 5.4 in Montes-de-Oca and Hernández-Lerma
(1996)],

en+k(x) ≥
\
X

en(y)Q
k(dy |x, f) for all n, k ∈ N0, x ∈ X.

Thus, taking lim inf as k → ∞, we obtain

(64) OCl(f, x) ≥
\
X

en(y)Qf (dy) for all n ∈ N0, x ∈ X,

which, by Fatou’s Lemma, implies

OCl(f, x) ≥
\
X

OCl(f, y)Qf (dy) for all x ∈ X.
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[Note that Fatou’s Lemma is indeed applicable since, by (44), en(x) ≥
Ef

xh(xn) and, therefore, by Remark 2.9(d), en is minorized by a Qf -inte-
grable function.] Hence

OCl(f, ·) = inf
y∈X

OCl(f, y) =: kf Qf -a.e.,

which yields the first equality in (c). To obtain the second equality use (64)
again, together with (44) and Fatou’s Lemma, to obtain, for all x ∈ X,

OCl(f, x) ≥ lim inf
n→∞

\
X

en(y)Qf (dy) ≥
\
X

lim inf
n→∞

en(y)Qf (dy)

=
\
X

lim inf
n→∞

[Jn(f, y)− J∗

n(y)]Qf (dy) =
\
X

OCl(f, y)Qf (dy).

Therefore, the second equality in (c) follows from the first one.

Proof of Theorem 4.12. The equivalence of (i) and (ii) is an immedi-
ate consequence of Remark 4.8(a), while that of (i) and (iv) comes from
Lemma 4.10(b) and Proposition 4.5(d). Indeed, from Lemma 4.10(b), we
have

inf
F∗

Du(f, x) = Ll(x) + inf
F∗

OCu(f, x) for all x ∈ X,

and using Proposition 4.5(d) we conclude that

inf
F

Du(f, x) = Ll(x) + inf
F

OCu(f, x) for all x ∈ X.

To obtain the equivalence of (i) and (iii), note that—as in Proposi-
tion 4.5(a)—overtaking optimality in F implies D-strong AO in F; then
it remains to prove that (i)⇒(iii). To do this, note that the following facts
hold:

(a) for all f, g ∈ F∗,

lim
n
[Jn(f, x)− Jn(g, x)] = Du(f, x)−Du(g, x) for all x ∈ X.

(b) Consider policies f ∈ F∗ and g ∈ F \ F∗. Then

lim sup
n→∞

[Jn(f, x)− Jn(g, x)] ≤ Du(f, x)−Dl(g, x) ≤ 0 for all x ∈ X,

since Du(g, ·) = Dl(g, ·) = ∞.
Thus, from (a)–(b), we conclude that (i)⇒(iii).

6. An example. We now discuss an example from inventory theory to
illustrate how to verify our assumptions. For further details see Vega-Amaya
(1996).

Consider a discrete time inventory system in which the stock level xt
evolves in X := [0,∞) according to

(65) xt+1 = max(xt + at − wt, 0), t ∈ N0; x0 = x.
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Here at denotes the amount of product ordered (and immediately supplied)
at the beginning of each period t ∈ N0, whereas wt is the product’s demand
during that period. We suppose that the production variables {at} take
values in the interval A := [0, θ] irrespective of the stock level, where θ is a
positive constant.

We suppose that the demand process {wt} satisfies the following assump-
tion:

Assumption 6.1. (a) The process {wt} is formed by nonnegative inde-
pendent identically distributed random variables with common cumulative
distribution function denoted by φ, and such that

(a.1) φ has a continuous bounded density function µ;
(a.2) w∗ :=

T
∞

0
y φ(dy) <∞.

(b) θ < w∗.

In what follows, E denotes the expectation with respect to φ.
The one-step (net) cost function is given by

(66) C(x, a) := ba+ hc(x+ a)− sEmin(x+ a,w0), (x, a) ∈ K=X×A,

where b, hc and s are positive constants.
Now, we proceed to show that, for the inventory system (65)–(66), As-

sumption 6.1 implies Assumptions 2.4, 2.5 and 2.8.

Verification of Assumption 2.4. It is clear that Assumption 2.4(a)–(b)
holds; Assumption 2.4(c) follows from (a.1) and noting that\

X

u(y)Q(dy |x, a) = Eu[(x + a− w0)
+],

for all (x, a) ∈ K, and any measurable bounded u on X, where y+ :=
max(0, y).

To obtain a “bounding” function V satisfying Assumption 2.4(d)–(e),
first note that, for the function Ψ(p) := E exp[p(θ − w0)], p ≥ 0, we have
Ψ(0) = 1 and Ψ ′(0) = θ−w∗ < 0, which implies that there exists a constant
r > 0 such that

(67) α := E exp[r(θ − w0)] < 1.

Now, define

(68) V(x) := β exp[r(x+ 2w∗)], x ∈ X,

where β is a positive constant. Simple computations yield

(69)
\
X

V(y)Q(dy |x, a) = V(x)

x+a\
0

exp[r(a−y)]φ(dy)+V(0)[1−φ(x+a)]

for all (x, a) ∈ K, which implies Assumption 2.4(d).
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On the other hand, direct computations yield that supa∈A |C(x, a)| ≤
s(x + 2w∗) for all x ∈ X. Thus, since one can choose the constant β large
enough such that V(x) ≥ max{1, s(x + 2w∗)} for all x ∈ X, we see that
Assumption 2.4(e) holds.

Verification of Assumption 2.5. First we shall show that Assumption
2.5(b) is satisfied. To do this, define

(70) ψ(A) := IA(0), A ∈ BX, and S(x) := 1− φ(x+ θ), x ∈ X.

Using this notation, we have

(71) Q(· |x, a) ≥ ψ(·)S(x) for all (x, a) ∈ K,

which implies that, for each f ∈F, the Markov processes {xt} is ψ-irreducible
and aperiodic [Nummelin (1984), Remark 2.1 and Example 2.5]; hence, As-
sumption 2.5(b) holds.

To verify Assumption 2.5(a), from (67)–(69), note that\
X

V(y)Q(dy |x, a) ≤ αV(x) +V(0) for all (x, a) ∈ K,

which implies\
X

V(y)Q(dy |x, a) ≤ BV(x) +V(0)IK(x) for all (x, a) ∈ K,

where B := 1
2 (1− α) < 1 and K := {y ∈ X : V(y) ≤ (1− α)−1V(0)}.

Since S(·) is a continuous function, inequality (71) implies that every
compact subset of X is a petite set for each f ∈ F [Meyn and Tweedie
(1993), Proposition 6.2.4 and Theorem 6.2.5, p.134; using the terminology
of Meyn and Tweedie, (71) implies that, for each f ∈ F, the process {xt} is
a T-chain]. Hence, since K is a compact subset of X, it is a petite set for
each policy f ∈ F. Therefore, Assumption 2.5(a) holds.

Verification of Assumption 2.8. To check this part we shall use a result
from Gordienko and Hernández-Lerma (1995a), for which we introduce the
following notation: let ν be a finite signed measure on X and define the
norm

‖ν‖∗V :=
\
X

V(y) |ν|(dy),

where V(·) is the function (68) and |ν| is the total variation of the signed
measure ν. Moreover, define

νnf (· |x) := Qn(· |x, f)−Qf (·), x ∈ X, f ∈ F, n ∈ N,

and

Sf (x) := 1− φ(x+ f(x)), x ∈ X, f ∈ F.
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Observe that the condition

(72) sup
f∈F

‖νnf (· |x)‖
∗

V ≤ V(x)Mγn, for all x ∈ X, n ∈ N,

implies that Assumption 2.8 holds.
Now, note that for each x ∈ X and f ∈ F, the following conditions hold:

(i) Q(· |x, f) ≥ Sf (x)ψ(·);
(ii)
T
X
V(y)Q(dy |x, f) ≤ αV(x) + ‖ψ‖∗

V
Sf(x) [from (69)];

(iii) inff∈F

T
X
Sf (y)ψ(dy) ≥

T
X
S(y)ψ(dy) = S(θ) > 0.

Gordienko and Hernández-Lerma [(1995a), Lemma 3.4] show that prop-
erties (i)–(iii) imply (72); hence, Assumption 2.8 is satisfied.

7. Concluding remarks and open problems. In the previous sec-
tions we have presented an analysis of several infinite-horizon, undiscounted
optimality criteria for a class of discrete-time Markov control processes
(MCPs) on Borel spaces. Some of our hypotheses—especially Assumption
2.5—may seem to be quite restrictive, but the fact is that weakening these
hypotheses does not look very promising. Indeed, a glance at the literature
[e.g., Dutta (1991), Fernández-Gaucherand et al. (1994) and Nowak (1992)
for discrete-time problems, or Carlson et al. (1991) and Leizarowitz (1988)
in the continuous-time case] shows that implicitly or explicitly one needs con-
ditions ensuring results such as the exponential convergence in (5) and/or
the existence of solutions to the Poisson equation (6).

On the other hand, once we have the last (strong) conditions—say (5)
and (6)—one would definitely expect to solve other interesting open prob-
lems. For example, does the value iteration algorithm converge? (See Lem-
ma 4.10 and Remark 4.11.) Can one (say, “similarly”) obtain the conver-
gence of the policy iteration (PI) algorithm? This is a standard technique
for MCPs with a denumerable (mainly finite) state space, but, to our knowl-
edge, there are no results whatsoever for the Borel space case, except for
recent work of Meyn (1995) and Hernández-Lerma and Lasserre (1997). [For
discounted cost problems see, e.g., Hernández-Lerma and Lasserre (1996) or
Hernández-Lerma and Muñoz de Ozak (1992).] Similarly, (5) and (6) also
yield the Strong Law of Large Numbers, the Central Limit Theorem (CLT)
and the Law of the Iterated Logarithm (LIL) for both discrete and contin-
uous time Markov processes [Glynn and Meyn (1996), Meyn and Tweedie
(1993)]. Hence one would “expect” to obtain, for discrete and continu-
ous MCPs, “pathwise” (or sample path) versions of Theorems 3.5 and 4.9
[cf. Leizarowitz (1988)], and/or the Borel-space version of the CLT and the
LIL obtained, e.g., by Mandl and Lausmanová (1991) for finite-state MCPs.

In conclusion, it is apparent that the setting and techniques developed
in this paper may be useful to solve other MCP-related problems.
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O. Hern ández-Lerma (1989), Adaptive Markov Control Processes, Springer, New York.
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