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ON THE CONNECTIVITY OF EFFICIENT POINT SETS

Abstract. The connectivity of the efficient point set and of some proper
efficient point sets in locally convex spaces is investigated.

1. Introduction. An important problem in vector optimization is the
connectivity of efficient point sets. Several authors have discussed this topic
in finite-dimensional spaces and normed spaces (cf. [3], [6], [7], [10], [12],
[15]–[16], [18], [19], [21] and [23]). Recently, Gong [8] and Song [22] studied
the connectivity of the efficient point set and some proper efficient point sets
with respect to the weak topology of a normed space. As an application, the
connectivity of the efficient solution set and of some proper efficient solution
sets for a vector optimization problem with a set-valued mapping which has
weakly compact images was also discussed.

In this note, we first study the connectivity of the efficient point set and
of some proper efficient point sets of a weakly compact, cone-convex subset
of a locally convex space. As an application, we study the connectivity of
efficient solution sets for set-valued vector optimization. Our results unify
the corresponding results of [21] and [22].

2. Preliminaries. Let Y be a locally convex space with topological
dual space Y ∗. Let S ⊂ Y be a convex cone (i.e., S + S ⊂ S, and λS ⊂ S
for every λ ≥ 0). Denote by S+ the dual cone of S:

S+ = {h ∈ Y ∗ | h(y) ≥ 0 for all y ∈ S}.

Denote by S+i the set of all strictly positive linear functionals in S+, i.e.,

S+i = {h ∈ Y ∗ | h(y) > 0 for all y ∈ S \ {0}}.
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Let C be a subset of Y . By C (resp. C
w
) and intC we denote the

closure (resp. the closure with respect to the weak topology) and interior of
C, respectively.

A nonempty convex subset B of the convex cone S is said to be a base for
S if B does not contain the origin and S = cone(B) = {λb | b ∈ B, λ ≥ 0}.

It is clear that if S+i is nonempty, then S is pointed , i.e., S∩(−S) = {0}.
Moreover, if S is a nonempty convex cone in Y , then S+i 6= ∅ if and only if
S has a base (see [13]).

Let C be a subset of Y and S ⊂ Y be a closed convex pointed cone.
A point y0 ∈ C is said to be a positive proper efficient point of C, y0 ∈
Pos(C,S), if there exists an h ∈ S+i such that

h(y0) ≤ h(y) for all y ∈ C.

A point y0 ∈ C is said to be:

• an efficient point of C with respect to S, y0 ∈ E(C,S), if

(C − y0) ∩ (−S) = {0};

• a Borwein proper efficient point of C with respect to S (cf. [4]),
y0 ∈ Bo(C,S), if

cone(C − y0) ∩ (−S) = {0},
where cone(C − y0) denotes the closure of the set cone(C − y0);

• a Benson proper efficient point of C with respect to S (cf. [2]), Y0 ∈
Be(C,S), if

cone(C + S − y0) ∩ (−S) = {0}.
It is easy to show that Pos(C,S) ⊂ Bo(C +S, S) = Be(C,S) ⊂ Bo(C,S)

⊂ E(C,S) (cf. [9]).
Let Y be a normed space. A point y0 ∈ C is said to be a super efficient

point of C with respect to S (cf. [5]) if there exists a number M > 0 such
that

cone(C − y0) ∩ (B − S) ⊂ MB,

where B is the closed unit ball of Y . By SE(C,S) we denote the set of all
super efficient points of C with respect to the cone S.

A subset C of Y is said to be S-convex if C + S is convex (cf. Yu [24]).
Let A be a subset of a topological vector space X, and let F : A → Y

be a set-valued mapping.
We say that F is upper semicontinuous at x0 ∈ A (see [1]) if for ev-

ery open set U such that F (x0) ⊂ U , there exists a neighborhood N(x0)
of x0 such that F (x) ⊂ U for every x ∈ N(x0). F is said to be upper
semicontinuous on A if F is upper semicontinuous at every point x ∈ A.
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3. Connectivity of efficient point sets. In this section we shall
discuss the connectivity of efficient point sets and some proper efficient point
sets of a weakly compact and cone-convex subset in a locally convex space.

The following lemma will be used.

Lemma 1. Let Y be a locally convex space and let C be a weakly bounded
subset of Y. Then the function φ : (C, σ(Y, Y ∗)|C) × (Y ∗, β(Y ∗, Y )) → R
defined by

φ(y, h) = h(y),
where σ(Y, Y ∗) is the weak topology on Y and β(Y ∗, Y ) is the strong topology
on Y ∗ (see [20]), is continuous.

P r o o f. Let {(yα, hα)} be a net converging to (y, h) in C × Y ∗. Then
{yα} tends weakly to y in C and {hα} tends to h in (Y ∗, β(Y ∗, Y )). Consider
the equality

hα(yα)− h(y) = (hα − h)(yα) + h(yα − y).

Since C is weakly bounded and {yα} ∈ C, it is clear that hα(yα) → h(y).
Hence φ is continuous.

We recall that y0 ∈ C is a point of continuity (PC point) for C (see [14])
if for any 0-neighborhood V ,

y0 6∈ [C \ (y0 + V )]
w
.

Equivalently, y0 ∈ C is a PC point for C if a net in C converges (strongly)
to y0 whenever it converges weakly to y0. We denote by PC(C) the set of
all PC points of C.

If C is a compact subset of Y , then C = PC(C).

Theorem 3.1. Let Y be a locally convex space and let S be a closed convex
cone in Y such that the set S+i is nonempty. Let C be a weakly compact ,
S-convex subset of Y and let E(C,S) ⊂ PC(C). Then Pos(C,S), Be(C,S),
Bo(C,S), and E(C,S) are connected.

P r o o f. The first part of the proof follows the lines of the proof of The-
orem 1 of [21] or Theorem 3.1 of [22]. We present it here for completeness.

Define a set-valued mapping G : Y ∗ → Y by

G(h) = {y ∈ C | h(y) = min{h(z) | z ∈ C}}.
We first show that G(h) is convex for all h ∈ S+i. Indeed, if y1, y2 ∈ G(h)

then y1, y2 ∈ C, and r = h(y1) = h(y2) = min{h(y) | y ∈ C}. Since h is a
linear functional, we have h(λy1 +(1−λ)y2) = λh(y1)+(1−λ)h(y2) = r for
all λ ∈ [0, 1]. If λy1 +(1−λ)y2 ∈ C, then λy1 +(1−λ)y2 ∈ G(h), i.e. G(h) is
convex. Assume that λy1 +(1−λ)y2 6∈ C for some λ ∈ [0, 1]. The convexity
of C + S implies that λy1 + (1 − λ)y2 ∈ C + S. Then there exists y0 ∈ C
satisfying y0 6= λy1 + (1 − λ)y2 such that λy1 + (1 − λ)y2 ∈ y0 + S. Since
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h ∈ S+i, this implies that r = h(λy1 + (1− λ)y2) > h(y0), a contradiction.
Thus λy1 + (1− λ)y2 ∈ C for all λ ∈ [0, 1].

Next we show that G(·) is an upper semicontinuous set-valued map from
Y ∗ into Y , where Y ∗ is supplied with the strong topology β(Y ∗, Y ).

Assume that G(·) is not upper semicontinuous at some h0 ∈ Y ∗. Then
there exist an open set V in Y such that G(h0) ⊂ V and a net {hα}α∈I in
(Y ∗, β(Y ∗, Y )) converging to h0 ∈ Y ∗ such that

G(hα) 6⊂ V for all α ∈ I.

Hence, there exist some yα ∈ G(hα) \ V for α ∈ I, i.e., yα ∈ C \ V and

hα(yα) ≤ hα(y) for all y ∈ C.

Since C is weakly compact, without loss of generality, we may assume
that {yα} converges weakly to a point y0 ∈ C. Let φ : (C, σ(Y, Y ∗)|C) ×
(Y ∗, β(Y ∗, Y )) → R be the function defined by

φ(y, h) = h(y).

Note that C is weakly bounded. By Lemma 1, φ is continuous. Hence hα(yα)
→ h0(y0) and hα(y) → h0(y) for all y ∈ C. Therefore,

h0(y0) ≤ h0(y) for all y ∈ C.

This means that y0 ∈ G(h0) ⊂ V and hence y0 ∈ E(C,S). Since y0 ∈
PC(C), we infer that {yα} converges to y0, a contradiction.

It is obvious that S+i is a connected subset of (Y ∗, β(Y ∗, Y )). By The-
orem 3.1 of [11], we know that Pos(C,S) =

⋃
h∈S+i G(h) is a connected set.

Moreover, Pos(C,S) ⊂ Be(C,S) ⊂ Bo(C,S) ⊂ E(C,S). By Theorems 4.4
and 3.2 of [17], we have E(C,S) ⊂ Pos(C,S). Therefore, the sets Be(C,S),
Bo(C,S) and E(C,S) are connected.

Remark 1. If C is compact, then it is also weakly compact and E(C,S)⊂
PC(C), but not conversely. For instance, the unit ball BY in an infinite-
dimensional and uniformly convex Banach space Y is weakly compact and
each point of its sphere is a PC point, but the ball is not compact. Theo-
rem 3.1 unifies and improves Theorem 1 of [21] on the connectivity of the
efficient point set with respect to the norm topology of a normed space and
Theorems 3.1 and 3.2 of [22] for the weak topology of a normed space.

Remark 2. When Y is a normed space, if S has a closed bounded base,
then the norm-interior int S+ is nonempty and it is also connected with
respect to the norm topology. By the proof of Theorem 2.2 of [8], we have
SE(C,S) =

⋃
h∈ int S+ G(h). From the proof of Theorem 3.1, it is clear that

SE(C,S) is also a connected set. In this case, int S+⊂S+i. Equality holds if,
in addition, Y is a reflexive Banach space, and hence SE(C,S) = Pos(C,S).
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In a nonreflexive space, equality above does not hold in general. Therefore,
in the final remark of [22], one has to add the assumption that Y is reflexive.

Let A be a subset of a topological vector space X, and let F : A→Y be a
set-valued mapping. We consider the following vector optimization problem:

(P) minF (x), subject to x ∈ A.

A point x0 ∈ A is said to be an efficient (resp. Borwein proper efficient , Ben-
son proper efficient , positive proper efficient) solution of the problem (P) if
there exists y0 ∈ F (x0) such that y0 is in E(F (A), S) (resp. Bo(F (A), S),
Be(F (A), S), Pos(F (A), S)).

Let us denote by E(A,S, F ), Bo(A,S, F ), Be(A,S, F ), and Pos(A,S, F )
the sets of all efficient, Borwein proper efficient, Benson proper efficient, and
positive proper efficient solutions of the problem (P), respectively.

When Y is a normed space, the set of all super efficient solutions of (P)
will be denoted by SE(A,F,S), i.e.

SE(A,F, S) = {x ∈ A | ∃y ∈ F (x) such that y ∈ SE(F (A), S)}.
Let A be a convex subset of X. A set-valued mapping F : A → Y is said

to be S-convex if for all x1, x2 ∈ A and t ∈ [0, 1] we have

tF (x1) + (1− t)F (x2) ⊂ F (tx1 + (1− t)x2) + S.

F is said to be S-quasiconvex if x1, x2 ∈ A, y ∈ Y ,

F (x1) ∩ (y − S) 6= ∅ and F (x2) ∩ (y − S) 6= ∅
imply

F (tx1 + (1− t)x2) ∩ (y − S) 6= ∅ for all t ∈ [0, 1].
It is easy to show that F is S-quasiconvex if and only if

F−1(y − S) = {x ∈ A | F (x) ∩ (y − S) 6= ∅}
is convex for all y ∈ Y .

Clearly, if F (·) is S-convex, then F is S-quasiconvex and F (A) is S-
convex. The converse is not true as was shown by an example of [21].

Theorem 3.2. Let A be a compact subset of a Hausdorff topological vec-
tor space X , let Y be a locally convex space and let S be a closed convex cone
in Y such that the set S+i is nonempty. If F : A → Y is an upper semi-
continuous set-valued mapping with compact images, F (·) is S-quasiconvex
and F (A) is S-convex , then Pos(A,S, F ), Bo(A,S, F ), Be(A,S, F ), and
E(A,S, F ) are connected.

P r o o f. The proof is exactly the same as those in [21] or [22], so we
omit it.

Remark 3. Under the assumptions of Theorem 3.2, if, in addition, Y is
a normed space and S has a closed bounded base (cf. Remark 2), by using
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a similar argument, we can prove that SE(A,F, S) = F−1(E(F (A), S)) is
connected. This result generalizes Theorem 2.2 of [8] where the set-valued
mapping F was assumed to be S-convex.
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