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Abstract. The problem of nonparametric regression function estimation
is considered using the complete orthonormal system of trigonometric func-
tions or Legendre polynomials ek, k = 0, 1, . . . , for the observation model
yi = f(xi) + ηi, i = 1, . . . , n, where the ηi are independent random vari-
ables with zero mean value and finite variance, and the observation points
xi ∈ [a, b], i = 1, . . . , n, form a random sample from a distribution with
density ̺ ∈ L1[a, b]. Sufficient and necessary conditions are obtained for

consistency in the sense of the errors ‖f − f̂N‖, |f(x) − f̂N (x)|, x ∈ [a, b],

and E‖f − f̂N‖2 of the projection estimator f̂N (x) =
∑N

k=0 ĉkek(x) for
ĉ0, ĉ1, . . . , ĉN determined by the least squares method and f ∈ L2[a, b].

1. Introduction. Let yi, i = 1, . . . , n, be observations at points xi ∈
[a, b] according to the model yi = f(xi)+ηi, where f ∈ L2[a, b] is an unknown
function, ηi, i = 1, . . . , n, are independent identically distributed random
variables with zero mean value and finite variance σ2

η > 0, and xi, i =
1, . . . , n, form a random sample from an absolutely continuous distribution
with density ̺ ∈ L1[a, b]. It is also assumed that the random variable ω =
(x1, . . . , xn) is independent of the observation error vector η = (η1, . . . , ηn).

Let the functions ek, k = 0, 1, . . . , constitute a complete orthonormal
system in the space L2[a, b]. Any function f ∈ L2[a, b] can then be repre-
sented by its Fourier series

f =

∞∑

k=0

ckek, where ck =

b\
a

fek, k = 0, 1, . . .

We assume that the functions ek, k = 0, 1, 2, . . . , are analytic in (a, b). As
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an estimator of the vector cN = (c0, c1, . . . , cN )T of coefficients, for a fixed
N , we take the vector ĉN = (ĉ0, ĉ1, . . . , ĉN )T obtained by the least squares
method:

ĉN = arg min
a∈RN+1

1

n

n∑

i=1

(yi − 〈a, eN (xi)〉)2,

where eN (x) = (e0(x), e1(x), . . . , eN (x))T .

The vector ĉN can be uniquely determined with probability one as the
solution of the normal equations

(1) ĉN = G−1
n gn,

where

Gn =
1

n

n∑

i=1

eN (xi)e
N (xi)

T , gn =
1

n

n∑

i=1

yie
N (xi),

since according to the results presented in the author’s earlier work (see
Lemma 2.2 of [7]) the matrices Gn are almost surely positive definite for
N +1 ≤ n, when xi, i = 1, . . . , n, form a random sample from a distribution
with density ̺ ∈ L1[a, b].

Thus, we can study asymptotic properties of the projection estimator of
the regression function f defined by the formula

f̂N(x) =
N∑

k=0

ĉkek(x).

In Sections 2 and 3 we will consider the case when either a = 0, b = 2π or
a = −1, b = 1 and ek, k = 0, 1, 2, . . . , are the well-known complete orthonor-
mal system of trigonometric functions in L2[0, 2π] or Legendre polynomials
in L2[−1, 1], respectively (see [10]). The results obtained give sufficient con-
ditions for the consistency in the sense of L2-norm and uniform pointwise
consistency of the estimators.

In Section 4 a necessary condition for consistency in the sense of the
integrated mean-square error is given in the case where the projection esti-
mators are obtained using any orthonormal system of analytic functions.

In [5] Lugosi and Zeger proved general results concerning universal con-
sistency of trigonometric and polynomial estimators of the regression func-
tion E(Y | X = x) in the case where pairs of random variables (Xi, Yi),
i = 1, . . . , n, are observed. The estimators considered in [5] are, however,
determined by minimizing the empirical error

1

n

n∑

i=1

∣∣∣Yi −
N(n)∑

k=0

akek(Xi)
∣∣∣
p

, p ≥ 1,
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under the constraint
∑N(n)

k=0 |ak| ≤ βn, where, to obtain consistency, N(n)
and βn have to grow, but not too rapidly, as the sample size n grows.

Certain results concerning asymptotic properties of the polynomial re-
gression function estimators in the case of a fixed-point design are presented
in [1].

Another approach to nonparametric regression function estimation us-
ing polynomials, together with recent results concerning its consistency
and comparison with other estimation methods are presented in the mono-
graph [2].

According to the Jackson theorem [4] for any continuous 2π-periodic
function (i.e. for f ∈ C[0, 2π] satisfying f(0) = f(2π)) the following in-
equality is valid:

(2) dTN (f) = inf
T∈TN

sup
0≤s≤2π

|f(s)− T (s)| ≤ 12ω(1/l, f),

where N = 2l, l = 1, 2, . . . , TN = span{1, sin(s), cos(s) . . . , sin(ls), cos(ls)}
and ω(δ, f) for δ > 0 denotes the modulus of continuity of the function
f (see [4]). A similar theorem on uniform polynomial approximation (e.g.
Theorem 3.11 of [6]) implies that for f ∈ C[−1, 1],

(3) dPN (f) = inf
P∈PN

sup
−1≤s≤1

|f(s)− P (s)| ≤ 6ω(1/N, f),

where N = 1, 2, . . . , and PN denotes the set of algebraic polynomials of
degree N .

2. L2-norm consistency for square-integrable regression func-

tions. First, we prove the following two lemmas.

Lemma 2.1. (a) If ek, k = 0, 1, . . . , denote the trigonometric functions

forming a complete orthonormal system in L2[0, 2π], then for N = 2l, l =
0, 1, . . . ,

sup
0≤s≤2π

‖eN (s)‖2 =
N + 1

2π
.

(b) If ek, k = 0, 1, . . . , denote the Legendre polynomials forming a com-

plete orthonormal system in L2[−1, 1], then for N = 0, 1, . . . ,

sup
−1≤s≤1

‖eN (s)‖2 ≤ (N + 1)2

2
.

P r o o f. For the trigonometric system we have e0(s)= 1/
√
2π, e2l−1(s)=

sin(ls)/
√
π, e2l(s) = cos(ls)/

√
π, l = 1, 2, . . . ; accordingly for N = 2l and

s ∈ [0, 2π],

‖eN (s)‖2 =
N∑

k=0

e2k(s) =
1

2π
+

1

π

l∑

j=1

[sin2(js) + cos2(js)] =
N + 1

2π
.



76 W. Popiński

For the Legendre polynomials we have the inequalities |ek(s)| ≤
√

(2k + 1)/2
for k = 0, 1, . . . and s ∈ [−1, 1] (see [10]). Hence,

‖eN (s)‖2 =

N∑

k=0

e2k(s) ≤
1

2

N∑

k=0

(2k + 1) =
(N + 1)2

2
.

Lemma 2.2. If the vector ĉN = (ĉ0, ĉ1, . . . , ĉN ) of Fourier coefficient

estimators is obtained from (1), then

Eη

b\
a

(f − f̂N)2 = σ2
η

TrG−1
n

n
+ pN + ‖G−1

n aN‖2,

where

aN =
1

n

n∑

i=1

rN (xi)e
N (xi), rN =

∞∑

k=N+1

ckek, pN =

∞∑

k=N+1

c2k.

P r o o f. It is easy to see that

Eη

b\
a

(f − f̂N)2 = Eη‖cN − ĉN‖2 + pN

so we must calculate the first term in the above formula. Since f(x) =
〈eN (x), cN 〉+ rN (x) we have in view of the definitions in (1),

ĉN = cN +G−1
n

(
1

n

n∑

i=1

rN (xi)e
N (xi)

)
+G−1

n

(
1

n

n∑

i=1

ηie
N (xi)

)
.

Now, we easily obtain the equalities

Eη‖cN − ĉN‖2 = ‖G−1
n aN‖2 +

σ2
η

n2

n∑

i=1

eN (xi)
TG−1

n G−1
n eN (xi)

= ‖G−1
n aN‖2 +

σ2
η

n2
Tr

( n∑

i=1

eN (xi)e
N (xi)

TG−1
n G−1

n

)

= ‖G−1
n aN‖2 +

σ2
η

n
TrG−1

n .

Let λn(ω) denote the smallest eigenvalue of the matrix Gn(ω) defined
in (1). It is clearly a measurable random variable since it can be defined as
λn(ω) = infm=1,2,...〈Gn(ω)zm, zm〉, where the points zm, m = 1, 2, . . . , form
a dense subset of the unit sphere SN+1 = {x ∈ R

N+1 : ‖x‖ = 1}.
Further, the (norm-one) eigenvector yn(ω) of the matrix Gn(ω) corre-

sponding to the eigenvalue λn(ω) is also a measurable random variable since
it is defined as a solution of the linear equation (Gn(ω)−λn(ω)I)yn(ω) = 0.
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It is also easy to see that the elements of the matrix Gn converge in the
mean-square sense to the quantities

(4) gkl =
1

n
Eω

n∑

i=1

ek(xi)el(xi) =

b\
a

ekel̺

since

Eω

(
1

n

n∑

i=1

ek(xi)el(xi)− gkl

)2

≤ 1

n

b\
a

e2ke
2
l ̺

for k, l = 0, 1, . . . , N . Putting GN = EωGn(ω) we immediately obtain

Eω‖Gn −GN‖2 ≤ 1

n

N∑

k=0

N∑

l=0

b\
a

e2ke
2
l ̺ =

1

n

b\
a

( N∑

k=0

e2k

)2

̺

and consequently since ‖yn‖ = 1, n = 1, 2, . . . , we have

Eω(λn − 〈GNyn, yn〉)2 = Eω(〈Gnyn, yn〉 − 〈GNyn, yn〉)2(5)

≤ Eω‖Gn −GN‖2‖yn‖4 ≤ 1

n

b\
a

‖eN‖4̺.

Furthermore, if the density ̺ satisfies the condition ̺ ≥ c > 0, then taking
into account (4) and putting yn = (yn0, yn1, . . . , ynN )T we obtain

〈GNyn, yn〉 =
N∑

k=0

N∑

l=0

gklynkynl =

b\
a

( N∑

k=0

ynkek

)2

̺(6)

≥ c

b\
a

( N∑

k=0

ynkek

)2

= c‖yn‖2 = c > 0.

Now, applying the Chebyshev inequality we conclude in view of (5) that in
that case

Pω(|λn − 〈GNyn, yn〉| > c/2) ≤ 4

nc2

b\
a

‖eN‖4̺

and from (6) since λn ≥ 0 we finally have for ̺ ≥ c > 0,

(7) Pω(0 ≤ λn < c/2) ≤ 4

nc2

b\
a

‖eN‖4̺ ≤ 4

nc2
sup

a≤s≤b
‖eN (s)‖4.

Since the matrix Gn is symmetric and almost surely positive definite for
N + 1 ≤ n, by Lemma 2 of [9] we have ‖G−1

n aN‖2 ≤ λ−1
n 〈G−1

n aN , aN 〉 and
using Lemma 3 of [9] we also have 〈G−1

n aN , aN 〉 ≤ n−1
∑n

i=1 rN (xi)
2.
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Consequently, according to Lemma 2.2 the following inequality is almost
surely true for N + 1 ≤ n:

(8) Eη‖f − f̂N‖22 ≤ σ2
ηλ

−1
n

N + 1

n
+ pN + λ−1

n

1

n

n∑

i=1

rN (xi)
2,

where ‖ ∗ ‖2 denotes the norm in L2[a, b]. Furthermore, taking into account
(7) and (8) we see that for N + 1 ≤ n the inequality

(9) Eη‖f − f̂N‖22 ≤ 2

c

[
σ2
η

N + 1

n
+

1

n

n∑

i=1

rN (xi)
2

]
+ pN

holds except for ω ∈ An ⊂ [a, b]n, where

Pω(An) ≤
4

nc2
sup

a≤s≤b
‖eN (s)‖4.

Since

1

n
Eω

n∑

i=1

rN (xi)
2 =

b\
a

r2N̺ ≤ DpN for ̺ ≤ D,

we also see that for a bounded density ̺,

Pω

(
1

n

n∑

i=1

rN (xi)
2 > p

1/2
N

)
≤ Dp

1/2
N .

The last inequality together with (9) implies that for N + 1 ≤ n, ε > 0 and
a density ̺ satisfying D ≥ ̺ ≥ c > 0,

P (‖f − f̂N‖2 > ε) ≤ 4M(eN )

nc2
+Dp

1/2
N +

2

ε2c

[
σ2
η

N + 1

n
+ p

1/2
N +

c

2
pN

]
,

where M(eN ) = supa≤s≤b ‖eN (s)‖4. According to Lemma 2.1 for the tri-

gonometric system in L2[0, 2π] and N = 2l we have M(eN ) = (N + 1)2/4,
and for the system of Legendre polynomials in L2[−1, 1] we have M(eN ) ≤
(N + 1)4/4. Thus, for N + 1 ≤ n, ε > 0 and D ≥ ̺ ≥ c > 0,

P (‖f − f̂N‖2 > ε) ≤ (N + 1)r

nc2
+Dp

1/2
N +

2

ε2c

[
σ2
η

N + 1

n
+ p

1/2
N +

c

2
pN

]
,

where r = 4 in the case of polynomial regression and r = 2, N = 2l for
trigonometric regression. The above conclusions allow us to formulate the
following theorems.

Theorem 2.1. If the density ̺ ∈ L1[0, 2π] satisfies D ≥ ̺ ≥ c > 0 and

the sequence of even natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)2/n = 0,
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then the trigonometric projection estimator f̂N(n) of the regression function

f ∈ L2[0, 2π] is consistent in the L2-norm, i.e.

lim
n→∞

‖f − f̂N(n)‖2
p
= 0.

Theorem 2.2. If the density ̺ ∈ L1[−1, 1] satisfies D ≥ ̺ ≥ c > 0 and

the sequence of natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)4/n = 0,

then the polynomial projection estimator f̂N(n) of the regression function

f ∈ L2[−1, 1] is consistent in the L2-norm, i.e.

lim
n→∞

‖f − f̂N(n)‖2
p
= 0.

3. Uniform pointwise consistency of the projection estimator.

In order to obtain the results concerning uniform pointwise consistency of
the projection estimators considered we shall make use of an inequality
proved in [9] in the case ĉN = G−1

n gn and f ∈ C[a, b],

Eη(f(x)− f̂N(x))2 ≤ σ2
ηB

2
Nλ

−1
n

N + 1

n
+ [2(N + 1)B2

Nλ
−1
n + 2]dN (f)2

for x ∈ [a, b], where dN (f) = dTN (f) or dN (f) = dPN (f), and Bk, k =
0, 1, 2, . . . , form a non-decreasing sequence of bounds with Bk ≥
supa≤s≤b |ek(s)|. Hence, in view of (7) and Lemma 2.1 we then have for
N + 1 ≤ n, ̺ ≥ c > 0 and x ∈ [a, b],

(10) Eη(f(x)− f̂N(x))2 ≤ σ2
η

2(N + 1)B2
N

nc
+

4(N + 1)B2
N + 2c

c
dN (f)2

except for ω ∈ An ⊂ [a, b]n, where

Pω(An) ≤
(N + 1)r

nc2
, r = 2, 4.

Let us now consider the case of trigonometric regression. Then we have
B2

k = 1/π, k = 0, 1, . . . If the regression function is 2π-periodic and satisfies
the Lipschitz condition with exponent 0 < α ≤ 1, then ω(δ, f) ≤ Lδα, where
L > 0, and in view of (10) and (2) we obtain for ̺ ≥ c > 0, N = 2l, N+1 ≤
n and ε > 0 the following estimate:

P (|f(x)− f̂N(x)| > ε) ≤ (N + 1)2

nc2

+
2

cπε2

[
σ2
η

N + 1

n
+

[2(N + 1) + cπ](12L2α)2

N2α

]
,

valid for x ∈ [0, 2π]. Hence, we can formulate the following theorem.
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Theorem 3.1. If the density ̺ ∈ L1[0, 2π] satisfies ̺ ≥ c > 0 and the

sequence of even natural numbers, N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)2/n = 0,

then the trigonometric projection estimator f̂N(n) of the 2π-periodic regres-

sion function f satisfying the Lipschitz condition with exponent 1/2 < α ≤ 1
is uniformly pointwise consistent in [0, 2π], i.e.

lim
n→∞

f̂N(n)(x)
p
= f(x) uniformly in [0, 2π].

In the case of polynomial regression we have B2
k = (2k + 1)/2, k =

0, 1, . . . , (see [10]) so the sequence of bounds Bk is non-decreasing and in
view of (10) we obtain for ̺ ≥ c > 0, N + 1 ≤ n and ε > 0 the following
estimate:

P (|f(x)− f̂N (x)| > ε) ≤ (N + 1)4

nc2
+

1

cε2

[
σ2
η

(N + 1)(2N + 1)

n

+ [2(N + 1)(2N + 1) + 2c]d2N (f)

]
,

valid for x ∈ [−1, 1]. In this case we can formulate the following theorem.

Theorem 3.2. If the density ̺ ∈ L1[−1, 1] satisfies ̺ ≥ c > 0 and the

sequence of natural numbers N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)4/n = 0,

then the polynomial projection estimator f̂N(n) of the regression function

f ∈ C[a, b] satisfying the condition dPN (f) = o(N−1) is uniformly pointwise

consistent in [−1, 1], i.e.

lim
n→∞

f̂N(n)(x)
p
= f(x) uniformly in [−1, 1].

4. Necessary condition for convergence of the integrated mean-

square error. In this section a theorem giving certain necessary conditions
for consistency of the projection estimators of the regression function f ∈
L2[a, b] in the sense of the integrated mean-square error EηEω‖f − f̂N‖22 is
proved. It should be noted that this theorem is proved under the assumption
(see Section 1) that the functions ek, k = 0, 1, 2, . . . , forming a complete
orthonormal system in L2[a, b] are analytic in (a, b).

Theorem 4.1. Assume that the density ̺ ∈ L1[a, b] is bounded and

f ∈ L2[a, b] is such that ck 6= 0 for infinitely many k. Then the pro-

jection estimator f̂N(n) is consistent in the sense of the integrated mean-

square error EηEω‖f − f̂N(n)‖22 only if the sequence of natural numbers
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N(n), n = 1, 2, . . . , satisfies

lim
n→∞

N(n) = ∞, lim
n→∞

N(n)/n = 0.

P r o o f. If the Fourier coefficient estimators are obtained as the solution
of the normal equations ĉN = G−1

n (ω)gn(ω, η), then necessarily N + 1 ≤ n
since for N + 1 > n we have detGn(ω) = 0 almost surely (see Lemma 2.1
of [7]).

From Lemma 2.2 it follows immediately that the inequality

Eη‖f − f̂N‖22 ≥
σ2
η

n
TrG−1

n + pN

is valid almost surely for N + 1 ≤ n, which implies also that

(11) EωEη‖f − f̂N‖22 ≥
σ2
η

n
Eω TrG−1

n + pN ≥ pN .

Hence, since pN =
∑∞

k=N+1 c
2
k it is easy to see that N(n) → ∞ if we have

EωEη‖f − f̂N(n)‖22 → 0 as n→ ∞.
Further, the inequality between the arithmetic and harmonic means im-

plies that
N∑

i=0

λ−1
i ≥ (N + 1)2

∑N
i=0 λi

for λi > 0, i = 0, 1, . . . , N . Consequently, if λi, i = 0, 1, . . . , N , denote
the eigenvalues of the matrix Gn (which is almost surely positive definite
for N + 1 ≤ n) we obtain TrG−1

n ≥ (N + 1)2/TrGn, which together with
Jensen’s inequality immediately implies

Eω TrG−1
n ≥ Eω

(N + 1)2

TrGn
≥ (N + 1)2

Eω TrGn
.

However, since the density ̺ satisfies ̺ ≤ D, D > 0 and ‖ek‖2 = 1, k =
0, 1, 2, . . . ,

Eω TrGn = Eω

N∑

k=0

1

n

n∑

i=1

e2k(xi) =
N∑

k=0

b\
a

e2k̺ ≤ D(N + 1)

and we finally have Eω TrG−1
n ≥ (N+1)/D. Together with (11) this implies

that for N + 1 ≤ n,

EωEη‖f − f̂N‖22 ≥
σ2
η

n
Eω TrG−1

n + pN ≥ σ2
η

(N + 1)

nD
.

Hence if EωEη‖f − f̂N(n)‖22 → 0 as n→ ∞, we must have limn→∞N(n)/n
= 0.

It is worth remarking that in the case of uniform distribution of the
observation points on [0, 2π] (̺ = 1/(2π)) there exist Fourier coefficient
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estimators such that the conditions limn→∞N(n) = ∞, limn→∞N(n)/n =
0 are also sufficient for consistency in the sense of the integrated mean-
square error of the corresponding trigonometric projection estimator for
f ∈ L2[0, 2π] (see [8]).

5. Conclusions. Theorems similar to 2.1 and 3.1 can also be easily
proved in the case of regression functions defined on the d-dimensional cube
Q = [0, 2π]d ⊂ R

d, d > 1, and the orthonormal system of trigonometric
functions in the space L2(Q). A certain class of multivariate regression
functions for which a theorem analogous to 3.1 holds is characterized in [9].
Moreover, according to Gallant and White [3] the functions of the form

s(x) = a0 +
∑

|kα|≤K

aα cos(〈kα, x〉) + bα sin(〈kα, x〉),

where x = (x1, . . . , xd) ∈ Q, kα = (k1α, . . . , kdα), |kα| = |k1α|+ . . . + |kdα|,
kiα = 0,±1,±2, . . . , i = 1, . . . , d, K > 0, can be represented as a single
hidden layer feedforward neural network

r(x) = β0 +

m∑

i=1

βiψ(〈γi, x〉+ γi0)

with the cosine-squasher activation function

ψ(t) =





0, −∞ < t ≤ −π/2,
[cos(t+ 3π/2) + 1]/2, −π/2 ≤ t ≤ π/2,
1, π/2 ≤ t <∞,

and properly chosen vector (β0, β1, γ1, γ10, . . . , βm, γm, γm0) of weights,
where β0, βj , γj0 ∈ R, γj ∈ R

d, j = 1, . . . ,m, m = m(K). Thus, the
above mentioned multivariate versions of Theorems 2.1 and 3.1 assure exis-
tence of neural network estimators [3] consistent in the L2-norm or uniformly
pointwise consistent for appropriate regression function classes.
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mials: Extremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
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