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POINT DERIVATIONS FOR LIPSCHITZ FUNCTIONS AND
CLARKE’S GENERALIZED DERIVATIVE

Abstract. Clarke’s generalized derivative f0(x, v) is studied as a function
on the Banach algebra Lip(X, d) of bounded Lipschitz functions f defined
on an open subset X of a normed vector space E. For fixed x ∈ X and fixed
v ∈ E the function f0(x, v) is continuous and sublinear in f ∈ Lip(X, d).
It is shown that all linear functionals in the support set of this continuous
sublinear function satisfy Leibniz’s product rule and are thus point deriva-
tions. A characterization of the support set in terms of point derivations is
given.

1. Introduction. A derivative concept for a class of functions f :
X → R defined on a subset X of a real vector space E may be viewed
as an operator D which assigns reals D(f, x, v) to triples (f, x, v), where
f is an element of a function class, x ∈ X, and v ∈ E. In applications
derivative concepts are mostly used as approximation tools for a function
f in a neighborhood of a point x. Therefore studies of derivative concepts
usually focus on the properties of the function D(f, ·, ·) with f thought of
as being fixed. However, if one is interested in characterizing a derivative
concept as an operator on a function space it seems more natural to focus
attention on the function D(·, x, v), where x and v are fixed. This is the
viewpoint of the theory of point derivations as introduced in [5]. In the
sequel we shall study Clarke’s generalized derivative [2]

D(f, x0, v) := f0(x0, v) = lim sup
x→x0

t↓0

f(x + tv)− f(x)
t
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from the latter point of view. Clarke’s generalized derivative is continuous
and sublinear, not only as a function of the direction v, but also as a function
on the Banach space of Lipschitz functions f . Continuous sublinear func-
tions on Banach spaces are completely characterized by their support sets
which are subsets of the dual space. We show in the sequel that the support
set of the function Dcl|x0,v = D(·, x0, v) consists of point derivations in the
sense of [5] and characterizes those point derivations which are contained in
the support set.

In the next section we review some properties of the algebra of Lipschitz
functions and explain the concept of its point derivations. Section 3 explores
the relation between point derivations and Clarke’s generalized derivative.
For the reader’s convenience we include the short proofs of [5].

2. Lipschitz functions and point derivations

2.1. The Lipschitz algebra. The following brief description of the Banach
algebra of Lipschitz functions follows the presentation given in [5]. Let (X, d)
be a metric space. A function f : X → R is called a Lipschitz function if
there exists a constant K ≥ 0 such that for all x, y ∈ X,

|f(x)− f(y)| ≤ Kd(x, y).

The set of all bounded Lipschitz functions defined on (X, d) is a real algebra
and will be denoted by Lip(X, d). For f ∈ Lip(X, d) the following two
constants are finite:

‖f‖d := sup
{
|f(x)− f(y)|

d(x, y)
: x, y ∈ X, x 6= y

}
,

‖f‖∞ := sup{|f(x)| : x ∈ X}.

A norm on Lip(X, d) is defined by

‖f‖ := ‖f‖d + ‖f‖∞.

Arens and Eells show in [1] that (Lip(X, d), ‖ · ‖) is always the dual space of
some normed linear space and hence complete. Moreover, (Lip(X, d), ‖·‖) is
a Banach algebra, i.e. for all f, g ∈ Lip(X, d) the inequality ‖fg‖ ≤ ‖f‖·‖g‖
holds. This follows from the inequality

|(fg)(x)− (fg)(y)|
d(x, y)

≤ |f(x)| |(g)(x)− (g)(y)|
d(x, y)

+ |g(y)| |(f)(x)− (f)(y)|
d(x, y)

,

which implies

‖fg‖d ≤ ‖f‖∞ · ‖g‖d + ‖g‖∞ · ‖f‖d
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and thus yields

‖fg‖ = ‖fg‖∞ + ‖fg‖d

≤ ‖f‖∞ · ‖g‖∞ + ‖f‖∞ · ‖g‖d + ‖g‖∞ · ‖f‖d

= ‖f‖∞ · (‖g‖∞ + ‖g‖d) + ‖g‖∞ · ‖f‖d

≤ ‖f‖ · ‖g‖.

The Banach algebra (Lip(X, d), ‖ · ‖) will be called the Lipschitz algebra
on (X, d). The unit element is the characteristic function on X, which is
denoted by 1.

2.2. Point derivations. Point derivations are linear functionals on
Lip(X, d) which satisfy Leibniz’s product rule.

Definition 2.1. Let (X, d) be a metric space and x0 ∈ X. A continuous
linear functional l ∈ Lip(X, d)∗ is said to be a point derivation at x0 ∈ X if
for all f, g ∈ Lip(X, d) Leibniz’s rule

l(fg) = f(x0) · l(g) + g(x0) · l(f)

holds.

The linear space of all point derivations at x0 ∈ X will be denoted
by Derx0(Lip(X, d)). It is a weak-∗-closed subspace of Lip(X, d)∗ (cf. [5],
Proposition 8.2).

It is interesting that point derivations which reflect merely the product
rule can in fact be completely characterized by another property of the clas-
sical derivative, namely the fact that the derivative of f vanishes provided
f is the unit function or f has a root of second order. To formalize this, let
us denote by

m(x0) := {f ∈ Lip(X, d) : f(x0) = 0}
the closed ideal in Lip(X, d) of functions which vanish at x0 ∈ X. Then the
ideal of functions in Lip(X, d) with a root of second order is given by

m2(x0) := cl
({

f :=
k∑

j=1

fjgj : fj , gj ∈m(x0), j = 1, . . . , k, k ∈ N
})

,

where cl denotes the closure in Lip(X, d). I. Singer and J. Wermer have
shown in [6] that point derivations can indeed be characterized by their
values for the unit function and their values on the latter ideal.

Proposition 2.2. Let (X, d) be a metric space and x0 ∈ X. Then a
continuous linear functional l ∈ Lip(X, d)∗ satisfies

(i) l(1) = 0,
(ii) l|m2(x0) = 0,
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if and only if for all f, g ∈ Lip(X, d) Leibniz’s rule

l(fg) = f(x0) · l(g) + g(x0) · l(f)

is satisfied at x0.

P r o o f. “⇐” Assume that l ∈ Lip(X, d)∗ satisfies Leibniz’s rule. Since
12 = 1, Leibniz’s rule for f = g = 1 implies that l(1) = 2l(1), which means
that l(1) = 0.

Now assume that f, g ∈m(x0). Then l(fg) = f(x0)·l(g)+g(x0)·l(f) = 0,
and since l is continuous, it follows that l|m2(x0) = 0.

“⇒” Assume that the continuous linear functional l satisfies (i) and (ii).
Then for every f, g ∈ Lip(X, d) we have

l(fg) = l(fg − f(x0)g(x0)1)
= l((f − f(x0)1) · (g − g(x0)1) + f(x0)(g − g(x0)1)

+ g(x0)(f − f(x0)1))
= l((f − f(x0)1) · (g − g(x0)1)) + f(x0) · l(g − g(x0)1)

+ g(x0) · l(f − f(x0)1)
= f(x0) · l(g − g(x0)1) + g(x0) · l(f − f(x0)1)
= f(x0) · l(g) + g(x0) · l(f),

since (f − f(x0)1) · (g − g(x0)1) ∈m2(x0).

In [5] D. R. Sherbert determines all point derivations in Lip(X, d). We
briefly outline his construction.

Consider the real Banach space

l∞ := {x := (xn)n∈N : (xn)n∈N bounded sequence}
endowed with the supremum norm

‖x‖∞ := sup
n∈N

|xn|.

Let c ⊂ l∞ denote the closed subspace of all convergent sequences and let
lim : c → R be the continuous linear functional which assigns to every
convergent sequence its limit. Consider a norm-preserving Hahn–Banach
extension LIM of the functional lim to l∞:

c l∞

R

⊂ //

lim

@
@
@
@
@
@   

LIM

��

with the following additional properties:

(i) LIMn→∞ xn = LIMn→∞ xn+1,
(ii) lim infn→∞ xn ≤ LIMn→∞ xn ≤ lim supn→∞ xn.
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We shall use the notation LIMn→∞ xn = LIM(x) for x := (xn)n∈N ∈ l∞.
Such functionals LIM are called translation invariant Banach limits. For
their construction we refer to [3], Chapter II.4, Exercise 22.

Now let x0 ∈ X be a nonisolated point and let w := (xn, yn)n∈N ⊂
{(s, t) ∈ X ×X : s 6= t} converge to the point (x0, x0). Then

Tw : Lip(X, d) → l∞ with Tw(f) :=
(

f(yn)− f(xn)
d(yn, xn)

)
n∈N

is a continuous linear operator, since ‖Tw(f)‖∞ ≤ ‖f‖d ≤ ‖f‖.
It is easy to see that for any translation invariant Banach limit LIM the

continuous linear fuctional Dw : Lip(X, d) → R with Dw(f) = LIM(Tw(f))
is a point derivation at x0 ∈ X. For abbreviation put ∆ := {(s, t) ∈ X×X :
s = t}.

Proposition 2.3 ([5], Lemma 9.4). Let x0 ∈ X be a nonisolated point
of a metric space (X, d) and w := (xn, yn)n∈N ⊂ (X ×X) \∆ be a sequence
which converges to (x0, x0). Then for every translation invariant Banach
limit LIM : l∞ → R the continuous linear fuctional

Dw : Lip(X, d) → R with Dw(f) = LIM(Tw(f))

is a point derivation at x0 ∈ X.

P r o o f. First observe that for every convergent sequence (an)n∈N ∈ c
and every bounded sequence (bn)n∈N ∈ l∞ the formula

LIM
n→∞

(an · bn) = lim
n→∞

an · LIM
n→∞

bn

holds. Indeed, put α := limn→∞ an. Then LIMn→∞(an · bn − αbn) = 0,
since (an · bn − αbn)n∈N converges to zero and hence LIMn→∞(an · bn) =
α LIMn→∞ bn.

Now let f, g ∈ Lip(X, d) be given. From the above observation it follows
that

Dw(fg) = LIM(Tw(fg))

= LIM
n→∞

(
(fg)(yn)− (fg)(xn)

d(yn, xn)

)
= LIM

n→∞

(
f(yn)

g(yn)− g(xn)
d(yn, xn)

+ g(xn)
f(yn)− f(xn)

d(yn, xn)

)
= f(x0) LIM

n→∞

(
g(yn)− g(xn)

d(yn, xn)

)
+ g(x0) LIM

n→∞

(
f(yn)− f(xn)

d(yn, xn)

)
= f(x0) LIM(Tw(g)) + g(x0) LIM(Tw(f))
= f(x0)Dw(g) + g(x0)Dw(f).

Since Dw is continuous, it is a point derivation at x0 ∈ X.
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In Theorem 9.5 of [5] Sherbert shows that the space of all point deriva-
tions at a particular point x0 is spanned by point derivations which are
constructed in the above way, where the Banach limit is arbitrary but fixed.

Theorem 2.4. Let x0 ∈ X be a nonisolated point of a metric space
(X, d) and Wx0 := {w := (xn, yn)n∈N ⊂ X ×X \∆ : lim xn = lim yn = x0}.
Moreover , let LIM : l∞ → R be a fixed translation invariant Banach limit.
Then

Derx0(Lip(X, d)) = cl span{Dw = LIM(Tw) : w ∈ Wx0},
where cl span denotes the weak-∗-closure of the linear hull in Lip(X, d)∗.

3. Clarke’s generalized derivative and point derivations. In this
section we assume that X ⊂ E is an open subset of a real normed vector
space (E, ‖ ·‖E). For every point x0 ∈ X and every direction v ∈ E Clarke’s
generalized directional derivative as defined in [2] is given by

Dcl|x0,v : Lip(X, d) → R,

Dcl|x0,v(f) := f0(x0, v) = lim sup
x→x0

t↓0

f(x + tv)− f(x)
t

.

It is well known that Clarke’s generalized derivative is a continuous sublinear
function of the direction v. This led to the invention of Clarke’s subdiffer-
ential as an extension of the subdifferential of a convex function [2]. It is,
however, less known, although straightforward, that Clarke’s concept also
leads to a continuous sublinear function when considered as a function of
f ∈ Lip(X, d).

Proposition 3.1. Let (E, ‖·‖E) be a real normed vector space, X ⊂ E an
open subset , x0 ∈ X and v ∈ E. Then the generalized directional derivative

Dcl|x0,v : Lip(X, d) → R

is a continuous sublinear function.

P r o o f. The function Dcl|x0,v : Lip(X, d) → R is obviously sublinear.
To see that it is continuous, it suffices to show continuity at 0 ∈ Lip(X, d).
This, however, is again obvious since

|f0(x0, v)| =
∣∣∣∣ lim sup

x→x0
t↓0

f(x + tv)− f(x)
t

∣∣∣∣ ≤ ‖f‖d · ‖v‖E ≤ ‖v‖E · ‖f‖.

Due to the Hahn–Banach theorem the continuous sublinear function
Dcl|x0,v is completely determined by its support set

∂(Dcl|x0,v)|0 = {l ∈ Lip(X, d)∗ : l(f) ≤ Dcl|x0,v(f)}
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via the relation

Dcl|x0,v(f) = sup
l∈∂(Dcl|x0,v)|0

l(f).

The support set of a continuous sublinear function on a locally convex space
has been studied in [4]. It is a nonempty, convex, weak-∗-compact subset
of E∗. The aim of this section is the study of the set ∂(Dcl|x0,v)|0.

It is well known that Clarke’s generalized derivative does not obey Leib-
niz’s product rule (cf. [2], Proposition 2.3.13). However, our first result
shows that all elements of the support set ∂(Dcl|x0,v)|0 are point derivations
and thus obey Leibniz’s product rule.

Proposition 3.2. Let (E, ‖ · ‖E) be a real normed vector space, X ⊂ E
an open subset , x0 ∈ X and v ∈ E. Then every element l ∈ ∂(Dcl|x0,v)|0 is
a point derivation at x0.

P r o o f. To use Proposition 2.2 we show that for every l ∈ ∂(Dcl|x0,v)|0:
(i) l(1) = 0,
(ii) l|m2(x0) = 0.

To prove (i), let l ∈ ∂(Dcl|x0,v)|0 and c ∈ R. Then c · l(1) ≤ (c1)0(x0, v) = 0.
For c = 1 this implies l(1) ≤ 0 and for c = −1 it implies l(1) ≥ 0; hence
l(1) = 0.

To prove (ii), let again l ∈ ∂(Dcl|x0,v)|0, i.e. l(f) ≤ f0(x0, v) for every
f ∈ Lip(X, d). Suppose f ∈ m(x0). Then Proposition 2.1.1 of [2] implies
that, on the one hand,

l(f2) ≤ (f2)0(x0, v) ≤ 2|f(x0)| · f0(x0, v) = 0

and, on the other hand,

l(−f2) ≤ (−f2)0(x0, v) = (f2)0(x0,−v) ≤ 2|f(x0)| · f0(x0,−v) = 0.

Therefore l(f2) = 0 for every f ∈m(x0). Since gh = 1
2 ((g + h)2 − g2 − h2),

it follows from the continuity of l that l|m2(x0) = 0.

The following result characterizes the set ∂(Dcl|x0,v)|0 and is comple-
mentary to Theorem 2.4.

Theorem 3.3. Let (E, ‖ · ‖E) be a real normed vector space, X ⊂ E an
open subset x0 ∈ X and v ∈ E with ‖v‖E = 1. Moreover , let

Dcl|x0,v : Lip(X, d) → R

with

Dcl|x0,v(f) = f0(x0, v) = lim sup
x→x0

t↓0

f(x + tv)− f(x)
t
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be the generalized directional derivative. Then

∂(Dcl|x0,v)|0 = cl conv{Dw : w ∈ Wx0(v)},
where cl conv denotes the weak-∗-closure of the convex hull in Lip(X, d)∗,
and

Wx0(v) := {w := (xn, yn)n∈N ∈ Wx0 : yn − xn ∈ R+ · v}.
P r o o f. Let a translation invariant Banach limit LIM : l∞ → R and a

sequence w := (xn, yn)n∈N ∈ Wx0(v) be given. Then there exists a sequence
(τn)n∈N of positive numbers which converges to zero such that yn = xn+τnv
for all n ∈ N. Hence for every f ∈ Lip(X, d),

Dw(f) = LIM(Tw(f)) = LIM
n→∞

(
f(yn)− f(xn)
‖yn − xn‖E

)
= LIM

n→∞

(
f(xn + τnv)− f(xn)

τn

)
≤ lim sup

n→∞

f(xn + τnv)− f(xn)
τn

≤ f0(x0, v)

since LIMn→∞ bn ≤ lim supn→∞ bn for every bounded sequence b :=(bn)n∈N.
Hence

cl conv{Dw : w ∈ Wx0(v)} ⊆ ∂(Dcl|x0,v)|0.
To prove equality, we show that for every f ∈ Lip(X, d) there exists a
Dŵ ∈ cl conv{Dw : w ∈ Wx0(v)} such that Dŵ(f) = f0(x0, v). Note that
for every f ∈ Lip(X, d) there exists a sequence (xn)n∈N converging to x0 and
a sequence of positive real numbers (τn)n∈N converging to zero such that

f0(x0, v) = lim sup
x→x0

t↓0

f(x + tv)− f(x)
t

= lim
n→∞

f(xn + τnv)− f(xn)
τn

.

Hence for the sequence ŵ := (xn, xn + τnv)n∈N ∈ Wx0(v) we have

Dŵ(f) = LIM(Tŵ(f)) = LIM
n→∞

(
f(xn + τnv)− f(xn)

τn

)
= lim

n→∞

f(xn + τnv)− f(xn)
τn

= f0(x0, v).

In [5], p. 266, Sherbert points out that there is no strict analogy between
the classical derivative of a function and point derivations and mentions the
example f : R → R defined by f(x) := x2 sin 1

x for x 6= 0 and f(0) = 0. This
function is differentiable at x0 = 0 but has at x0 = 0 point derivations with
values in the interval [−1, 1] (see also Example 2.2.3 of [2]).

However, as pointed out in Proposition 2.2.4 of [2], there is a close anal-
ogy between Clarke’s generalized derivative and the concept of strict differ-
entiability in the sense of Bourbaki. More precisely, let (E, ‖ · ‖E) be a real
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normed vector space, X ⊂ E an open subset, and x0 ∈ X. Then a locally
Lipschitz function f : X → R is said to be strictly differentiable at x0 ∈ X
in the sense of Bourbaki if there exists a continuous linear functional l ∈ E∗

such that

lim
x→x0

t↓0

f(x + tv)− f(x)
t

= l(v)

for all v ∈ E. The functional l ∈ E∗ is called the strict derivative of f at
x0 ∈ X.

In view of the relation between Clarke’s generalized derivative and the
concept of strict differentiability we obtain the following result.

Proposition 3.4. Let (E, ‖ · ‖E) be a real normed vector space, X ⊂ E
an open subset , x0 ∈ X and f ∈ Lip(X, d). Then the following statements
are equivalent :

(a) There exists a linear functional l ∈ E∗ such that D(f) = l(v) for
every v ∈ E and every D ∈ ∂(Dcl|x0,v)|0.

(b) The function f is strictly differentiable at x0 in the sense of Bourbaki.

Moreover , if any of these statements holds, then l is the strict derivative
of f .

P r o o f. Suppose statement (a) holds. Then there exists a linear func-
tional l ∈ E∗ such that l(v) = D(f) for all D ∈ ∂(Dcl|x0,v)|0. Hence

Dcl|x0,v(f) = sup
D∈∂(Dcl|x0,v)|0

D(f) = l(v),

which shows that Clarke’s generalized derivative is linear in v ∈ E. Propo-
sition 2.2.4 of [2] shows that statement (b) holds.

Conversely, suppose (b) holds. Using again Proposition 2.2.4 of [2] we
deduce that Dcl|x0,v(f) is a continuous linear function of v. Moreover, from
Theorem 3.3 it follows that for all v ∈ E and all D,D′ ∈ ∂(Dcl|x0,v)|0 we
have D′(f) = D(f), since a Banach limit coincides on convergent sequences
with the ordinary limit. Hence for all D ∈ ∂(Dcl|x0,v)|0 we have D(f) =
Dcl|x0,v(f), which means that D(f) is constant for every D ∈ ∂(Dcl|x0,v)|0.

The last proposition shows that the orthogonal complement of the linear
span of the union of all sets ∂(Dcl|x0,v)|0 over v ∈ E is the set of all Lipschitz
functions which are strictly differentiable at x0 in the sense of Bourbaki and
have a critical point at x0.
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