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ON THE LIMIT DISTRIBUTIONS
OF kTH ORDER STATISTICS

FOR SEMI-PARETO PROCESSES

Abstract. Asymptotic properties of the kth largest values for semi-Pareto
processes are investigated. Conditions for convergence in distribution of the
kth largest values are given. The obtained limit laws are represented in
terms of a compound Poisson distribution.

1. Introduction. Pillai [5] has discussed semi-Pareto processes, of
which Pareto processes form a proper sub-class. He has examined asymp-
totic properties of the maximum and minimum of the first n observations.
We here obtain conditions for convergence in distribution of the kth largest
values for semi-Pareto processes.

We say that a random variable X has semi-Pareto distribution and write
X ∼ PS(α, p) if its survival function is of the form

(1) FX(x) = 1− FX(x) = P (X > x) =
1

1 + ψ(x)
, x ≥ 0,

where ψ(x) satisfies the functional equation

ψ(x) =
1
p
ψ(p1/αx),

where α > 0 and 0 < p < 1.
The autoregressive semi-Pareto model ARSP(1) is built using a sequence

of independent identically distributed (i.i.d.) random variables in the fol-
lowing manner ([5]). Let {εn, n ≥ 1} be i.i.d. PS(α, p) random variables and
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for each n = 1, 2, . . . define

(2) Xn =
{
p−1/αXn−1 with probability p,
min(p−1/αXn−1, εn) with probability 1− p.

The process defined by (2) will be called an ARSP(1) process.
The ARSP(1) process is clearly Markovian. If the initial distribution is

X0 ∼ PS(α, p), then Xn ∼ PS(α, p) and the process is strictly stationary.
In particular, if {εn, n ≥ 1} is a sequence of i.i.d. random variables with

common distribution of the Pareto form

(3) P (ε1 > x) = [1 + (x/σ)1/γ ]−1, x ≥ 0,

where σ > 0 and γ > 0, we obtain the autoregressive Pareto (ARP(1))
process ([7]).

2. Level crossing processes. Let {Xn, n ≥ 1} be an ARSP(1) process.
For each n ≥ 1, let M (1)

n ≥ M
(2)
n ≥ . . . ≥ M

(n)
n be the order statistics of

X1, . . . , Xn. The problem is to study the limiting behaviour of the kth order
statistics M (k)

n for any fixed k ≥ 1 as n→∞. The asymptotic distribution
of M (k)

n will be obtained by considering the number of exceedances of a level
x by X1, . . . , Xn.

For any x > 0, we define the level crossing process Zn(x) associated with
{Xn} by

(4) Zn(x) =
{

1 if Xn > x,
0 if Xn ≤ x,

(cf. [1, 5, 7]). The two-state stochastic process {Zn(x), n ≥ 1} turns out to
be a Markov chain with transition matrix

P =
1

1 + ψ(x)

[
p+ ψ(x) 1− p

(1− p)ψ(x) 1 + pψ(x)

]
.

The obvious relation

(5) P (M (k)
n ≤ x) = P

( n∑
j=1

Zj(x) < k
)
, −∞ < x <∞,

will play a role in this paper.

3. Asymptotic distributions of kth order statistics. Suppose that,
for τ > 0, there exists a sequence {un = un(τ)} such that

(6) lim
n→∞

nFX(un(τ)) = τ,

where FX is given by (1).
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We shall investigate properties of the random variable

Sn(τ) =
n∑

j=1

Zj(un(τ))

for some fixed τ > 0, as n → ∞, and as consequences, we shall obtain
limiting distributional results for the kth order statistics. The main tool is
a result which gives conditions for the convergence in distribution of sums
of 0-1 Markov chains to a compound Poisson distribution (cf. [2, 4, 6]).

Theorem 1. Let {Yn,j , j = 1, . . . , n}, n = 1, 2, . . . , be a sequence of
two-state 0 and 1 homogeneous Markov chains, with transition matrices

(7)
[

1− (1− π)%n (1− π)%n

(1− π)(1− %n) (1− π)%n + π

]
,

where 0 ≤ %n ≤ 1 and 0 ≤ π ≤ 1, and initial probabilities

P (Yn,1 = 1) = 1− P (Yn,1 = 0) = %n.

If
lim

n→∞
n%n = λ, λ > 0,

then for k = 0, 1, 2, . . . ,

lim
n→∞

P
( n∑

j=1

Yn,j = k
)

= T (k, (1− π)λ, 1− π),

where

(8) T (k, λ, r) =


e−λ for k = 0,

k∑
m=1

Cm−1
k−1 (1− r)k−mrmλm

m!
e−λ for k = 1, 2, . . .

Therefore, the limit law for
∑n

j=1 Yn,j is of the compound Poisson type.

Consider now, for some τ > 0, the sequence of Markov chains

(9) Yn,j = Zj(un(τ)), j = 1, . . . , n.

The transition matrices for the sequence (9) are of the form (7) with

π = p, %n =
1

1 + ψ(un(τ))
.

Note that, by the condition (6), we have

(10) lim
n→∞

n%n = lim
n→∞

nFX(un(τ)) = τ > 0.

Finally, it follows from Theorem 1 that

(11) lim
n→∞

P (Sn(τ) = k) = T (k, (1− p)τ, 1− p), k = 0, 1, 2, . . .
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We shall use the results (11) to study the limit laws for the kth order
statistics of semi-Pareto processes.

Theorem 2. Let {Xn, n ≥ 1} be a strictly stationary ARSP(1) process.
Suppose that , for τ > 0, there exists a sequence {un(τ), n ≥ 1} such that

(12) lim
n→∞

1
n
ψ(un(τ)) =

1
τ
,

where ψ is given by (1). Then, for each k = 0, 1, 2, . . . ,

(13) lim
n→∞

P (M (k)
n ≤ un(τ)) =

k−1∑
j=0

T (j, (1− p)τ, 1− p),

where the function T (k, λ, r) is defined by (8).

P r o o f. From (5) we have

P (M (k)
n ≤ un(τ)) = P

( n∑
j=1

Zj(un(τ)) < k
)
, k = 1, . . . , n,

where Zj(x) are defined by (4). Thus, by (10)–(12), we obtain the desired
result.

The case k = 1 of Theorem 2 shows that

(14) lim
n→∞

P (M (1)
n ≤ un(τ)) = exp(−(1− p)τ),

In particular, if {Xn, n ≥ 1} is a strictly stationary Pareto process with
FXn given by (3), then we have ψ(x) = (x/σ)1/γ , and hence (12) holds with
un(τ) = σnγx, τ = x−1/γ , x > 0. Thus, from (14) we obtain the result
which is due to Yeh et al . ([7], Equation (3.8)):

P (M (1)
n ≤ σnγx) =

{
exp(−(1− p)x−1/γ) if x > 0,
0 if x ≤ 0.
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