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CONJUGATION TO A SHIFT
AND THE SPLITTING OF INVARIANT MANIFOLDS

Abstract. We give sufficient conditions for a diffeomorphism in the plane
to be analytically conjugate to a shift in a complex neighborhood of a seg-
ment of an invariant curve. For a family of functions close to the identity
uniform estimates are established.

As a consequence an exponential upper estimate for splitting of separa-
trices is established for diffeomorphisms of the plane close to the identity.
The constant in the exponent is related to the width of the analyticity do-
main of the limit flow separatrix. Unlike the previous works the cases of
non-area-preserving maps and parabolic fixed points are included.

1. Introduction. Normal forms provide a useful instrument for the
investigation of dynamical systems. Traditionally the normal forms are
studied in a neighborhood of a fixed point, periodic trajectory or other
completely invariant object. On the contrary, we study the dynamics of dif-
feomorphisms in a neighborhood of a segment of an invariant curve far from
fixed points. All trajectories leave this neighborhood in a finite time (num-
ber of iterations). We provide sufficient conditions for a diffeomorphism to
be analytically conjugate to a shift (¢, F) — (¢t + h, E)) in such a neighbor-
hood. For a family of diffeomorphisms close to the identity the estimates of
the conjugating map are uniform with respect to a small parameter (¢ = h).

As in the paper [FS90], we apply the normal form to the study of the
splitting of invariant manifolds associated with a fixed point. For a family
close to the identity the splitting is exponentially small with respect to the
parameter [Nei84], i.c., it is O(e~"*/¢), provided there exists a homoclinic
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orbit for all small € # 0. The constant in the estimate is related to the
position of the singularity in the complex time of the corresponding limit
flow [FS90].

We remove the restrictions which appeared in the paper [FS90] due to
the use of the Birkhoff normal form: we do not assume the map to be
area-preserving and the fixed point to be hyperbolic.

The present approach to the problem was inspired by Lazutkin’s papers
[Laz84] and [Laz91]. Namely, in the normal form coordinates one of the
invariant manifolds is represented by £ = 0, an the other is given by a graph
of an e-periodic function £ = E(t). The Fourier series argument shows that
all Fourier coefficients of this function (except the zero one) are exponentially
small provided the function E(t) is analytic in an e-independent complex
strip of the variable ¢. The presence of a homoclinic orbit implies that the
zero Fourier coefficient is also exponentially small.

We postpone the exact formulations and proofs of these results to Sec-
tions 3 and 4, and first explain the analytic theory of linear finite-difference
equations, which provides a basis for the proofs.

2. On solutions of linear finite-difference equations

2.1. Solutions of the difference equation Apa = g. In this section we
study the equation

1) Ana = alt +b) — a(t) = (1
in the class A(§2) of functions analytic in a rectangle
2 ={teC:|Ret| <ry, Imt| <re}

and continuous in its closure. We will use the supremum norm for this space.
The equation (1) is a first order linear finite-difference equation with
respect to the function a. Its general solution can be represented as the sum
of a particular solution and an arbitrary h-periodic function. The particular
solution can be easily found in the class of smooth functions by a partition
of unity. As we will see below the analytical case is not so simple.
The basic idea [Laz91] is to represent the rectangle as

N=02,N0_,
where
2y ={teC:+£Ret > —rq, |Imt| <ra},

and reduce the problem (1) in {2 to the pair of problems in 2.

Let £ be the space of all complex-valued Lipschitz functions defined on
012 which take constant values for Ret; < —r1/2 and Ret; > r1/2 (given
a function, left and right values are not necessarily equal). We provide this
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space with the norm

Ix(t1) — x(t2)]
x| = max [x(t)| + sup —— .
t bt [t — 2

LeEMMA 1 ([Laz91]). Let x € £ and g € A(§2). Then the function
L x(©g(©)
h(t) = — | ===
®) 271 S E—t d
o2
is analytic in C \ supp x, has continuous continuations on 02 from inside

and from outside, and

(2) [h(®)] < sup |g| - [Ix[I(T + 71 +72).
tesf?

PROPOSITION 2. There is a continuous linear operator At AR) —
A(Q) such that a = A; 'g is a solution of the equation (1), and
14, < mah™,
where the constant my, depends only on the size of the rectangle 2.

Proof. Let x,0 < x <1, be areal smooth function of the real argument,
such that x(s) =0 for s < —r;/2 and x(s) =1 for s > r1/2. Let

x-(t) =x(Ret) and xi(t) =1-—x(Ret).
Given g € A(£2), the functions

_ 1 | X (§) cosh(0€)g(£)
2mi cosh(pt) E—t

where o = 15 ! are analytic in {24 respectively, have continuous continua-
tions on their closures,

g(t) =g+(t) +9-(t), teL,
and for ¢t € £21 the following estimates hold:
02(0)] < X+ /(1 + 71 + 7r2) max, 5 [cosh(oS)] - ||l < Craraxllgl
N = cosh(ot) ~ cosh(ot)
Direct substitution shows that the functions

a_(t)=> g_(t—kh) and ai(t)=— gi(t+kh)
k=1 k=0

g:l:(t) df,

o1

provide solutions for the equations
Apay = g4+ and  Apa_ =g,
respectively. Then we obtain the desired solution

a(t) =a_(t) +ay(t)
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of the equation (1). We have the estimate

oo

Criraxllgll
t) < 172X .
lalt)] < g_:oo [cosh(o(t + kh))|
Since for t € (2,
e 10400
1 dt/
<ht v
k:z_:oo lcosh(o(t + kh))| — \g\lgi{z io’§oo |cosh(ot’)|
T dt ~
< h™Yry|cosh(ry try)| S <Criry

—o0 y/sinh?(t) +1/2

we can take mg = C’Tlmxé’rlm and the proof is complete. m

2.2. The method of variation of parameters. In this section we develop
a formal theory of systems of two finite-difference equations
(3) w(t+h) = A(t)u(t) + g(t).
This system can be reduced to a pair of first order linear difference equations
described in the previous section in the following way. Let @1 and s be two
linearly independent solutions of the homogeneous equation
(4) ﬁk(t + h) = A(t)ﬁk(t), k=1,2.

Then a solution of the nonhomogeneous equation can be represented in the
form

(5) U(t) = c1(t)ur(t) + ca(t)uia(2)
with

(® Aper(t) = SHE RO,
@ Apeaft) = SHELAIO)
where

(8) W (t) = det(: (t); u2(t)).

Indeed, substituting (5) into the equation (3) gives
ci(t + h)ui(t+h) + co(t + h)ta(t + h)
= A(t)(cr ()t (t) + co(t)tia (1)) + G(¢)
= c1(t)ur(t + h) + c2(t)dz(t + h) + G(t).

We gather the terms containing c; on the left hand side:

(e + my e+ m) (3700 ) = )
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This system has the determinant equal to W (t + h), and is equivalent to
(6) and (7). Conversely, given a solution (t) of the system (3), we can
represent it in the form (5) taking

(1) _ detlE0): (1) det (i, (1); @(1))
C = — 7 =
1 W) W)
In general it is not easy to find two linearly independent solutions of the
system. But in many cases one can find one solution #;(¢), and then the

second solution can be easily constructed.
First we note that

(@1 (t + h); da(t + h)) = A(t) (w0 (t); U2(t))

C2 (t)

and we have

9) W (t+ h) = det(A(t)) - W(¢t).
Provided det(A(t)) # 0 this equation can be replaced using the substitution
(10) W (t) = expw(t)

by the first order difference equation
(11) Apw(t) = logdet(A(t)).

In the previous section we developed a method for solving the equations
of this form in the class of functions analytic in a rectangle. Note that if
det A(t) = 1 the equation (11) is trivial, and we can take W (t) = 1.

Using W (t) we can construct the second solution of the homogeneous
equation (4). The first equation of the system (4) reads

(12) ’Ltgl(t + h) = All(t)u21(t) + Alg(t)’u,gg (t)
The second subscript in uy;(t) refers to the number of the component of a
vector ik (t), and A;x(t) denotes the ik-component of the matrix A(t). Using
(8) in the form
W(t) + ulg(t)qu (t)
un(t)
we can eliminate the second component of the vector s (t):
W(t) + Ulz(t)u21 (t)
ull(t) ’

Taking into account that w11 () also satisfies the equation (12) we can rewrite
the last equation as

(13) u29 (t) =

ugy (t+ h) = Ar1(Huai (t) + A12(t)

Ull(t + h)

A ()W (1)
un(t) )

(14) ug1(t+h) = ()

ug1 (t) +
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The corresponding homogeneous equation has a solution w1 (¢) and we again
use the variation of parameters:

(15) U21 (t) = Cg(t)ull(t).

Then

A ()W (t)

colt + Ryuns (¢ b) = una (¢ + Weo(t) + ==

and we have

A (W (1)
16 Apco(t) = .

( ) h 0( ) un(t)un(t + h)

Thus we reduce the problem of construction of the second solution for the

homogeneous system to the standard form of the single first order difference

equation. The components of the vector i, can be obtained by (15) and (13).

2.3. Uniform estimates for solutions of the system of two equations. In
this section we obtain uniform estimates for a solution of the system (3).
Namely, we assume that the matrix A depends on the parameter h and is
h-close to the identity:

A(t:h) = I + hB(t: h), I:(é ?)

All the functions are assumed to be analytic in the rectangle 2 C C and
continuous in its closure. We make the following assumptions:

A1l. The matrix B is uniformly bounded, i.e., there is a constant Mp
such that
(17) |Bir.(t; h)| < Mp, ik=1,2.

A2. There is a uniformly bounded solution ; (t; h) of the homogeneous
equation (4) with the first component uniformly separated from zero, i.e.,
there are positive constants M,,, and m,, such that
(18) luir (t; h)]y Jurz (5 h)] < My, |uir(th)] > my > 0.

PRroPOSITION 3. There is a constant hg such that for 0 < h < hg there
exist a uniformly bounded solution s (t; h) of the homogeneous equation (4),
a constant My, such that

My," < |det (i ; i@2)| < Mw,
and a continuous linear operator L : (A(£2))? — (A(2))?, with the norm
bounded by ||L|| < Mph=', such that i = L§ is a solution of the nonhomo-
geneous system (3).

Proof. Let hg = min{M, 'm,,1}/(3Mp). Due to Proposition 2 there
is a solution of the equation (11) in A({2) such that

lw(t; h)| < moh™Y|log det A(t; b))
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Then (10) implies that
My! < |W(t;h)| < Mw
with
My = exp(moh™{[logdet A(t; h)||) < exp(24mgoMp).
The last inequality is valid due to the following chain of inequalities:
log det A(t, h) ‘ log(1 — 2Mph — 2M3h?)
h h
2Mph + 2M3h?
= 1= 2Mph — 2MZh?
where we used the fact that |In(1 — z)| < z/(1 —x) for z € (0,1).

Applying again the operator A;l from Proposition 2 we obtain the so-
lution of the equation (16) such that

MBMW < SMBMW

My (my, — 2hMpM,,,) — e m2

<24Mp for 0 < h < hy,

lco(t; h)| < mg

Then we construct the second solution of the homogeneous equation (4) by
the formulae (15) and (13). They are obviously bounded by

3Mp M

uzy (t: )| < mo 25" M,,,

My 3Mp My
tmeT s

u mu

luge (t; h)| < M,

L
Thus we obtain a constant M, such that
lua1 (t; )]s [uaz (t; h)| < My, .

The right hand sides of the equations (6) and (7) contain functions calculated
at the point ¢t + h, which can be outside 2. To estimate these values we
iterate once the corresponding equations and denote the new constants by
My, M, and M,,, respectively.

Applying the operator A; " to the equations (6) and (7) we obtain the
solutions of these equations such that

ler(t; h)| < 2moh™ My My, ||gll, — |ea(t; h)| < 2moh™ My M,, ||g|.

Finally, the equation (5) gives the desired solution of the equation (3), which
obviously can be estimated by

(s )| < fex (6 B)]- @ ||+ lea (8 1)) -2 (6 B) | < 4moh™ My My, My, [l

This immediately implies the desired estimate for the norm of the opera-
tor L. m
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3. Conjugation to the shift. Let Z(¢; h) be a solution of the finite-
difference equation

F(t + h; h) = f(&(t;h); )
analytic in a neighborhood of the rectangle (2. If the following hypotheses
are fulfilled the map f is conjugate to a shift in a neighborhood of Z(£2; h):

—

H1. f(Z;h) = £+ hg(Z; h), where the function §(Z; h) and its derivatives
up to the second order are uniformly bounded in a parameter independent
neighborhood of Z({2; h).

H2. Z(t; h) has uniformly bounded derivative with respect to ¢t and the
first component of the derivative is bounded away from zero in 2.

H3. There is a positive constant m; such that

||f(t1;h)—f(t2;h)” Zml\tl—t2|, th,tQ c (.

THEOREM 4. Under the above conditions there is a positive constant hg
such that for 0 < h < hqg there exists a one-parameter analytic family of
solutions of the equation

(19) (t + h, E; h) = J(#(t, B;h); h)

such that Z(t,0;h) = Z(t; h), the substitution (t,E) — Z(t,E;h) is a dif-
feomorphism of 2 x {E € C : |E| < Ey} onto its image where Ey is a
positive constant independent on h; the derivatives of this diffeomorphism
are bounded uniformly with respect to h.

Remark 1. The proof also works for an individual diffeomorphism not
necessarily close to the identity.

Remark 2. If the map is area-preserving the substitution (¢, E) —
Z(t, E; h) can be chosen to preserve area. Indeed, the Jacobian of the sub-
stitution J(t, E;h) is h-periodic in ¢. Then we obtain an area-preserving
substitution introducing a new parameter E instead of E by the formula
E =7 J(t, E';h) dE' (comp. with [Laz91]).

Proof of Theorem 4. For simplicity of notation we drop the explicit
dependence of the functions on the parameter h. On the other hand, all
constants are chosen to be independent on h. We look for the family of
solutions to the equation (19) in the form

#(t,E) = #(t) + d(t, E).

We substitute this into the equation and rewrite it to separate the part
linear in u:

—

(20)  @(t+h,E) = Df(a(
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Since the function
dz
U (t) = —(t
W0 =220
is a solution of the homogeneous linear equation

ii(t + h) = Df(E(t))i(t)
we can apply the operator L, which is the inverse of the linear part, in order
to obtain the equation in the form

—

@(t,E) = N(@).

Here the nonlinear operator N is defined by

— — —

N(i)(t, B) = Bia(t) + L(f(#(t, B)) - (&) - DF@))d(t, E)),
where 5(t) is the second solution of the homogeneous linear equation de-
fined in Proposition 3. A fixed point of the operator N is a solution of the
equation (20). To find the fixed point of N we consider the ball [[u[| < r in
the space (A(2))2. Tt is clear that

IN(@)]| < C1|E] + Co|]?,
where Cy = ||| and Cy = ||L]| - | D2 f]| and
9% fx 9 fx
8Z18I1 8{516122
( 9° fi 9 fr >

Oxo0x1 Ox20T2
Provided |E| < r/(2C7) and r < 1/(2C5) the ball is invariant with respect
to the nonlinear operator N. Taking |||, ||]] < r we obtain

IN (@) — N(@)|| < Car||@ — |

D2f|| =
1D £l = max

=

with Cs = 2||L|| - |[D2f]|. The nonlinear operator is a contraction provided
r <1/(2Cs).
Then the iteration procedure
@ =0, a@"=N@" "), n>1,
is uniformly convergent provided
2C4|E| <r < min{i, L}
2Cy " 2Cs
and the limit is unique. In particular, these conditions are satisfied for
1 1 1
|E| < |Ep| = Emm {2—02, 2—03} .

This procedure also converges in the smaller ball r = 4|E|C; if |E| < Ej,
which implies
i(t, E) = Eilo(t) + O(E?)
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and
Z(t,E) = Z(t) + Ets(t) + O(E?).

Consequently,

ox . ox .

DBlpy 7 Olpy
Since det(u;; ) is bounded away from zero, the substitution (¢, E) +—
Z(t, F) is a diffeomorphism in a small neighborhood of the point (¢,0). The
implicit function theorem provides a uniform estimate for the size of this
neighborhood. To check that this map is a global diffeomorphism we sup-
pose that Z(t1, 1) = Z(ta, E2) for different values of the arguments. Then
we note that

|Z(t1, B1) — Z(t2, E2)|
> |Z(ty) — Z(t2)| — |Z(t1, Br) — Z(t1)| — |Z(t2, B2) — Z(t2)]

ox
> t1 —to] —sup|—=| (|F Es)).
> mylty — ta| —sup 9E (21| + | E2l)
Consequently, the supposition implies the inequality
0x | 2Ey
t1 —ts| <sup|=——=|  —.
‘ ! 2‘ = Sup oE mq

Decreasing Ej if necessary, we obtain a contradiction, since it was proved
that the map is a diffeomorphism in the neighborhood of (¢, E) = (¢1,0). =

4. Application to the splitting of separatrices. We assume that the
diffcomorphism f(Z;¢) = #4£§(i; €) has two invariant manifolds associated
with a fixed point, and these manifolds can be parameterized by analytic
solutions Z_(t;e) and &y (t; €), respectively, of the system of finite-difference

equations
(21) I(t+eye) = B(t;€) +eg(Z(t ) €).

We also assume that the segments corresponding to ¢ € {2 are e-close for
some constant 1 and ro = p. In particular, this can happen if the invari-
ant manifolds are close to the separatrix Zo(¢) of the system of differential
equations

=0 G700
dt g($07 )7

and the “unperturbed” separatrix Zy(t) is analytic and bounded in the strip
T ()] < o.

THEOREM 5. Let 0 < € < 9. If there is a homoclinic point, e.g.,
T_(t1) = Z4(t2) for some t1(g), ta(e), [t1(e), |t2(e)| < r1, then the split-
ting of invariant manifolds is exponentially small with respect to €.
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That is, there is an analytic coordinate system (t, E), with derivatives
bounded uniformly in €, such that in these coordinates one invariant mani-
fold has the equation EE =0 and the other

2
E = 06y(¢) + O1(¢) sin %t + O(e4m(e=d)/e)

with |Og(€)], |O1(e)| < const - e~27(€=0)/e,

Remark 3. The coefficients ©(¢) and ©;(¢) can be identically zero, so,
generally speaking, the theorem gives only an upper bound for the splitting.

Proof of Theorem 5. We can assume that the curve Z_(t), t € 2,
satisfies the assertions of Theorem 4. Then in an e-independent neighbor-
hood of this segment there are coordinates (¢, E') such that x_(¢) corresponds
to E = 0 and the map in these coordinates is the shift (¢, F) — (t + ¢, F).
The functions

T(s) =t(Z4(s)) —s, O(s) =E(T(s))
are e-periodic analytic functions in the strip [Im s| < g — ¢’ for an arbitrary
positive constant 4.

It is easy to check using a Fourier series argument that if an e-periodic
function f(s) is analytic in the strip [Im s| < b, then its Fourier coefficients
can be estimated as follows:

|fil < e FRTE sup | £(s)].

[Im s|<b
This means that all Fourier coefficients are exponentially small except the
zero one. Thus we have the representation of the second invariant manifold
in the form
2m(s —tp(e
E = 6y(e) + O1(g) sin 2n(s = to(€))

€

t = s+ Ty(e) + O(e2rle=0)/e),

and these estimates can be differentiated with respect to s. The function
O(s) has a zero:

+ 0(6—47{'(9—5,)/5)’

O(t2) = E(Z4(t2)) = E(Z-(t1)) = 0.
In particular, this implies that |©p| is exponentially small with respect to ¢,
otherwise the function @ would have no zeros.

The implicit function theorem implies that the invariant manifold can
be represented as F = FE(t). Making the change of variables (t,E) —
(t +to(e) — To(e), E) we obtain the desired representation of the manifold.
|

5. Discussion. The theorems from the last two sections can be applied
to a wide class of diffeomorphisms close to identity. In this section we give
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several examples, and compare the results of the present paper with the
results of other authors.

In the paper [FS90] the following theorem was proved. Let F. : U — R?
be a family of diffeomorphisms with U € R? and 0 < € < ¢y having the
form

(22) F.(Z) = AT+ e f(Z) + e T1G(Z, ¢)
A0
0 At
and satisfying

with A = ) F(0) = §(0,e) = 0, D(0) = D,§(0,¢) =0, a > 0

e F_ preserves area,
e I is real-analytic in U and depends analytically on &,
e \=1+ae+0(*), a#0.

Then the origin is a hyperbolic fixed point of F. (if £; is small enough).
Let W™ and W*® be the corresponding invariant manifolds.

e For all € € (0,g¢) there is a homoclinic point, ¢., associated with the
origin such that the pieces of W™ and W*® from the origin to ¢. are contained
in a compact subset of U.

Under these hypotheses the vector field given by

i =x1 + afl(xl,xl), Tog = —X9 + af2(3317952)7

is conservative, has the origin as a hyperbolic point and has an analytic
homoclinic orbit & such that for € small enough, the real invariant manifolds
of F_ are e-close to &(R).

Let ¢ be analytic and bounded by a constant in a strip I, = {t € C:
lIm(t)] < o} and f, § be analytic in a neighborhood of a(Il,).

The main result of [FS90] was that under these conditions the splitting
distance can be bounded from above by O(e=27(e=9)/198}) for any § > 0.

In [FS90] it was proven that the separatrices can be represented in a
parametric form ¥ = ¥4 (t,¢), using solutions of finite-difference equations

f:t(t + h, E) = Fa(fi(t, E)),
h = log A, satisfying the boundary conditions

f:t (t’ E) Re(t)—=+o0 0,

respectively. This parameterization can be chosen close to the homoclinic
solution of the differential equation

(23) Ti(t,e) =3(t)+ O(e)
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in a half-strip £ Re(t) < Tp, [Im(t)| < o, respectively. This estimate holds
for any Tj, but the constant in the upper bound for the error term depends
on To.

The estimate (23) enables one to use Theorem 5 and to obtain the same
upper bound for the splitting. Moreover, it is not too difficult to see that one
does not need an area-preserving property of the map to prove the estimate
(23). So this assumption can be omitted.

In the recent paper Fontich [Fon95] showed that the Poincaré map (time
period map) of a rapidly forced system on the plane can be reduced to the
form (22). As a consequence, he obtained an exponentially small upper
bound for the splitting. Theorem 5 enables us to obtain the upper bound
without the condition of constant zero divergence, used in that paper.

A standard-like map (z,y) — (z,y), where

T=z+y, y=y+ef(z),

and f(x) is an analytic function, can be transformed to the form (22) pro-
vided f(0) = 0 and f’(0) > 0. In this case the origin is a hyperbolic fixed
point. Then the theorem from [FS90] can be applied.

If f/(0) =0 and f”(0) # 0 the origin is a parabolic fixed point. In this
case, following the papers [Laz84, Laz87] one can establish the existence of
invariant manifolds associated with the origin. These invariant manifolds
can be parameterized by a solution of the finite-difference equation with
h = /e, close to a homoclinic solution &(t) of the system

T =y, y:f(x)a

and the estimate (23) holds. Again we can use Theorem 5, but with &
replaced by /.
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