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THE IMPLICIT GENERALIZED
ORDER COMPLEMENTARITY PROBLEM

AND LEONTIEF’S INPUT-OUTPUT MODEL

Abstract. We consider the Implicit Generalized Order Complementarity
Problem and we use this mathematical model to study a nonlinear and
conceptual generalization of Leontief’s input-output economic model. We
suppose that the economic system works with several technologies and the
considered functions are not necessarily increasing.

Introduction. The classical Complementarity Problem is well known
as an interesting and important problem in applied mathematics, which in-
creasingly has become a cross-point between fundamental mathematics and
applied mathematics [2], [12], [13]. It has been intensively studied and used
as mathematical model in many practical problems in Economics, Mechan-
ics, Elasticity, Fluid Mechanics, Engineering, Game Theory, Optimization,
etc. [1], [4–6], [8], [11–16], [21], [23–25], [27], [28], [30], [32], [34].

However, in a large class of problems, the complementarity condition
appears with more than one operator different from the identity operator
and hence a new theoretical and numerical development is necessary.

The Implicit Complementarity Problem was the first complementarity
problem with a complementarity condition defined by two operators different
from the identity operator. This problem was studied by several authors [12],
[13], [15] (and their references). Some interesting results were obtained, but
such an approach is still unable to treat complementarity problems with the
complementarity condition defined by more than two operators.

It seems that a natural way to introduce the complementarity condi-
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tion for several operators is to use the ordering property of certain normed
spaces. Proceeding in this way we obtained the Generalized Order Comple-
mentarity Problem. The first paper on this problem was [15]. In [16] we
introduced the Multivalued Generalized Order Complementarity Problem
and we obtained some existence results. Several practical problems from
diverse scientific fields which have as a mathematical model the Generalized
Order Complementary Problem are presented in [14–16].

In this paper we consider the Implicit Generalized Order Complementar-
ity Problem and we use it to study a nonlinear and conceptual generalization
of Leontief’s input-output economic model.

We consider a nonlinear mathematical model for the interindustrial re-
lations of an economical system and we are interested to know under what
conditions the system is able to satisfy any demand with a minimal social
cost.

The first mathematical model for the interindustrial relations was pro-
posed by W. W. Leontief in 1949 in the classical book “The Structure of
the American Economy 1919–1935”, Oxford University Press, New York,
1949. Leontief’s input-output model is a linear model and in some sense it
is idealistic.

In 1974, A. Tamir [30] considered a nonlinear generalization of Leontief’s
model but supposing that the functional relations between sectors are given
by increasing functions. Tamir’s model was also studied by P. Bod [2],
[3] using the indifferent optimization introduced by G. Wintgen [33]. The
results proved by A. Tamir and P. Bod show that Tamir’s nonlinear model
globally works as a linear model.

The model we present in this paper is more realistic than Tamir’s. The
interindustrial relations between sectors are also supposed to be nonlinear
functions but not necessarily increasing. We also suppose that the system
is working with several technologies, in the sense that every sector is work-
ing with the same number of technologies. It is important to remark that
our model is different from von Neumann’s model [31] used to study the
equilibrium between production and price in an expanding economy. Von
Neumann’s model is linear and it was studied and generalized by several au-
thors [19], [20]. The problems studied for von Neumann’s model are different
from the problem studied in our paper.

Since in our model the functional relations between sectors of the system
are nonlinear and not necessarily increasing an important mathematical
problem is the following: under what conditions does this system have a
global behavior similar to a linear system?

We solve this problem introducing the notion of tolerant economic sys-
tem. To study such systems and to solve the problems defined before we
will use the Implicit Generalized Order Complementarity Theory, which as
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a mathematical instrument is different than the mathematics used in the
study of von Neumann’s model.

In this way we will show that, if an economic system is functional and
tolerant (in the sense of the definitions given in this paper), then it has
the capacity to satisfy every attainable demand with a minimal social cost.
Some iterative methods to approximate the optimal production are also
presented. Our model can be considered as an extension to the nonlinear
case of the model studied by A. Tamir [30] and P. Bod [2–3], and as an
application of the Generalized Order Complementarity Problem.

1. Preliminaries. We consider the Euclidean space (Rn, 〈·, ·〉) endowed
with the ordering defined by the pointed closed convex cone Rn

+. We have
x ≤ y if and only if y−x ∈ Rn

+. The ordered space (Rn, 〈·, ·〉,Rn
+) is a vector

lattice, that is, for every pair (x, y) ∈ Rn ×Rn the supremum x∨ y and the
infimum x ∧ y with respect to the ordering ≤ exist in Rn. The principal
properties of supremum and infimum proved in [26] will be assumed and used
here. Moreover, the vector lattice (Rn,Rn

+) is a complete vector lattice, that
is, sup(A) and inf(A) exist for every order bounded nonempty set A ⊂ Rn.
[We say that A ⊂ Rn is order bounded if there exist u0, v0 ∈ Rn such that
for every x ∈ A we have u0 ≤ x ≤ v0.] We also remark that the cone Rn

+ is
normal and regular . To say that Rn

+ is normal is equivalent to saying that
there is a constant δ > 0 such that 0 ≤ x ≤ y implies δ‖x‖ ≤ ‖y‖. Since Rn

+

is normal, every order interval in Rn is bounded. We say that Rn
+ is regular ,

that is, every increasing and order bounded sequence of elements of Rn
+ is

norm convergent.
Let C ⊂ Rn be a nonempty subset. A mapping T : C → Rn is said to

be isotone (resp. antitone) if for every x1, x2 ∈ C such that x1 ≤ x2 we
have T(x1) ≤ T(x2) (resp. T(x1) ≥ T(x2)). If x = (xi) ∈ Rn, we write
x > 0 if xi > 0 for all i = 1, . . . , n.

2. The Implicit Generalized Order Complementarity Problem.
We now define the Implicit Generalized Order Complementarity Problem,
denoted by IGOCP, which is the mathematical instrument of this paper.

Given m operators (not necessarily linear) T1, . . . ,Tm : Rn → Rn and a
nonempty subset D ⊂ Rn, the problem IGOCP associated with the family
of operators {Ti}m

i=1 and with the set D is

IGOCP({Ti}m
i=1,Rn

+,D) :

find x∗ ∈ D such that
∧

(T1(x∗), . . . ,Tm(x∗)) = 0.

If x∗ ∈ D is a solution of IGOCP({Ti}m
i=1,Rn

+,D), then for every i =
1, . . . ,m, we have Ti(x∗) ∈ Rn

+. We can show that the problem
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IGOCP({Ti}m
i=1,Rn

+,D) contains as a particular case the classical Com-
plementarity Problem. Indeed, if T1(x) = x for every x ∈ Rn, m = 2 and
D = Rn

+, then IGOCP(I,T2,Rn
+,Rn

+) is the problem

CP(T2,Rn
+) :
find x∗ ∈ Rn

+ such that T2(x∗) ∈ Rn
+ and 〈x∗,T2(x∗)〉 = 0.

When D = Rn
+, we will denote our problem by IGOCP({Ti}m

i=1,Rn
+). The

feasible set of the problem IGOCP({Ti}m
i=1,Rn

+,D) is by definition the set
F = {x ∈ D | Ti(x) ∈ Rn

+ for i = 1, . . . ,m}. We say that our problem is
feasible if F is nonempty.

When T1(x) = x for every x ∈ Rn, our problem is named the Gen-
eralized Order Complementarity Problem and it is denoted by
GOCP({Ti}m

i=2,Rn
+,D).

In papers [14–16] it was shown that the problems GOCP and IGOCP
have important applications. Now we formulate an IGOCP for the study
of the global reproduction of an economic system working with several tech-
nologies.

3. The global reproduction of an economic system working with
several technologies. Several authors used complementarity theory to
study some problems in Economics [2–3], [5–6], [8], [21], [23–25], [28], [30],
[32], [34].

We consider a nonlinear economic system which is a generalization of the
classical linear input-output system defined by Leontief. A nonlinear gen-
eralization of this classical system with increasing functions was studied by
Tamir [30] and Bod [2], [3]. A linear generalization was developed in [6] and
applied to the choice of technologies. Now, we suppose that the functions are
not necessarily increasing, but in some sense collectively increasing by the
agency of a tolerance. Another aspect of our model is the assumption that
the system is working with several technologies. For clarity, we first con-
sider a nonlinear input-output economic system with increasing functions,
but working with several technologies. We suppose that the system has n
production sectors and every sector works with m technologies to produce
one type of output. Every sector is constrained to use the production of
the others. As in von Neumann’s model and in all of its generalizations, we
suppose that goods are produced not only from natural factors of produc-
tion, but in the first place from each other. These processes of production
may be circular, i.e., good Gi is produced with the aid of Gj and Gj with
the aid of Gi. We suppose that the number of technologies is the same for
every sector.

Let xj be the level in units of the gross activity performed in the sector j.
We suppose that to produce xj units in the sector j, fk

ij(xj) units from the
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technology k of the sector i are needed as inputs. We make the following
assumptions:

1) fk
ij are continuous,

2) fk
ij(0) = 0,

3) 0 ≤ uj ≤ vj implies fk
ij(uj) ≤ fk

ij(vj) for all i, j, k.

The balances between total activities and final demands for the technology
k are given by

(1) xi =
n∑

j=1

fk
ij(xj) + yi, i = 1, . . . , n,

where yi is the final demand for the sector i.
We define fk

j (xj) = [fk
ij(xj)]ni=1 for j = 1, . . . , n and Fk(x) = x −∑n

j=1 f
k
j (xj) for k = 1, . . . ,m, where x = (x1, . . . , xn)t. We define

Sy0 = {x ∈ Rn
+ | F1(x)− y0 ≥ 0, . . . ,Fm(x)− y0 ≥ 0}.

For this model, the problem is to show that given y0 > 0 with Sy0 nonempty
the problem IGOCP(T1, . . . ,Tm,Rn

+) has a solution x0 > 0 which is the
least element of Sy0 , where T1(x) = F1(x)− y0, . . . ,Tm(x) = Fm(x)− y0.

In this case we say that the production x0 is realizing y0 with a minimal
social cost (in the sense of Definition 5 below). For each index i, there
will be m− 1 technologies which are feasible at x0, but which create excess
production. Such technologies are not thought of as active at x0, but feasible
and inactive. In case there are two or more technologies with zero excess
production, for any i, one may choose arbitrarily among them and incur no
additional cost.

R e m a r k. If we have a final demand yk (k = 1, . . . ,m) for every
technology we can work with the final demand y0 =

∨
(y1, . . . , ym). The

model defined above is the nonlinear generalization of the classical Leontief
model, but for a system working with several technologies. We denote by
S0({fk

ij}) the economic system defined by the family of mappings {fk
ij}

satisfying assumptions 1)–3). A more realistic generalization of Leontief’s
system is the following. We denote by I the identity mapping. We now
suppose that the system S0({fk

ij}) is constrained to work with the functions
fk

ij not always increasing, that is, the assumption 3) is not satisfied (see the
economic interpretation of the functions fk

ij). We can have the absence of
assumption 3) if the system is working in the presence of strikes or other
social troubles or in the presence of the import-export as considered by
L. Mardon [19] or in the general model studied by A. Idzik [19]. We denote
this new system by S({fk

ij}). The paper is dedicated to the study of this
system. The following definition is essential.
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Definition 1. We say that the input-output system S({fk
ij}) is a

tolerant economic system if the following assumptions are satisfied:

(i) fk
ij are continuous,

(ii) fk
ij(0) = 0,

(iii) there exists a continuous mapping Φ : Rn → Rn such that:

• I + Φ is invertible and (I + Φ)−1 is isotone (with respect to the
ordering defined by Rn

+),
• Φ(x)+

∑n
j=1 f

k
j (xj) is isotone for every k (where x = (x1, . . . , xn)t).

If S({fk
ij}) is a tolerant system, then we say that Φ is a tolerance.

R e m a r k s. a) The tolerance for a given tolerant system is not unique.
b) The system S0({fk

ij}) is tolerant with the tolerance Φ(x) = 0 for
every x ∈ Rn. For every tolerant system S({fk

ij}) consider the problem
IGOCP({Tk}m

k=1,Rn
+), where Tk(x) = Fk(x)−y0 (k = 1, . . . ,m), associated

with every final demand.
c) The concept of tolerance moves the isotonicity from the local to the

global .

4. An existence theorem. Let S({fk
ij}) be a tolerant economic system

with a tolerance Φ. With the mappings fk
j (xj) and Fk(x) as defined before

and a final demand y = [yi]ni=1 we define Tk(x) = Fk(x)− y (k = 1, . . . ,m)
and H(x) =

∨
{x − T1(x), . . . , x − Tm(x)} for all x ∈ Rn

+. The mapping
TH(x) = (I + Φ)−1(H + Φ)(x), x ∈ Rn

+, is well defined and it is isotone
with respect to the ordering defined by Rn

+. Let F = {x ∈ Rn
+ | Tk(x) ∈

Rn
+, k = 1, . . . ,m} be the feasible set of the system S({fk

ij}). We say that
S({fk

ij}) is feasible if F is nonempty.

Theorem 1. Let S({fk
ij}) be a tolerant economic system and let Φ be a

tolerance. If S({fk
ij}) is feasible then the problem IGOCP({Tk}m

k=1,Rn
+)

has a solution which is the least element of the feasible set F .

P r o o f. Define D = {x ∈ Rn
+ | TH(x) ≤ x}. We have F ⊆ D. Indeed,

if x ∈ F then Tk(x) ≥ 0 for all k = 1, . . . ,m, which implies that (I−Tk +
Φ)(x) ≤ (I+Φ)(x) for all k = 1, . . . ,m, that is,

∨
{(I−T1 +Φ)(x), . . . , (I−

Tm +Φ)(x)} ≤ (I+Φ)(x), or (I+Φ)−1(TH +Φ)(x) ≤ x, that is, x ∈ D. We
note that generally D 6⊂ F . The theorem is proved if we show that D has
a least element x∗ such that x∗ ∈ F and TH(x∗) = x∗. Indeed, if S({fk

ij})
is feasible then F is nonempty. Since D ⊆ Rn

+ and (Rn,Rn
+) is a complete

vector lattice the element x∗ = inf D is well defined. For every x ∈ D we
have TH(x) ≤ x and x∗ ≤ x, which implies that TH(x∗) ≤ TH(x) ≤ x and
hence TH(x∗) ≤ x∗. Thus, we deduce that x∗ ∈ D. Since TH(x∗) ≤ x∗
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implies TH(TH(x∗)) ≤ TH(x∗), we see that TH(x∗) ∈ D and hence x∗ ≤
TH(x∗), which implies that TH(x∗) = x∗. Because x∗ is a solution of the
problem IGOCP({Tk}m

k=1,Rn
+) (by the definition of TH), it is a feasible

point and hence x∗ ∈ F , which implies that x∗ is the least element of F
(since it is the least element of D).

We now introduce several definitions.

Definition 2. We say that a tolerant economic system S({fk
ij}) is

functional if there exists x > 0 such that Fk(x) > 0 for every k = 1, . . . ,m.

Definition 3. If S({fk
ij}) is a functional tolerant economic system, we

say that y0 > 0 is a final attainable demand if there exists x0 ∈ Rn
+ such

that Tk(x0) = Fk(x0)− y0 ∈ Rn
+ for every k = 1, . . . ,m.

Definition 4. We say that a final attainable demand y0 > 0 is mini-
mally realized by a production x0 ∈ Rn

+ if Tk(x0) = Fk(x0) − y0 ∈ Rn
+ for

every k = 1, . . . ,m and
∧
{T1(x0), . . . ,Tm(x0)} = 0.

Definition 5. We say that a function ϕ : Rn
+ → R is a social cost for

the system S({fk
ij}) if:

1) ϕ(0) = 0,
2) ϕ(x) > 0 if ‖x‖ > 0,
3) x ≤ y ⇒ ϕ(x) ≤ ϕ(y).

Similar definitions were used in [30] and [4]. With the last definitions,
we obtain from Theorem 1 the following interesting result.

Corollary. Let S({fk
ij}) be a functional tolerant economic system and

let ϕ be its social cost. For every attainable demand y0 > 0 there exists a
production x0 > 0 realizing y0 with ϕ(x0) minimal.

P r o o f. It is sufficient to remark that Theorem 1 is applicable with
Tk(x) = Fk(x) − y0 (k = 1, . . . ,m) and the solution x0 of the problem
IGOCP({Tk}m

k=1,Rn
+) which is the least element of the feasible set F is

such that x0 > 0. Indeed, we have x0 ∈ Rn
+. If we suppose that there

exists i ∈ {1, . . . , n} such that x0
i = 0, then we have [Tk(x0)]i = x0

i −∑n
j=1 f

k
ij(x

0
j ) − y0

i < 0, which is impossible since x0 is a feasible point.
Certainly we have ϕ(x0) ≤ ϕ(x) for every x ∈ F .

R e m a r k. Let x0> 0 be the production realizing the attainable demand
y0> 0 in a functional tolerant economic system working withm technologies.
Since x0 is obtained as a solution of an Implicit General Order Complemen-
tarity Problem, it can happen that the same component y0

i of y0 is realized
by several technologies k1, . . . , kr. We may choose arbitrarily one of these
without any loss of generality or change in social cost. In the next section
we give some iterative methods to compute the optimal production.
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5. Iterative methods. In this section we give some iterative meth-
ods to compute the solution defined in Theorem 1 (and hence the optimal
production x0 considered in the Corollary of Theorem 1).

Theorem 2. Let S({fk
ij}) be a tolerant economic system and let Φ be a

tolerance. Suppose that :

1) 0 ≤ H(0),
2) (I + Φ)−1(H + Φ) is continuous,
3) S({fk

ij}) is feasible.

Then the problem IGOCP({Tk}m
k=1,Rn

+) has a solution x∗ which is the
least element of the feasible set F and x∗ can be computed by the following
iterations:

(θ) x0 = 0, xr+1 = (I + Φ)−1(H + Φ)(xr), r = 0, 1, 2, . . .

P r o o f. By Theorem 1, F (which is nonempty) has a least element x∗
which is a solution of the problem IGOCP({Tk}m

k=1,Rn
+). Let y0 ∈ F be an

arbitrary element. Then Tk(y0) ∈ Rm
+ for every k = 1, . . . ,m, which implies

that −Tk(y0) ≤ 0 for every k = 1, . . . ,m. Thus, we have H(y0) ≤ y0,
which implies that the sequence {xr}r∈N defined by the algorithm (θ) has
the following property: 0 ≤ x1 ≤ . . . ≤ xr ≤ . . . ≤ y0.

Since the cone Rn
+ is regular there exists x̂ = limr→∞ xr and because Rn

+

is closed we have 0 ≤ x̂ ≤ y0. By continuity we obtain x̂ = (I + Φ)−1(H +
Φ)(x̂), that is, x̂ is a solution of the problem IGOCP({Tk}m

k=1,Rn
+).

We now show that x̂ is a minimal solution of the problem
IGOCP({Tk}m

k=1,Rn
+) with respect to the set [0, y0] = {x ∈ Rn | 0 ≤

x ≤ y0}. Indeed, let z0 be an arbitrary solution of this problem in [0, y0].
Since z0 is a fixed point of the mapping TH(x) = (I +Φ)−1(H +Φ)(x), the
sequence {xr}r∈N defined by the algorithm (θ) satisfies 0 ≤ xr ≤ z0 for all
r ∈ N, which implies that 0 ≤ x̂ ≤ z0, that is, x̂ is minimal. Because x̂ is
in particular a feasible element we have 0 ≤ x∗ ≤ x̂ ≤ y0, and since x̂ is a
minimal solution in the interval [0, y0], we deduce that 0 ≤ x̂ ≤ x∗, that is,
x∗ = x̂ and the theorem is proved.

Next we compute two elements u∗, v∗ such that the least element solution
x∗ of the problem IGOCP({Tk}m

k=1,Rn
+) satisfies the condition u∗ ≤ x∗

≤ v∗. Our method is based on the concept of “coupled fixed point”, intro-
duced by Lakshmikantham and studied by Guo and Lakshmikantham [10]
and also on the concept of “heterotonic operator” defined by Opŏıtsev [22].

We say that T : Rn → Rn is heterotonic on a set D ⊂ Rn if and only if
there exists an operator T̂ : Rn × Rn → Rn such that

(i) T̂(x, x) = T(x) for all x ∈ D,
(ii) T̂(x, y) is isotone with respect to x for all y,
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(iii) T̂(x, y) is antitone with respect to y for all x.

If T is heterotonic, then T̂ is not necessarily unique. We now suppose
that in the problem IGOCP({Tk}m

k=1,Rn
+) the operators I−Tk (for every

k = 1, . . . ,m) are heterotonic (I−Tk heterotonic does not imply Tk isotone).
Let Ŝk be the operator associated with I − Tk. Now consider again the
mapping H(x) =

∨
{x − T1(x), . . . , x − Tm(x)} for x ∈ Rn

+, and define
Ĥ(x, y) =

∨
{Ŝ1(x, y), . . . , Ŝm(x, y)} for all (x, y) ∈ Rn

+ × Rn
+. Then Ĥ

is isotone with respect to x and antitone with respect to y and moreover,
Ĥ(x, x) = H(x) for all x ∈ Rn

+. Hence, in this case H is a heterotonic
operator. We say that (x∗, y∗) is a coupled fixed point for H if:

(iv) Ĥ(x∗, y∗) = x∗,
(v) Ĥ(y∗, x∗) = y∗.

Since Ĥ(x∗, x∗) = H(x∗), every fixed point is a coupled fixed point but the
converse is not true. A coupled fixed point (x∗, y∗) of H is minimal and
maximal on a subset D ⊂ Rn if, for every coupled fixed point (x, y) of H
such that (x, y) ∈ D×D we have x∗ ≤ x ≤ y∗ and x∗ ≤ y ≤ y∗. Given two
points u0, v0 ∈ Rn

+, the conical interval [u0, v0] is strongly invariant for H
if:

(vi) u0 ≤ Ĥ(u0, v0),
(vii) Ĥ(v0, u0) ≤ v0.

Applying this concept to the current problem leads to the following result.

Theorem 3. Let S({fk
ij}) be a feasible tolerant economic system. If for

every k = 1, . . . ,m the operator I − Tk is heterotonic with Ŝk continuous,
then for every conical interval [0, v0] strongly invariant for H, there exists
a minimal and maximal coupled fixed point (u∗, v∗) such that u∗ ≤ x∗ ≤ v∗,
where x∗ is the least element solution of the problem IGOCP({Tk}m

k=1,Rn
+).

Moreover u∗ = limr→∞ ur and v∗ = limr→∞ vr, where ur = Ĥ(ur−1, vr−1)
and vr = Ĥ(vr−1, ur−1), with u0 = 0.

P r o o f. Since in the ordered space (Rn,Rn
+) the operation “∨” is con-

tinuous, it follows from our assumptions that Ĥ is a continuous mapping.
Because Ĥ is isotone with respect to x and antitone with respect to y and
the conical interval [0, v0] is strongly invariant,

0 ≤ u1 = Ĥ(0, v0), v1 = Ĥ(v0, 0) ≤ v0 and 0 ≤ u1 ≤ v1 ≤ v0.

By induction 0 ≤ u1 ≤ u2 ≤ . . . ≤ ur ≤ vr ≤ . . . ≤ v2 ≤ v1 ≤ v0. Since
Rn

+ is regular, u∗ = limr→∞ ur and v∗ = limr→∞ vr are well defined and
u∗ ≤ v∗. From the continuity of Ĥ it follows that u∗ = Ĥ(u∗, v∗) and
v∗ = Ĥ(v∗, u∗), that is, (u∗, v∗) is a coupled fixed point of H.
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We now show that (u∗, v∗) is minimal and maximal on [0, v0]. Indeed, let
(u, v) be another coupled fixed point of H on [0, v0]. We have 0≤u≤v0 and
0≤ v≤ v0. Using the properties of Ĥ we obtain, by induction, ur ≤ u≤ vr

and ur ≤ v ≤ vr for all r ∈ N, which implies (since Rn
+ is closed) that

u∗ ≤ u ≤ v∗ and u∗ ≤ v ≤ v∗, that is, (u∗, v∗) is a minimal and maximal
coupled fixed point of H on [0, v0].

Let x∗ be the least element solution of the problem
IGOCP({Tk}m

k=1,Rn
+). To finish, it will be shown that u∗≤x∗≤v∗. First,

we show that 0≤x∗≤v∗. We have H([u∗, v∗])⊆[u∗, v∗]. Indeed, if u∗≤x≤v∗
then for every r ∈N, we have ur ≤ x≤ vr. Since H(x) = Ĥ(x, x) for every
x∈Rn

+, we obtain ur+1≤H(x)≤vr+1 and since [ur+1, vr+1]⊆ [ur, vr] we have
H(x)∈ [ur, vr] for every r ∈ N, that is, H([u∗, v∗])⊆[u∗, v∗]. By Brouwer’s
fixed point theorem, H has a fixed point x̂. Obviously, x̂ is a solution of
the problem IGOCP({Tk}m

k=1,Rn
+) and u∗≤ x̂≤ v∗. Since x∗ is the least

element solution we have 0≤ x∗≤ x̂, which implies that 0≤ x∗≤ v∗. Now,
since every fixed point of H is a coupled fixed point and (u∗, v∗) is a minimal
and maximal coupled fixed point of H on [0, v0] we must have u∗≤x∗≤v∗
and the theorem is proved.

R e m a r k s. 1) The least element solution x∗ of the problem
IGOCP({Tk}m

k=1,Rn
+), associated with a tolerant system S({fk

ij}) is in-
dependent of the tolerance Φ.

2) An interesting situation when the operators I−Tk (k = 1, . . . ,m) are
heterotonic is when I − Tk = Rk + Pk with Rk isotone and Pk antitone.
Indeed, in this case, let Ŝk(x, y) = Rk(x) + Pk(y) for all (x, y) ∈ Rn

+ × Rn
+.

6. On the construction of a tolerance. In the construction of a
tolerance Φ, an important requirement is that (I + Φ)−1 is isotone. The
following results can be used in this sense.

(I) We say that a matrix A = (aij) is an M-matrix if A can be expressed
in the form A = αI − B with B ≥ 0 (i.e., B = (bij) and bij ≥ 0) and
α ≥ %(B), where %(B) is the spectral radius of B. It is known that if A
is an M-matrix and D is a diagonal positive matrix, then D + A is an M-
matrix. If A is an M-matrix then (I + A)−1 is isotone. Hence, a candidate
for a tolerance is Φ = A if A is an M-matrix.

(II) The same conclusion as in example (I) is true if Φ = A and A is an
n × n matrix such that I + A satisfies the Hawkins–Simon condition (see:
H. N i k a i d o, Convex Structures and Economic Theory , Academic Press,
1968, p. 90).

(III) Let ψ = (ψ1, . . . , ψn) be a mapping from Rn into Rn. We say that
ψ is a diagonal mapping if, for every i = 1, . . . , n, the component ψi depends
on xi only, where x = (x1, . . . , xn). If Φ : Rn → Rn has a decomposition
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of the form Φ = A + ψ, where A is an M-matrix and ψ is a continuous
diagonal increasing mapping, then (I + Φ)−1 is isotone.

(IV) Let Φ : Rn → Rn be a mapping such that Φ = A + ψ, where
A = (aij) is an n×n matrix with aij < 0 for all i 6= j and ψ = (ψ1, . . . , ψn)
is a diagonal mapping. The following result is proved in [9]. If there exist
α, β ∈ R such that:

1) α+ β > 0,
2) 〈Ax, x〉 ≥ α〈x, x〉 for all x ∈ Rn,
3) (ψi(s)− ψi(t))/(s− t) ≥ β for all s, t ∈ R, s 6= t and i = 1, . . . , n,

then (I + Φ)−1 is isotone and hence Φ is a candidate for a tolerance.

7. Estimation by global optimization. We also remark that the least
element solution of the problem IGOCP({Tk}m

k=1,Rn
+) can be estimated

by global optimization. If we consider on Rn the euclidean norm, then
(Rn, 〈·, ·〉,Rn

+) is a Hilbert lattice and the operations “∧” and “∨” are con-
tinuous. If the mappings Tk (k = 1, . . . ,m) are σ-Hölder continuous in the
sense of definitions considered in [14], [17], [18], [29], we can show (see [14])
that H(x) is also σ-Hölder continuous (but generally with respect to an-
other function σ). If y0 is a feasible element or [0, v0] is a strongly invariant
segment for our problem, then by Theorem 2 (respectively Theorem 3) we
obtain a conical segment [0, v∗] (respectively [u∗, v∗]) containing the least
element solution of our problem.

Hence we have to compute all the fixed points of H(x) on a conical
segment, which is equivalent to computing all the global minima of the
function f(x) = ‖x−H(x)‖ in a cube containing the conical segment where
we have our solution.

But the function f(x) is again σ-Hölder continuous function and its min-
imal value is zero. Thus, we can use the extension to σ-Hölder continuous
functions of the cubic algorithm [12] or we can use the integral global opti-
mization developed recently by Zheng [35], [36].

Probably, this last idea is a good motivation to extend to σ-Hölder con-
tinuous functions other methods developed in global optimization for Lips-
chitz functions.

We propose to work with σ-Hölder continuous functions, since this class
is larger than the class of Lipschitz functions and for some numerical al-
gorithms, as for example the cubic algorithm [7], we must know the value
of the Lipschitz constant, which is not always easy to evaluate, while by
imbedding theorems ([18], p. 361) we can know the function σ.

Conclusions. In this paper we presented two important ideas. First,
the Implicit Generalized Order Complementarity Problem, which is a new
subject in Complementarity Theory, can be used to construct and to study
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the extension of Leontief’s system when the economic system works with
several technologies. Second, we showed that the concept of tolerant system
is a good model when the system is working with the functions fk

ij without
the property of being increasing, as considered by other authors [2], [3], [30]
etc. Third, we showed that a tolerant economic system, which is locally
nonlinear and with the functions fk

ij not necessarily isotone, has a behavior
similar to a classical Leontief model.
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