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M. KŘÍŽEK and L. LIU (Praha)

ON A COMPARISON PRINCIPLE

FOR A QUASILINEAR ELLIPTIC BOUNDARY

VALUE PROBLEM OF A NONMONOTONE TYPE

Abstract . A nonlinear elliptic partial differential equation with the New-
ton boundary conditions is examined. We prove that for greater data we
get a greater weak solution. This is the so-called comparison principle. It is
applied to a steady-state heat conduction problem in anisotropic magnetic
cores of large transformers.

1. Introduction. Comparison and maximum principles are important
features of second order elliptic equations that distinguish them from higher
order equations and systems of equations. In this paper we deal with a
quasilinear elliptic problem whose classical formulation reads:

Find u ∈ C1(Ω) such that u|Ω ∈ C2(Ω) and

− div(A(·, u) grad u) = f in Ω,(1.1)

αu + nTA(·, u) grad u = g on ∂Ω,(1.2)

where Ω ⊂ R
d, d ∈ {1, 2, . . .}, is a bounded domain with a Lipschitz con-

tinuous boundary, n = (n1, . . . , nd)
T is the outward unit normal to ∂Ω,

A = (aij)
d
i,j=1 is a uniformly positive definite matrix and α ≥ 0. Let the

functions A, α, f and g be sufficiently smooth for the time being (precise
assumptions on these functions are given in Section 2).

The problem (1.1)–(1.2) describes a steady-state heat conduction in non-
linear inhomogeneous anisotropic media.The unknown function u represents
the temperature, A is the matrix of heat conductivities, α is the heat trans-
fer coefficient, f is the density of volume heat sources and g is the density
of surface heat sources. The existence and uniqueness of u is studied in [16]
(and in [5, 6, 12, 13] for similar problems with other boundary conditions).
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The main aim of this paper is to show the following comparison principle:

(1.3) f1 ≤ f2 & g1 ≤ g2 ⇒ u1 ≤ u2,

where ui is a weak solution of the problem (1.1)–(1.2) corresponding to the
densities fi and gi of heat sources for i = 1, 2. Our method is completely
different from that used in [5, 10, 23], where the classical solution u ∈ C2(Ω)
is considered. Moreover, our assumptions on the matrix A(·, u) are not
covered by [5, 10, 23]. Note that the comparison principle (1.3) for linear
problems (i.e., when A is independent of u) is a consequence of the weak
maximum principle (see, e.g., [10, p. 32, 207]). For more information about
maximum principles we refer to [21].

2. Weak formulation and existence. To state a weak formulation of
problem (1.1)–(1.2) we assume that A = A(·, ·) and α = α(·) are bounded
measurable functions,

(2.1) ess sup
x,ξ,i,j

|aij(x, ξ)| ≤ C, ess sup
s

|α(s)| ≤ C,

where x ∈ Ω, ξ ∈ R
1, i, j ∈ {1, . . . , d} and s ∈ ∂Ω. The components aij are

assumed to be Lipschitz continuous with respect to the second variable, i.e.,
there exists CL > 0 such that for all ζ, ξ ∈ R

1 and almost all x ∈ Ω we have

(2.2) |aij(x, ζ) − aij(x, ξ)| ≤ CL|ζ − ξ|, i, j = 1, . . . , d.

Further, let there exist C0 > 0 such that for almost all x ∈ Ω,

(2.3) C0η
T η ≤ ηTA(x, ξ)η ∀ξ ∈ R

1 ∀η ∈ R
d

and let 0 ≤ α(s) for almost all s ∈ ∂Ω. To guarantee the existence of u,
we moreover assume that there exists a constant α0 > 0 and a nonempty
relatively open subset Γ ⊂ ∂Ω such that

(2.4) α(s) ≥ α0

for almost all s ∈ Γ . Recall that the boundary condition (1.2) is called the
Newton boundary condition. It is called the Neumann boundary condition

at those parts of ∂Ω where α = 0.
Finally, let f ∈ L2(Ω), g ∈ L2(∂Ω) and V = H1(Ω), where H1(Ω) is

the Sobolev space of functions whose first generalized derivatives belong to
L2(Ω).

For simplicity, a possible dependence of A on x is not explicitly indicated
in what follows. Set

a(y;w, v) = (A(y) grad w, grad v)0,Ω + 〈αw, v〉0,∂Ω , y, w, v ∈ V,(2.5)

F (v) = (f, v)0,Ω + 〈g, v〉0,∂Ω , v ∈ V,(2.6)

where (·, ·)0,Ω and 〈·, ·〉0,∂Ω stand for the usual scalar products in L2(Ω) and
L2(∂Ω), respectively. Since A and α are bounded by (2.1), we observe that
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both the terms on the right hand side of (2.5) are finite, i.e., a(·; ·, ·) is well
defined. Throughout the paper, the symbol ‖.‖k,Ω is used for the norm in
the product Sobolev space (Hk(Ω))

q
for k ∈ {0, 1, . . .} and q ∈ {1, 2, . . .}.

Suppose that some u satisfy (1.1)–(1.2). Multiplying (1.1) by an arbi-
trary test function v ∈ V and then integrating over Ω, we arrive, by (1.2)
and the Green formula, at the following definition:

Definition 2.1. A function u ∈ V is said to be a weak solution of the
problem (1.1)–(1.2) if

(2.7) a(u;u, v) = F (v) ∀v ∈ V.

Next we present several remarks concerning the existence of the weak
solution.

R e m a r k 2.2. The well-known Kirchhoff transformation (see [2, 9, 17]),
which changes the nonlinear problem to a linear one, can be applied in the
case of isotropic nonlinear media, i.e., when A is a scalar function. However,
it cannot be applied to prove the existence of u in the case of anisotropic
nonlinear media, in general. For instance, in examining a temperature field
in the magnetic circuit of a transformer (see Figure 3), nonlinear tempera-
ture dependencies of heat conductivities across and along lamination differ.
The associated 3 × 3 matrix A of heat conductivities is diagonal and such
that a22 6= a11 = a33. The temperature dependencies of the diagonal entries
differ in such a way that the types of nonlinearity in the x1 and x2 directions
are different (see [16]).

R e m a r k 2.3. To prove the existence of a weak solution u∈V we cannot
apply the Minty–Browder theorem for monotone operators (cf. [9]), since our
problem does not in general lead to a monotone operator (see [13, p. 171]
for a one-dimensional example).

R e m a r k 2.4. The problem of Definition 2.1 cannot be transformed to
the minimization of some functional, since the associated operator A is not in
general a potential operator (see [12, p. 87] for a one-dimensional example).
The well-known symmetry conditions from [20, p. 41] are not satisfied.

R e m a r k 2.5. We observe that there exists a constant C0 > 0 such that

(2.8) C0‖v‖
2
1,Ω ≤ a(y; v, v) ∀y, v ∈ V.

This inequality is a direct consequence of (2.3)–(2.5) and the following
Friedrichs’ inequality (see [19, p. 20]):

‖v‖2
1,Ω ≤ C(‖grad v‖2

0,Ω + ‖v‖2
0,Γ ) ∀v ∈ V.

Using (2.5), (2.6), the boundedness of A, α (see (2.1)) and the trace theorem
(see [19, p. 84]), it is not difficult to verify that

|a(y;w, v)| ≤ C‖w‖1,Ω‖v‖1,Ω ∀y,w, v ∈ V,(2.9)
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|F (v)| ≤ C‖v‖1,Ω ∀v ∈ V.(2.10)

Theorem 2.6. Let (2.1)–(2.4) hold. Then there exists a weak solution

of the problem (1.1)–(1.2).

For the proof see [13]. The weak solution is obtained as a weak limit of
Galerkin approximations. The proof is based on the properties (2.8)–(2.10),
the well-known Brouwer theorem [8, 16] and the density theorem of [3].

R e m a r k 2.7. From (2.8), (2.7), (2.6) and the trace theorem we have

C0‖u‖
2
1,Ω ≤ a(u;u, u) = (f, u)0,Ω + 〈g, u〉0,∂Ω

≤ C(‖f‖0,Ω + ‖g‖0,∂Ω)‖u‖1,Ω .

Hence, there exists a constant C > 0 (independent of the data f, g) such
that

(2.11) ‖u‖1,Ω ≤ C(‖f‖0,Ω + ‖g‖0,∂Ω).

This means that we can estimate the norm ‖u‖1,Ω by the “data”. We observe
from (2.11) that for vanishing data the weak solution u is unique.

3. The comparison principle. In this section we prove the uniqueness
of u for any f ∈ L2(Ω) and g ∈ L2(∂Ω). This result will be a consequence
of the following comparison principle.

Theorem 3.1. Let (2.1)–(2.4) hold and let u1, u2 ∈ V be two weak so-

lutions of the problem (2.7) corresponding to f1, f2 ∈ L2(Ω) and g1, g2 ∈
L2(∂Ω), respectively. Assume that

(3.1) f1 ≥ f2 a.e. in Ω

and

(3.2) g1 ≥ g2 a.e. in ∂Ω.

Then u1 ≥ u2 a.e. in Ω.

P r o o f. Let f1 ≥ f2, g1 ≥ g2 and let u1, u2 be the corresponding weak
solutions. Put Ω0 = {x ∈ Ω | u1(x) < u2(x)} and assume, on the contrary,
that

(3.3) meas Ω0 > 0.

Let ε > 0 be arbitrary and let us define (see Figure 1)

Ωε = {x ∈ Ω0 | u2 − u1 > ε},(3.4)

vε =

{

min(ε, u2 − u1) in Ω0,
0 in R

d \ Ω0.
(3.5)

We show that vε can be applied in (2.7) as a test function. Since u2−u1 ∈
V , the positive part (u2 − u1)

+ also lies in V . This is due to the fact that
v 7→ v+ is a continuous mapping from H1(Ω) to H1(Ω) (see, e.g., [11,
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=0 =

Fig. 1

p. 29]). The mapping v 7→ |v| = v+ + v− is continuous as well. Therefore,
the equality min(a, b) = 1

2
(a + b − |a − b|) implies that

(3.6) vε = min(ε, (u2 − u1)
+) ∈ V.

Thus, by (2.7), we may write

(3.7) (A(ui) grad ui, grad vε)0,Ω + 〈αui, vε〉0,∂Ω

= (fi, vε)0,Ω + 〈gi, vε〉0,∂Ω , i = 1, 2.

Since vε ≥ 0 and α ≥ 0, we have, by (3.5),

(3.8) α(u1 − u2)vε ≤ 0 on ∂Ω.

From (2.3), (3.5), (3.7), (3.8), (3.1) and (3.2) we obtain

(3.9) C0‖grad vε‖
2
0,Ω

≤ (A(u1) grad vε, grad vε)0,Ω

= (A(u1) grad(u2 − u1), grad vε)0,Ω0\Ωε

= (A(u1) grad u2 −A(u1) grad u1, grad vε)0,Ω

= (A(u1) grad u2 −A(u2) grad u2, grad vε)0,Ω

+ 〈α(u1 − u2), vε〉0,∂Ω + (f2 − f1, vε)0,Ω + 〈g2 − g1, vε〉0,∂Ω

≤ ((A(u1) −A(u2)) grad u2, grad vε)0,Ω .

The last scalar product can be further estimated by (3.4), (3.5), the Cauchy–
Schwarz inequality and (2.2) as follows:
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(3.10) ((A(u1) −A(u2)) grad u2, grad vε)0,Ω0\Ωε

≤ ‖(A(u1) −A(u2)) grad u2‖0,Ω0\Ωε
‖grad vε‖0,Ω0\Ωε

≤ εCLd2‖grad u2‖0,Ω0\Ωε
‖grad vε‖0,Ω0\Ωε

.

Combining (3.9) and (3.10), we obtain

(3.11) ‖grad vε‖0,Ω ≤ εC‖grad u2‖0,Ω0\Ωε
.

According to (3.5) and (2.4),

0 ≤ vε ≤ (u2 − u1)
+ = u2 − u1 ≤

1

α0

(αu2 − αu1) on Γ ∩ Ω0,

and thus (since vε = 0 on Γ \ Ω0)

(3.12) v2
ε ≤

1

α0

(αu2 − αu1)vε on Γ.

Moreover, by (3.9),

−〈αu1 − αu2, vε〉0,∂Ω + C0‖grad vε‖
2
0,Ω

≤ ((A(u1) −A(u2)) grad u2, grad vε)0,Ω .

Consequently, Friedrichs’ inequality, (3.12), (3.10) and (3.11) imply that

‖vε‖
2
0,Ω ≤ C1(‖vε‖

2
0,Γ + ‖grad vε‖

2
0,Ω)

≤ C2(〈αu2 − αu1, vε〉0,Γ + ‖grad vε‖
2
0,Ω)

≤ C3(〈αu2 − αu1, vε〉0,∂Ω + C0‖grad vε‖
2
0,Ω)

≤ C3((A(u1) −A(u2)) grad u2, grad vε)0,Ω

≤ εC4‖grad u2‖0,Ω0\Ωε
‖grad vε‖0,Ω0\Ωε

≤ ε2C5‖grad u2‖
2

0,Ω0\Ωε

.

From this, (3.5), the facts that u2 is fixed and Ωε ⊂ Ω0, we arrive at

meas Ωε = ε−2
\

Ωε

ε2 dx ≤ ε−2‖vε‖
2
0,Ω

≤ C5‖grad u2‖
2
0,Ω0\Ωε

→ 0 as ε → 0,

where C5 > 0 is independent of ε. This, however, contradicts (3.3) and (3.4),
since meas Ωε → meas Ω0. Consequently, meas Ω0 = 0 and u1 ≥ u2 a.e.
in Ω.

Corollary 3.2. Let (2.1)–(2.4) hold. Then there exists at most one

weak solution of the problem (1.1)–(1.2).

P r o o f. According to Theorem 3.1 we have u1 ≥ u2 and u1 ≤ u2 for
f1 = f2 and g1 = g2. This proves the uniqueness of the weak solution u.
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R e m a r k 3.3. Theorem 3.1 and its proof can be easily modified for
Dirichlet boundary conditions or mixed Dirichlet–Newton boundary condi-
tions. A proof of the uniqueness of the classical solution of the problem
(1.1)–(1.2) is given in [5] for the Dirichlet boundary conditions and in [12]
for mixed conditions. The uniqueness of the weak solution for the mixed
nonlinear boundary conditions is proved also in [13] without application of
the comparison principle. Other uniqueness theorems for general nonlinear
problems with Dirichlet boundary conditions are given in [1, 14].

R e m a r k 3.4. There exist examples of nonunique solutions if the elliptic
equation is not in the divergence form (see, e.g., [10, p. 209], [18, p. 178]). We
can also get nonunique solutions of our divergence form problem (1.1)–(1.2)
if the condition (2.2) is violated. To see this, we recall the following example
due to J. Malý. Let d = 1, Ω = (0, 1) and consider two fixed real smooth
functions u1, u2 such that u1 < u2 on (0, 1), u1(0) = u2(0), u′

1(0) = u′
2(0),

u1(1) = u2(1), u′
1(1) = u′

2(1), u′
1 ≥ 1 and u′

2 ≥ 1 (see Figure 2).

0 1

Fig. 2

Let us define a real function A on the graphs of u1 and u2 as follows:

A(x, ξ) =
1

u′
i(x)

for x ∈ [0, 1], ξ = ui(x), i = 1, 2.

Then by Tietze’s extension theorem (see, e.g., [22, p. 422]) there exists a
continuous extension (still denoted by A) so that A(·, ·) : Ω ×R

1 → R
1 and

(2.1) and (2.3) hold. We see that

−(A(x, ui)u
′
i)

′ = 0 for i = 1, 2,

i.e., u1 and u2 are solutions of (1.1) with f = 0 and the Newton boundary
conditions (1.2) for α = 1 and g = 0. However, in this case it is not difficult
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to check that A is not Lipschitz continuous (with respect to the second
variable) near those points where u1 and u2 bifurcate. The condition (2.2)
is thus essential to get the uniqueness.

Another one-dimensional example of nonunique solutions of a nonlinear
elliptic boundary value problem is given in [1, p. 1163].

4. An application. A steady-state heat conduction problem defined
by (1.1)–(1.2) describes a temperature distribution in large transformers.
Their magnetic cores (consisting of iron sheets) are nonlinear orthotropic
media the heat conductivities of which can be represented by a diagonal
matrix A = A(u). The temperature dependencies of the heat conductivity
coefficients a11(u) and a22(u) across and along the lamination, respectively,
differ substantially (see Remark 2.2).

Due to the symmetry of the magnetic core (see Figure 3), we can solve
the problem (1.1)–(1.2) on a smaller domain, which will be denoted by Ω.

L-joint

T-joint

window

yoke

outer leg

Fig. 3

We prescribe the homogeneous Neumann boundary conditions (i.e. α = 0
in (1.2)) at those parts of ∂Ω which correspond to planes of symmetry, and
let α ≥ α0 > 0 be the heat transfer coefficient on the remaining part Γ

of the boundary ∂Ω. This means that Γ is that part of the boundary ∂Ω

which is cooled by oil and ∂Ω \ Γ corresponds to all planes of symmetry.
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We have g = αu0 on Γ (cf. (1.2)), where u0 is the temperature of cooling
oil, and g = 0 on ∂Ω \ Γ . The density f of volume heat sources is positive
due to the alternating electromagnetic field.

Note that the knowledge of the temperature distribution is very im-
portant to avoid a local overheating. If the temperature exceeds prescribed
limits, the cooling oil starts to boil which may cause destruction of the whole
transformer. The comparison principle yields a natural assertion: Any rise
of the density of heat sources always causes that the temperature will not
decrease at any point. This confirms that the nonlinear mathematical model
(1.1)–(1.2) of heat conduction has reasonable properties.

R e m a r k 4.1. We have α = 0 on ∂Ω \Γ . Setting v = 1, we see by (2.5),
Definition 2.1 and (2.6) that\

Γ

αuds =
\

∂Ω

αuds = a(u;u, 1) = F (1) = (f, 1)0,Ω + 〈g, 1〉0,∂Ω

=
\
Ω

fdx +
\
Γ

αu0 ds.

Hence we observe an interesting fact that the average surface temperature
rise ϑΓ on Γ does not depend upon the type of nonlinearity of the heat
conduction coefficients,

ϑΓ ≡
1

meas Γ

\
Γ

(u − u0) ds =
1

α|Γ meas Γ

\
Ω

f dx,

provided α|Γ is constant.

Note that the total temperature flux on Γ is also independent of the
heat conduction coefficients (which follows from the Green theorem).

R e m a r k 4.2. Numerical realization of the problem (1.1)–(1.2) can be
obtained by the finite element method. The questions of the existence,
uniqueness and convergence of discrete solutions are studied in [4, 13]. A
discrete maximum principle is derived in [15]. For approximation of the
curved boundary and numerical integration, see [6, 7, 24]. According to
numerical tests [16], the hottest place of the magnetic core is in concave
angles of the L- and T-joints (see Figure 3).
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the University of Jyväskylä for his help in carrying out the figures. The
work was supported by grant No. A1019601 of the Grant Agency of the
Academy of Sciences of the Czech Republic. This support is gratefully
acknowledged.
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équations elliptiques non linéaires, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992),
1159–1164.
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[7] M. Feistauer and A. Žen ı́ š ek, Compactness method in finite element theory of
nonlinear elliptic problems, Numer. Math. 52 (1988), 147–163.
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