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TAIL ORDERINGS

AND THE TOTAL TIME ON TEST TRANSFORM

Abstract. The paper presents some connections between two tail order-
ings of distributions and the total time on test transform. The procedure
for testing the pure-tail ordering is proposed.

1. Introduction. The concept of tail-heaviness of a distribution func-
tion F permeats both the theory and practice of statistics. Among other
applications it is very important in study of the efficiency and robustness of
estimators as well as in the theory of extreme value statistics. Many authors
have studied this concept and stochastic orderings related to them, e.g. van
Zwet [21], Doksum [11], Barlow and Proschan [4], Lawrance [13], Parzen
[16], Shaked [20], Loh [15], Lehmann [14], Rojo [17]. Most of the literature
on tail orderings concerns orderings on the whole distribution, with the re-
sulting ordering strongly affected by the behavior at the center. We recall
some of them.

Let random variables X and Y have distribution functions F and G
respectively with F−1 and G−1 the corresponding left-continuous inverses.
We say that F is less than G in dispersive ordering (F <disp G) if and only
if F−1(β)−F−1(α) ≤ G−1(β)−G−1(α) whenever 0 < α < β < 1 (see [20]).

Let F (0) = G(0) = 0 and let the supports SF and SG of F and G
respectively be intervals. We say that F is less than G in convex ordering

(F <c G) if and only if G−1F is convex on SF . We say that F is less than
G in star ordering (F <∗ G) if and only if G−1F is starshaped on SF , i.e.
G−1F (x)/x is increasing on SF (see [4]).
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Recently Rojo [17] has studied a pure-tail ordering, the so called q-

ordering .
We say that F is not more than G in q-ordering (F ≤q G) if

lim sup
u→1

F−1(u)

G−1(u)
<∞.

Define similarly

F <q G if F ≤q G but G 6≤q F,

and

F ∼q G if F ≤q G and G ≤q F.

Under very mild conditions it follows easily that q-ordering is location and
scale invariant. It is obvious that if F−1(1) := limu→1 F

−1(u) < ∞ and
G−1(1) < ∞, then F ∼q G. Also if F ≤q G and G−1(1) < ∞, then
F−1(1) <∞.

Let f and g be densities of F and G respectively. If G−1(u) → ∞ as
u→ 1 and limu→1[gG

−1(u)/fF−1(u)] exists, then by L’Hôpital’s rule

lim
u→∞

F−1(u)

G−1(u)
= lim

u→1

gG−1(u)

fF−1(u)
,

so the q-ordering in some subclasses of distributions may be studied in terms
of so-called density-quantile functions fF−1 and gG−1.

Parzen [16] (see also [18]) has classified probability distributions accord-
ing to the limiting behavior of fF−1(u) as u → 1 or 0. This concept has
been developed and systematized by Alzaid and Al-Osh [1].

Let f be differentiable. Parzen’s approach begins with the observation
that the density-quantile function has the representation

fF−1(u) = LF (u)(1 − u)αF , u ∈ (0, 1),

where LF (u) is a slowly varying function as u→ 1 and αF , called the right

tail exponent , is defined by

αF = lim
u→1

(1 − u)JF (u)/fF−1(u),

with

JF (u) = −f ′F−1(u)/fF−1(u).

(The function JF is the well known score-function of the distribution F ,
which is frequently used in nonparametric statistics (see [12])). Therefore
the probability distribution can be classified according to the value of its tail
exponent αF . The ranges αF < 1, αF = 1 and αF > 1 correspond, respec-
tively, to short tail or limited type, medium tail or exponential type, long
tail or Cauchy type. In the same manner one can define the left tail expo-
nents and classify the distributions according to them. Our considerations
will be restricted to the right tail.
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Alzaid and Al-Osh [1] have considered the function

αF (1 − u) =
(1 − u)JF (u)

fF−1(u)
, u ∈ (0, 1).

Then

αF = lim
u→1

αF (1 − u).

For the distribution G define αG(1 − u) and αG similarly. We say that F
has a shorter tail than G in Parzen sense (written F <P G) if αF < αG. If
αF = αG, we say F has a similar tail to that of G (written F =P G). It is
easy to prove that the Parzen ordering is invariant under location and scale
transformations.

Bartoszewicz [10] has remarked that many stochastic orderings, among
them the q-ordering, are preserved by the total time on test transform, used
in reliability theory. The present paper develops this observation. First we
recall some definitions.

Let F be the class of absolutely continuous distribution functions F
with positive and right (or left) continuous density f on the interval, where
0 < F < 1. We take F−1(0) and F−1(1) to be equal to the left and
right endpoints of the support of F (possibly −∞ and +∞). Let G be
a fixed distribution from F with density g. Barlow and Doksum [3] have
introduced the generalized total time on test transform (TTT transform) of
the distribution F by

(1) H−1
F (t) =

F−1(t)\
F−1(0)

g[G−1F (x)] dx, t ∈ (0, 1),

providing the integral exists and is finite for all t ∈ (0, 1). It is obvious
that H−1

F depends on G, but for simplicity we will use this notation as in
[3] and [7]. Since H−1

F is nondecreasing, HF is a distribution function and
H−1

G (t) = t, t ∈ (0, 1), it follows that HG is the uniform distribution U(0, 1).
It is worthwhile to notice that the density hF of HF satisfies

hFH
−1
F (u) =

fF−1(u)

gG−1(u)
= rF (F−1(u)), u ∈ (0, 1),

where

rF (x) =
f(x)

g[G−1F (x)]

is the so-called generalized failure rate function (see [2]).
Denote by X1:n,X2:n, . . . ,Xn:n order statistics of a sample from the dis-

tribution F . Define X0:n = sup {x : F (x) = 0} if it is finite. The random
variables Vi:n = Xi:n − Xi−1:n, i = 1, . . . , n, are called spacings from the
distribution F . Let Fn be the empirical distribution function based on a
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sample of size n from the distribution F ∈ F . Assuming that H−1
F exists,

we can estimate it by

H−1
Fn

(t) :=

F−1

n
(t)\

F
−1

n (0)

g[G−1Fn(u)] du

and hence

H−1
Fn

(i/n) =

Xi:n\
X0:n

g[G−1Fn(u)] du =

i∑

j=1

gG−1

(
j − 1

n

)
Vj:n, i = 1, . . . , n,

if X0:n is finite while

H−1
Fn

(i/n) =

Xi:n\
X1:n

g[G−1Fn(u)] du =

i∑

j=2

gG−1

(
j − 1

n

)
Vj:n, i = 2, . . . , n,

otherwise.

Let G ∈ F be a fixed distribution and F,K ∈ F be distributions for
which the respective TTT transforms H−1

F and H−1
K , defined by (1), exist.

Since

hFH
−1
F (u) =

fF−1(u)

gG−1(u)
and hKH

−1
K (u) =

kK−1(u)

gG−1(u)
,

it follows that

(2)
hKH

−1
K (u)

hFH
−1
F (u)

=
kK−1(u)

fF−1(u)
.

2. Results. Let F0⊂F be a class of distributions F such that F−1(u)→
∞ as u → 1 and for any F,K ∈ F0 the limit limu→1[kK

−1(u)/fF−1(u)]
exists. Thus the q-ordering in the class F0 is defined as follows:

F ≤q K if lim
u→1

kK−1(u)

fF−1(u)
<∞.

We can prove the following theorem.

Theorem 1. Fix G ∈ F0 and let F,K ∈ F0 be distributions for which

H−1
F and H−1

K , defined by (1), exist.

(a) If F ≤q G, then limu→1H
−1
F (u) <∞.

(b) If F ≤q K ≤q G, then HF ∼q HK ∼q HG ≡ U(0, 1).

(c) If G <q F ≤q K and limu→1H
−1
F (u) = ∞, then HG <q HF ≤q HK .

(d) If HG <q HF ≤q HK , then G <q F ≤q K.
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P r o o f. (a) A contrario: suppose that limu→1H
−1
F (u) = ∞. Since

H−1
G (u)

= u, by L’Hôpital’s rule we have

lim
u→1

G−1(u)

F−1(u)
= lim

u→1

fF−1(u)

gG−1(u)
= lim

u→1
hFH

−1
F (u)

= lim
u→1

hFH
−1
F (u)

hGH
−1
G (u)

= lim
u→1

H−1
G (u)

H−1
F (u)

= 0,

and hence limu→1[F
−1(u)/G−1(u)] = ∞. Thus G <q F , contrary to the

assumption.
(b) It follows from (a) that HF and HK have finite supports and hence

the assertion holds.
(c) The relation HG <q HF is obvious, since HG = U(0, 1). Since

limu→1H
−1
F (u) = ∞ and F ≤q K, we also have limu→1H

−1
K (u) = ∞. Thus

by L’Hôpital’s rule and (2) we have

lim
u→1

H−1
F (u)

H−1
K (u)

= lim
u→1

hKH
−1
K (u)

hFH
−1
F (u)

= lim
u→1

kK−1(u)

fF−1(u)
= lim

u→1

F−1(u)

K−1(u)
<∞,

i.e. HF ≤q HK .
(d) From HG <q HF ≤q HK it follows that limu→1H

−1
F (u) = ∞ and

also limu→1H
−1
K (u) = ∞. Thus the statement easily follows by L’Hôpital’s

rule and (2), similarly to the proofs of (a) and (c).

R e m a r k 1. Theorem 1(a) gives a general condition for the finiteness
of H−1

F (1) := limu→1H
−1
F (u) in the class F0. It is well known that under

some conditions each of the orderings F <c G, F <∗ G and F <disp G
implies H−1

F (1) <∞ (see [5], [7] and [9]). However, it is easy to notice that
all these orderings imply the q-ordering.

Let now F1 ⊂ F be the class of distributions F with a differentiable
density f .

Lemma 1. Fix G ∈ F1 and let F ∈ F1 be a distribution for which H−1
F

exists. Then

αHF
(1 − u) = αF (1 − u) − αG(1 − u), u ∈ (0, 1),

and αHF
= αF − αG.

P r o o f. By the definition we have

αHF
(1 − u) =

(1 − u)JHF
(u)

hFH
−1
F (u)

= −(1 − u)
h′FH

−1
F (u)

[hFH
−1
F (u)]2

.

Since

hF (x) =
fF−1(HF (x))

gG−1(HF (x))
,
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we have

h′F (x) =
hF (x)

[gG−1(HF (x))]2

×
[
f ′F−1(HF (x))

fF−1(HF (x))
gG−1(HF (x)) − g′G−1(HF (x))

gG−1(HF (x))
fF−1(HF (x))

]

and hence

h′F (H−1
F (u)) =

f ′F−1(u) − g′G−1(u)[hFH
−1
F (u)]2

[gG−1(u)]2
.

Therefore

αHF
(1 − u) = − (1 − u)

f ′F−1(u) − g′G−1(u)[hFH
−1
F (u)]2

[hFH
−1
F (u)gG−1(u)]2

− (1 − u)

{
f ′F−1(u)

[fF−1(u)]2
− g′G−1(u)

[gG−1(u)]2

}

= αF (1 − u) − αG(1 − u).

Lemma 1 shows that the TTT transform reduces the tail exponent. The
following result concerns the preservation of the Parzen ordering by the TTT
transform.

Theorem 2. Fix G ∈ F1 and let F,K ∈ F1 be distributions for which

H−1
F and H−1

K exist. Then F <P K if and only if HF <P HK and also

F =P K if and only if HF =P HK .

P r o o f. The theorem follows immediately from Lemma 1 and the defi-
nition of the Parzen ordering by noticing that

αHF
(1 − u) − αHK

(1 − u) = αF (1 − u) − αK(1 − u), u ∈ [0, 1].

Hence αHF
− αHK

= αF − αK .

R e m a r k 2. Theorem 2 may also be proved in another way using the
Parzen representation of the density-quantile function. Let fF−1(u) =
LF (u)(1 − u)αF and gG−1(u) = LG(u)(1 − u)αG , u ∈ (0, 1). Then from
(2) we have

hFH
−1
F (u) =

LF (u)

LG(u)
(1 − u)αF −αG = LHF

(u)(1 − u)αHF ,

where LHF
(u) = LF (u)/LG(u) is also a slowly varying function (see [19])

and αHF
= αF − αG. Similarly we obtain

hKH
−1
K (u) = LHK

(u)(1 − u)αHK ,

where LHK
(u) = LK(u)/LG(u) and αHK

= αK − αG. Thus αHF
− αHK

=
αF − αK .
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R e m a r k 3. From Theorem 3 of Alzaid and Al-Osh [1] and Lemma 1
we have a new proof that the TTT transform preserves the convex ordering.

3. Application: testing the pure tail ordering. Let F,G ∈ F0.
Assume that G is known and F is a distribution for which H−1

F , defined by
(1), exists. Consider the problem of testing the goodness-of-fit hypothesis

(3) H0 : F (·) = G

( · − µ

σ

)
, µ ∈ R, σ > 0,

against the hypothesis

(4) H1 : G <q F

given a random sample X = (X1, . . . ,Xn) from F . Similarly to Barlow
and Doksum [3], who have considered tests for convex ordering, and to
Bartoszewicz [7], [8] (see also [10]), who has studied tests for dispersive
ordering, we shall use the TTT transformation for the problem (3)–(4).
From Theorem 1 it follows that this problem may be replaced by that of
testing

(5) H′
0 : HF = U(0, σ), σ > 0,

against

(6) H′
1 : H−1

F (1) = ∞ (i.e. HG <q HF ).

The rejection of H′
0 in favour of H′

1 implies the rejection of H0 in favour of
H1.

Notice that the testing problem (3)–(4) is location and scale invariant,
while the problem (5)–(6) is scale invariant. If Z = (Z1, Z2, . . . , Zn) is a sam-
ple from HF , then the vector of order statistics Z∗ = (Z1:n, Z2:n, . . . , Zn:n)
is a sufficient statistic for HF and the vector

Z̃ =

(
Z1:n

Zn:n
,
Z2:n

Zn:n
, . . . ,

Zn−1:n

Zn:n

)

is a maximal invariant with respect to the group of scale transformations.
Hence an invariant test of H′

0 against H′
1 is a function of the vector Z̃.

One can propose many tests for the problem (5)–(6). In particular, one
can use tests which are usually applied to detect outliers. The excellent
review of these procedures has been given by Barnett and Lewis [6]. It
seems that some of the so-called Dixon statistics which are of the form

Zs:n − Zr:n

Zq:n − Zp:n
,

where 0 ≤ p ≤ r < q ≤ s ≤ n and p < r if s = q, may be applied to the test
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problem (5)–(6). For example, consider the level α test of the form

φ(z̃) =

{
1 if T (z̃) > cα,
0 otherwise,

where

T (Z̃) = Zn:n/Zn−1:n.

Under the hypothesis H′
0 the distribution of T (Z̃) does not depend on

σ, i.e. it is the same as in the case HF = U(0, 1). One can easily show that

under H′
0 the distribution function P of T (Z̃) is of the form

P (t) =

{
0 if t < 1,
1 − t−n+1 if t ≥ 1.

However, since F is unknown, Zi:n, i = 1, . . . , n, are unobservable except
in the case G(x) = x, 0 ≤ x ≤ 1. Therefore we have to replace these
variables by some observable ones, uniformly close to Zi:n, i = 1, . . . , n. It
is easy to notice that if U1:n, . . . , Un:n are order statistics from the uniform
distribution U(0, 1), then

Zi:n =st H−1
F (Ui:n) :=

F−1(Ui:n)\
F−1(0)

g[G−1F (x)] dx

=st
Xi:n\

F−1(0)

g[G−1F (x)] dx = H−1
F (F (Xi:n)).

The following result, a modification of Theorems 2.1 and 2.2 of Barlow and
van Zwet [5], allows us to replace Zi:n by the observable variables H−1

F (i/n),
i = 1, . . . , n.

Theorem 3. Fix G ∈ F and let F ∈ F be a distribution for which H−1
F

exists. Let E(X+) =
T∞
0
x dF (x) <∞ and let gG−1 be uniformly continuous

on (0, 1). Assume that either

(i) F−1(1) <∞, or

(ii) gG−1(u)/(1 − u) is bounded on (0,1), or

(iii) F,G ∈ F0, F ≤q G and there exists a number 0 < η < 1 such that

gG−1(u) is nonincreasing and gG−1(u)/(1−u) is nondecreasing in u ∈ [η, 1).

Then, as n→ ∞,

max
i≤n

|H−1
Fn

(i/n) − Zi:n| → 0 almost surely.

P r o o f. Under the assumptions (i) and (ii) the theorem follows immedi-
ately from Theorem 2.1 of Barlow and van Zwet [5]. Under the assumption
(iii) the proof may be copied from the proof of Theorem 2.2 of Barlow and
van Zwet [5] with some modifications in those parts where properties of
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the convex ordering are used. It suffices to observe that G−1(1) = ∞ and
limu→1[gG

−1(u)/fF−1(u)]< ∞ imply that either rF (x)= f(x)/g[G−1F (x)]
→ ∞ or rF (x) → C > 0 as x→ ∞.

Thus under the assumptions of Theorem 3 the statistics H−1
Fn

(i/n), i =
1, . . . , n, behave asymptotically like order statistics from HF . This suggests
the following invariant test of H0 against H1, which has approximately the
level α:

ψ(x) =

{
1 if T ∗(x) > c′α,
0 otherwise,

where

T ∗(X) =
gG−1

(
n−1

n

)
(Xn:n −Xn−1:n)

∑n−1
j=1 gG

−1
(

j−1
n

)
(Xj:n −Xj−1:n)

and c′α = 1/ n−1
√
α.
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