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THE LINEAR PROGRAMMING APPROACH TO

DETERMINISTIC OPTIMAL CONTROL PROBLEMS

Abstract. Given a deterministic optimal control problem (OCP) with
value function, say J∗, we introduce a linear program (P ) and its dual
(P ∗) whose values satisfy sup(P ∗) ≤ inf(P ) ≤ J∗(t, x). Then we give con-
ditions under which (i) there is no duality gap, i.e. sup(P ∗) = inf(P ),
and (ii) (P ) is solvable and it is equivalent to the (OCP) in the sense that
min(P ) = J∗(t, x).

1. Introduction. A time-honored approach to optimal control prob-
lems (OCPs) is via mathematical programming problems on suitable spaces.
For instance, this approach can be used to obtain Pontryagin’s maximum
principle; see e.g. [3]. Another class of results has also been obtained for
both deterministic and stochastic OCPs using convex programming methods
[2, 5, 6].

This paper is concerned with the linear programming (LP) approach to
deterministic, finite-horizon OCPs with value function J∗(t, x)—when the
initial data is (t, x) [see (2.3)]. In this case, we first introduce a linear
program (P ) and its dual (P ∗) for which

(1.1) sup(P ∗) ≤ inf(P ) ≤ J∗(t, x),

where sup(P ∗) and inf(P ) denote the values of (P ∗) and (P ), respectively.
Then we give conditions under which

1991 Mathematics Subject Classification: Primary 49J15, 49M35.
Key words and phrases: optimal control, linear programming (in infinite-dimensional

spaces), duality theory.
This research was partially supported by research grant 1332-E9206 from the Consejo

Nacional de Ciencia y Tecnoloǵıa, Mexico.
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(i) there is no duality gap, i.e.,

(1.2) sup(P ∗) = inf(P );

(ii) the linear program (P ) is solvable, which means that (P ) has an
optimal solution (and we write min(P ) instead of inf(P )), and is equivalent

to the OCP in the sense that

(1.3) min(P ) = J∗(t, x).

Related literature. In recent papers [8, 9], we have obtained results simi-
lar to (1.1)–(1.3) for some discrete-time stochastic control problems on gen-
eral Borel spaces. Our work is also related to the convex programming

approach in [2, 5, 6] in that we use (LP) duality theory to get (1.1)–(1.3);
in fact, to set our OCP we follow closely [5, 6]. Finally, we should mention
that for several classes of OCPs (see e.g. [12, 13]) there is a well known, di-
rect way—i.e., without going through the dual program (P ∗)—to get (1.3);
namely, one simply writes down the associated linear program (P) and then
uses continuity/compactness arguments to get a minimizing sequence that
converges to the optimal value. But of course, using duality, one gets more
information on the OCP. For example, it turns out that the dual (P ∗) is
associated with the dynamic programming equation (DPE) in a sense to be
precised in the Corollary to Theorem 5.1.

Organization of the paper. In Section 2 we introduce the OCP we are
interested in, and recall some facts on the dynamic programming equation.
Section 3 presents the linear programs (P ) and (P ∗) associated with the
OCP. We also prove the consistency of these programs. In Section 4 we
present the proof of (1.1)–(1.2), whereas the equality (1.3) is proved in
Section 5. Finally, in Section 6 we introduce a particular approximation to
the value function.

2. The optimal control problem

R e m a r k 2.1. Notation. (a) If X is a generic metric space, then we
denote by C(X) the space of real-valued continuous bounded functions with
finite uniform norm ‖ ‖. If b : X → R is a continuous function with b(·) ≥ 1
(which we call a bounding function), then Cb(X) stands for the real vector
space of all continuous functions v : X → R such that

‖v‖b := ‖v/b‖ = sup
x∈X

|v(x)|/b(x) < ∞.

Let Db(X) be the dual of Cb(X), i.e. the vector space of all bounded linear
functionals on Cb(X). If ξ ∈ Db(X) and v ∈ Cb(X), we denote by 〈ξ, v〉 the
value of ξ at v.

(b) Let Mb(X) be the vector space of all finite signed measures µ on
the Borel sets of X such that ‖µ‖b :=

T
b d|µ| is finite, where | · | stands for
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the total variation. Then, identifying µ ∈ Mb(X) with the linear functional
v → 〈µ, v〉 :=

T
v dµ on Cb(X), we see that Mb(X) ⊂ Db(X) since

|〈µ, v〉| ≤ ‖v‖b‖µ‖b.

(c) Let T, 0 < T < ∞, be the optimization horizon, and U ⊂ R
n the

control set, which is assumed to be compact. Define Σ := [0, T ] × R
n,

S := Σ × U .

If v is a function on R
n, we consider it to be a function on Σ, S or R

n×U ,
defining v(t, x) := v(x), v(t, x, u) := v(x) or v(x, u) := v(x) respectively.

For each t ∈ [0, T ], the set U(t) of control processes is the set of Borel
measurable functions u : [t, T ] → U .

The optimal control problem (OCP). Let f : S → R
n be a given function,

and consider the controlled system

(2.1) ẋ(s) := f(s, x(s),u(s)), t < s ≤ T, x(t) = x,

where x ∈ R
n and u ∈ U(t). The OCP is then to minimize

(2.2) J(t, x;u) :=

T\
t

l0(s, x(s),u(s)) ds + L0(x(T ))

over the pairs (x(·),u(·)) that satisfy Definition 2.2. The OCP’s value func-

tion J∗ is defined as

(2.3) J∗(t, x) := inf
U(t)

J(t, x;u).

Definition 2.2. A pair (x(·),u(·)) is said to be admissible for the initial
data (t, x) if u(·) ∈ U(t), and x(·) satisfies (2.1). We shall denote by P(t, x)
the family of all admissible pairs, given the initial data (t, x).

Throughout the following we assume (H1)–(H3) below:

(H1) f belongs to C(S) and it is Lipschitz in x ∈ R
n, uniformly in

(t, u) ∈ [0, T ] × U , i.e.

sup
S

|f(t, x, u)| ≤ K and |f(t, x, u) − f(t, y, u)| ≤ c|x − y| ∀x, y ∈ R
n,

where c is some constant independent of (t, u).

(H2) l0 and L0 are nonnegative, bounded away from zero, continuous
functions on S and R

n respectively, and there exists a real-valued continuous
function b(x) on R

n such that

l0(t, x, u) ≤ b(x), ∀(t, x, u) ∈ S,

L0(x) ≤ b(x), ∀x ∈ R
n,

b(x)/l0(t, x, u) ∈ C(S), and b(x)/L0(x) ∈ C(Rn).
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(H3) There exist ε0 > 0 and c > 0 such that for all |s − t|, |x − y| < ε0,

|b(y) − b(x)| ≤ c|y − x|b(x),

|l0(t, x, u) − l0(s, y, u)| ≤ c(|y − x| + |t − s|)b(x),

|L0(y) − L0(x)| ≤ c|y − x|b(x);

without loss of generality we may take c to be the same as in (H1).

The dynamic programming equation (DPE). We write partial derivatives
as D0 := ∂/∂t and Di := ∂/∂xi for i = 1, . . . , n. Let b be as in (H2) and
define C1

b (Σ) as the Banach space consisting of all the functions ϕ ∈ Cb(Σ)
with partial derivatives Diϕ in Cb(Σ) for all i = 0, 1, . . . , n, with

(2.4) ‖ϕ‖1
b := ‖ϕ‖b +

n∑

i=0

‖Diϕ‖b < ∞.

For each ϕ ∈ C1
b (Σ), define Aϕ ∈ Cb(S) by

(2.5) Aϕ(t, x, u) := D0ϕ(t, x) + f(t, x, u) · ∇xϕ(t, x),

where ∇xϕ is the x-gradient of ϕ. Then A : C1
b (Σ) → Cb(S) is a linear

operator and it is obviously bounded, since

(2.6) ‖Aϕ‖b ≤ (1 + ‖f‖)‖ϕ‖1
b ∀ϕ ∈ C1

b (Σ).

Definition 2.3. A function ϕ in C1
b (Σ) is said to be a smooth subso-

lution to the dynamic programming equation (DPE) if

Aϕ + l0 ≥ 0 on [0, T ) × R
n × U, and ϕ(T, x) ≤ L0(x) ∀x ∈ R

n.

If ϕ is in C1
b (Σ) and (x(·),u(·)) ∈ P(t, x), then

d

dt
ϕ(t, x(t)) = Aϕ(t, x(t),u(t)),

so that

(2.7)

T\
t

Aϕ(s, x(s),u(s)) ds = ϕ(T, x(T )) − ϕ(t, x).

Therefore, if ϕ is a smooth subsolution to the DPE, then ϕ(t, x) ≤ J(t, x;u),
and we see that ϕ and the value function are related by the inequality

(2.8) ϕ(t, x) ≤ J∗(t, x).

3. The linear programming formulation. We will use the linear
programming terminology of [1], Chapter 3.

Dual pairs. Let b be the function in (H2)–(H3) and define the vector

space C̃(S) := Cb(S)×Cb(R
n), which consists of all pairs l̃ = (l, L) of func-

tions l ∈ Cb(S) and L ∈ Cb(R
n). (Note that condition (H2) implies that
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(l0, L0) ∈ C̃(S)). Moreover, let Db(S) and Db(R
n) be the dual spaces of

Cb(S) and Cb(R
n) respectively, and define D̃(S) as the vector space consist-

ing of pairs ξ̃ = (ξ1, ξ2) of functionals ξ1 ∈ Db(S) and ξ2 ∈ Db(R
n). Then

(C̃(S), D̃(S)) is a dual pair with respect to the bilinear form

〈ξ̃, l̃ 〉 := 〈ξ1, l〉 + 〈ξ2, L〉.

Let Mb(S) ⊂ Db(S) and Mb(R
n) ⊂ Db(R

n) be the spaces of measures
introduced in Remark 2.1. Then each admissible pair (x(·),u(·)) ∈ P(t, x)

defines a pair of measures M̃u = (Mu, Nu) in Mb(S)×Mb(R
n) by setting,

for l̃ ∈ C̃(S),

(3.1) 〈M̃u, l̃ 〉 = 〈Mu, l〉 + 〈Nu, L〉 =

T\
t

l(s, x(s),u(s)) ds + L(x(T )).

That is, Nu is the Dirac measure at x(T ), and Mu satisfies

Mu(A × B × C) =
\

[t,T ]∩A

IB(x(s))IC(u(s)) ds,

where A,B and C are arbitrary Borel sets in [t, T ], R
n and U respec-

tively. Note that condition (H1) implies that for each controlled process

x(t), 0 < t < T , defined by (2.1) belongs to a compact set. Thus 〈M̃u, l̃ 〉 is

well defined and finite for each l̃. Furthermore, if ϕ ∈ C1
b (Σ), we may write

(2.7) as

(3.2) 〈(Mu, Nu), (−Aϕ,ϕT )〉 = ϕ(t, x),

where ϕT (x) := ϕ(T, x), for x ∈ R
n, denotes the restriction of ϕ to {T}×R

n.
On the other hand, from (2.2)–(2.3),

(3.3) J∗(t, x) = inf
U(t)

〈(Mu,Nu), (l0, L0)〉.

We shall consider C̃(S) and D̃(S) to be endowed with the norms

‖l̃‖∗ = ‖(l, L)‖∗ = max{‖l‖b, ‖L‖b}

and

‖ξ̃‖∗ = ‖(ξ1, ξ2)‖∗ = max{‖ξ1‖b, ‖ξ2‖b}.

In addition to (D̃(S), C̃(S)), we also consider the dual pair (D1
b (Σ), C1

b (Σ)),
where D1

b (Σ) is the dual of C1
b (Σ).

Let L2 : C1
b (Σ) → C̃(S) be the linear map defined by

(3.4) L2ϕ := (−Aϕ,ϕT ), ϕ ∈ C1
b (Σ).

By (2.6), L2 is continuous. We now define L1 : D̃(S) → D1
b (Σ) as follows.

First, for every ξ̃ = (ξ1, ξ2) ∈ D̃(S), let T
ξ̃

be defined on C1
b (Σ) as T

ξ̃
(ϕ) =
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〈ξ̃,L2ϕ〉. Since L2 is a continuous linear map, so is T
ξ̃
. Therefore, there

exists a unique ν
ξ̃
∈ D1

b (Σ) such that

(3.5) T
ξ̃
(ϕ) = 〈ν

ξ̃
, ϕ〉 (= 〈ξ̃,L2ϕ〉).

As this holds for every ξ̃ ∈ D̃(S), we define L1 : D̃(S) → D1
b (Σ) as

(3.6) L1ξ̃ := ν
ξ̃

and note that L1 is the adjoint of L2, i.e., from (3.5),

(3.7) 〈L1ξ̃, ϕ〉 = 〈ξ̃,L2ϕ〉 ∀ξ̃ ∈ D̃(S), ϕ ∈ C1
b (Σ).

Moreover, from (3.7), (3.4) and (2.5), a direct calculation shows that

‖L1ξ̃‖
1
b = sup{|〈L1ξ̃, ϕ〉| : ‖ϕ‖1

b ≤ 1} ≤ (2 + ‖f‖)‖ξ̃‖∗.

Thus, L1 is a continuous linear map.

R e m a r k 3.1. Notation. Given a real vector space X with a positive
cone X+ we write x ≥ 0 whenever x ∈ X+. Let C̃(S)+ := {l̃ = (l, L) ∈

C̃(S) : l ≥ 0, L ≥ 0} be the natural positive cone in C̃(S), and

D̃(S)+ := {ξ̃ = (ξ1, ξ2) ∈ D̃(S) : 〈ξ̃, l̃ 〉 ≥ 0 ∀l̃ ∈ C̃(S)+}

the corresponding dual cone.

Linear programs. Let l̃0 be the pair (l0, L0) ∈ C̃(S), and let ν0 := δ(t,x) ∈
D1

b (Σ) be the Dirac measure concentrated at the initial condition (t, x) of
(2.1), that is, 〈ν0, ϕ〉 = ϕ(t, x) for ϕ ∈ C1

b (Σ). Consider now the following
linear program (P ) and its dual (P ∗).

(P ) minimize 〈ξ̃, l̃0〉, subject to:

(3.8) L1ξ̃ = ν0, ξ̃ ∈ D̃(S)+.

(P ∗) maximize 〈ν0, ϕ〉 [= ϕ(t, x)], subject to:

(3.9) L2ϕ ≤ l̃0, ϕ ∈ C1
b (Σ),

where the latter inequality is understood componentwise, i.e.,

−Aϕ ≤ l0 and ϕT ≤ L0.

Recall that ϕT (·) := ϕ(T, ·) is the restriction of ϕ to {T}×R
n. Let F (P )

(resp. F (P ∗)) be the set of feasible solutions to (P ) (resp. (P ∗)); i.e. F (P )

(resp. F (P ∗)) is the set of pairs ξ̃ = (ξ1, ξ2) in D̃(S) that satisfy (3.8) (resp.
the set of functions ϕ ∈ C1

b (Σ) that satisfy (3.9)).

Consistency. The linear program (P ) is said to be consistent if F (P )
is nonempty, and similarly for F (P ∗). The program (P ∗) is consistent,
since e.g. ϕ(·) ≡ 0 is in F (P ∗). On the other hand, (P ) is also consistent

since F (P ) contains the set of all pairs M̃u = (Mu,Nu) ≥ 0 such that
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(x(·),u(·)) ∈ P(t, x); see (3.1). Indeed, by (3.7), the equality L1M̃
u = ν0 in

(3.8) holds if and only if

〈M̃u,L2ϕ〉 = 〈(Mu, Nu), (−Aϕ,ϕT )〉 = ϕ(t, x) ∀ϕ ∈ C1
b (Σ),

which is the same as (3.2) for (ξ1, ξ2) = (Mu,Nu).
The latter also implies that, from (3.3),

J∗(t, x) = inf
U(t,x)

〈M̃u, l̃0〉 ≥ inf
F (P )

〈ξ̃, l̃0〉 =: inf(P ),

i.e. the value function J∗ and the value, inf(P ), of (P ) are related by

J∗(t, x) ≥ inf(P ).

Furthermore, denoting by sup(P ∗) the value of (P ∗), weak duality yields [1]

inf(P ) ≥ sup(P ∗);

hence,

(3.10) J∗(t, x) ≥ inf(P ) ≥ sup(P ∗).

4. Absence of duality gap. In this section we prove that there is no

duality gap (see (4.1)) and that (P ) is solvable. More precisely, we have the
following theorem.

Theorem 4.1. If the hypotheses (H1)–(H3) hold , then there is no duality

gap and (P ) is solvable, i.e.

(4.1) sup(P ∗) = inf(P ),

and there exists an optimal solution ξ̃∗ ∈ D̃(S) for (P ), so that

sup(P ∗) = min(P ) = 〈ξ̃∗, l̃0〉.

P r o o f. We use Theorems 3.10 and 3.22 of [1], which state that if (P )
is consistent with a finite value, and the set

(4.2) D := {(L1ξ̃, 〈ξ̃, l̃0〉) : ξ̃ ∈ D̃(S)+}

is closed in D1
b (Σ)× R, then there is no duality gap between (P ) and (P ∗),

and (P ) is solvable. Thus, since we have seen that (P ) is consistent, it
suffices to show that the set D in (4.2) is closed. Let Γ be a directed set,

and let {ξ̃γ = (ξ1γ , ξ2γ) : γ ∈ Γ} be a net in D̃(S)+ such that (L1ξ̃γ , 〈ξ̃γ , l̃0〉)
converges to (ν, r) in D1

b (Σ) × R, i.e.

(4.3) r = lim
Γ
〈ξ̃γ , l̃0〉

and

(4.4) ν = lim
Γ

L1ξ̃γ
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in the weak topology σ(D1
b (Σ), C1

b (Σ)). We wish to show that (ν, r) is in D,

i.e. there exists ξ̃ = (ξ1, ξ2) ∈ D̃(S)+ such that

(4.5) r = 〈ξ̃, l̃0〉 and ν = L1ξ̃.

By (4.3), given ε > 0, there exists γ(ε) ∈ Γ such that, for all γ ≥ γ(ε),

(4.6) r − ε ≤ 〈ξ̃γ , l̃0〉 = 〈ξ1γ , l0〉 + 〈ξ2γ , L0〉 ≤ r + ε.

Therefore, for any γ ≥ γ(ε) and l ∈ Cb(S),

|〈ξ1γ , l〉| ≤ 〈ξ1γ , |l|〉 ≤ ‖l‖b〈ξ1γ , b〉

≤ ‖l‖b〈ξ1γ , l0〉‖b/l0‖ by (H2)

≤ ‖l‖b‖b/l0‖(r + ε) by (4.6);

that is, {ξ1γ : γ ≥ γ(ε)} is a bounded family in Db(S). Similarly,
{ξ2γ : γ ≥ γ(ε)} is a bounded family in Db(R

n), since for all γ ≥ γ(ε)
and L ∈ Cb(R

n),

|〈ξ2γ , L〉| ≤ 〈ξ2γ , |L|〉 ≤ ‖L‖b〈ξ2γ , b〉

≤ ‖L‖b〈ξ2γ , L0〉‖b/L0‖ by (H2)

≤ ‖L‖b‖b/L0‖(r + ε) by (4.6).

Thus, {ξ̃γ : γ ≥ γ(ε)} is bounded and, therefore, there exists a directed set

Γ ′ ⊂ Γ and a pair ξ̃ = (ξ1, ξ2) such that {ξ̃γ : γ ∈ Γ ′} converges to ξ̃. This

convergence, together with (4.3), yields 〈ξ̃, l̃0〉 = r, whereas the continuity
of L1 and (4.4) give

L1ξ̃ = L1(lim
Γ ′

ξ̃γ) = lim
Γ ′

L1ξ̃γ = ν.

That is, (4.5) holds.

5. Equivalence of (P ) and the OCP. In this section we prove that
the original OCP (2.1)–(2.3) and the linear program (P ) are equivalent in
the sense of the following theorem.

Theorem 5.1. Assume (H1)–(H3). Then min(P ) = J∗(t, x).

Moreover, from (4.1) and Theorem 5.1, we obtain J∗(t, x) = sup(P ∗).
In other words:

Corollary. Under (H1)–(H3), the value function J∗ is the supremum

of the smooth subsolutions to the DPE.

In the proof of Theorem 5.1 we use the following key result, which is
proved in the next section.
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Theorem 5.2. For every ε > 0 there exist functions J̃ε, Lε and γε, with

J̃ε ∈ C1
b (Σ), such that

(5.1) ‖J̃ε − J∗‖b → 0 as ε → 0, J̃ε(T, x) = Lε(x),

(5.2) ‖L0 − Lε‖b → 0 as ε → 0,

(5.3) AJ̃ε + l0 ≥ γε,

where

(5.4) ‖γε‖b → 0 as ε → 0.

P r o o f o f T h e o r e m 5.1. From (3.10) and the solvability of (P )
(Theorem 4.1), we know that min(P ) ≤ J∗(t, x). Suppose that min(P ) <

J∗(t, x). Then there exists ξ̃ ∈ F (P ) such that

(5.5) 〈ξ̃, l̃0〉 < J∗(t, x).

Thus, from (5.3),

〈ξ̃, l̃0〉 ≥ 〈ξ1,−AJ̃ε + γε〉 + 〈ξ2, Lε〉 + 〈ξ2, L0 − Lε〉

≥ 〈ξ1,−AJ̃ε〉 + 〈ξ2, Lε〉 − ‖γε‖b‖ξ1‖b − ‖ξ2‖b‖L0 − Lε‖b

= 〈ξ̃,L2J̃ε〉 − ‖γε‖b‖ξ1‖b − ‖ξ2‖b‖L0 − Lε‖b

= 〈L1ξ̃, J̃ε〉 − ‖γε‖b‖ξ1‖b − ‖ξ2‖b‖L0 − Lε‖b

= J̃ε(t, x) − ‖γε‖b‖ξ1‖b − ‖ξ2‖b‖L0 − Lε‖b by (3.8).

From (5.1)–(5.2) and (5.4), it follows that J∗(t, x) ≤ 〈ξ̃, l̃0〉, which con-
tradicts (5.5).

6. Approximation of the value function. In this section we prove
the approximation Theorem 5.2. We will do this via several lemmas, from
which we obtain a particular approximation to the optimal cost function.
We first extend our control problem to a larger time interval.

Put

f(t, x, u) := f(0, x, u) and l0(t, x, u) := l0(0, x, u) if t < 0;

f(t, x, u) := f(T, x, u) and l0(t, x, u) := l0(T, x, u) if t > T.

For each ε > 0, define Σε := [−ε, T + ε] × R
n, Sε := Σε × U, and Uε(t) as

the set of Borel measurable functions u : [t, T + ε] → U , −ε ≤ t < T + ε.
Note that, thus defined, the extensions of l0 and f to Σε and Sε satisfy

(H1) and (H2).
Define

Jε(t, x;u) :=

T+ε\
t

l0(r, x(r),u(r)) dr + L0(x(T + ε)),
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where

(6.1)
ẋ(r) = f(r, x(r),u(r)), t < r ≤ T + ε,

x(t) = x.

The value function J∗
ε is defined as

J∗
ε (t, x) := inf

Uε(t)
Jε(t, x;u).

Note that ε = 0 yields the original OCP.
We shall now establish properties of the value function J∗

ε . Below, C
stands for a generic constant whose values may be different in different
formulas.

Lemma 6.1. There exists C such that for all ε < 1,

J∗
ε (t, x) ≤ Cb(x) ∀(t, x) ∈ Σε.

P r o o f. From (H3) it follows that

(6.2) b(y) ≤ b(x) (1 + c|y − x|) ≤ b(x)ec|x−y|

for all |x − y| < ε0. By induction, one can show the validity of (6.2) for all
x, y ∈ R

n. From (6.1) and (H1) we obtain, for each u ∈ Uε(t) and r ≥ t,

(6.3) |x(r) − x| ≤ K|r − t|.

Then, by (H2) and (6.2)–(6.3),

Jε(t, x;u) ≤

T+ε\
t

b(x(r)) dr + b(x(T + ε))

≤

T+ε\
t

b(x)ec|x(r)−x| dr + b(x)ec|x(T+ε)−x|

≤ b(x)
[ T+ε\

t

ecK|r−t| dr + ecK|T+ε−t|
]
≤ Cb(x).

Taking the infimum over Uε(t) yields the lemma.

Lemma 6.2. There exist ε1 > 0 and C > 0 such that for all ε < 1 and

|x − y|, |s − t| < ε1,

|J∗
ε (t, x) − J∗

ε (s, y)| ≤ C[|x − y| + |s − t|]b(x).

P r o o f. Assume t < s and let u ∈ Uε(t) be an arbitrary control function.
Put

ẋ1(r) = f(r, x1(r),u(r)), t < r ≤ T + ε, with x1(t) = x,

ẋ2(r) = f(r, x2(r),u(r)), s < r ≤ T + ε, with x2(s) = y.

Then
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(6.4) |Jε(t, x;u) − Jε(s, y;u)|

≤
∣∣∣

s\
t

l0(r, x1(r),u(r)) dr
∣∣∣

+
∣∣∣

T+ε\
s

[l0(r, x1(r),u(r)) − l0(r, x2(r),u(r))] dr
∣∣∣

+ |L0(x1(T + ε)) − L0(x2(T + ε))|

=: I1 + I2 + I3.

Using (6.2), (6.3) and (H2), we have

I1 ≤

s\
t

b(x1(r)) dr ≤

s\
t

b(x)ec|x1(r)−x| dr(6.5)

≤ b(x)

s\
t

ecK|r−t| dr ≤ b(x)ecK(T+2)(s − t).

We now majorize I2. From (6.3), |x1(s) − x| ≤ K|s − t|; hence

(6.6) |x1(s) − y| ≤ |x − y| + K|s − t|.

Consequently, by (H1),

(6.7) |x1(r) − x2(r)|

= |x1(s) − y| +

r\
s

|f(z, x1(z),u(z)) − f(z, x2(z),u(z))| dz

≤ |x − y| + K|t − s| +

r\
s

c|x1(z) − x2(z)| dz.

Thus, Gronwall’s inequality implies

(6.8) |x1(r) − x2(r)| ≤ [|x − y| + K|t − s|]ec|r−s|.

Taking ε1 < 1 such that (K +1)ε1e
c(T+2) < ε0 we have (see condition (H3))

I2 ≤

T+ε\
s

|l0(r, x1(r),u(r)) − l0(r, x2(r),u(r))| dr(6.9)

≤

T+ε\
s

b(x1(r))[|x − y| + K|t − s|]ec(T+ε−s) dr

≤ b(x)[|x − y| + K|t − s|]ec(T+2)
T+ε\

s

ec|x1(r)−x| dr
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≤ b(x)[|x − y| + K|t − s|]ec(T+2)
T+ε\
−ε

ecK|r−t| dr

= C[|x − y| + |t − s|]b(x).

Similarly, using (6.8), (6.2), (6.3) and (H3), we may majorize I3 as follows:

I3 = |L0(x1(T + ε)) − L0(x2(T + ε))|(6.10)

≤ cb(x1(T + ε))|x2(T + ε) − x1(T + ε)|

≤ cb(x)ec|x1(T+ε)−x|(|x − y| + K|t − s|)ec(T+ε−s)

≤ cb(x)ecK|T+ε−t|(|x − y| + |t − s|)(K + 1)ec(T+ε−s)

= Cb(x)(|x − y| + |t − s|).

Combining (6.4), (6.5), (6.9) and (6.10) and taking the supremum over
all control functions u(·), we complete the proof of the lemma, since

|J∗
ε (t, x) − J∗

ε (s, y)| ≤ sup
Uε(t)

|Jε(t, x;u) − Jε(s, y;u)|.

R e m a r k 6.3. From Lemma 6.2 it follows that J∗
ε is differentiable for

almost all (t, x) ∈ Σε, and |DiJ
∗
ε (t, x)| ≤ Cb(x), i = 0, 1, . . . , n.

Lemma 6.4. There exists C > 0 such that for all (t, x) ∈ Σ and all

sufficiently small ε > 0,

(6.11) |J∗
ε (t, x) − J∗(t, x)| ≤ Cεb(x).

P r o o f. Let 0 ≤ t ≤ T and let u(·) be any control function in Uε(t). Let

ẋ(r) = f(r, x(r),u(r)), t < r ≤ T + ε,

x(t) = x.

Then (H3) and the inequalities (6.2) and (6.3) show that for ε < 1,

(6.12) |Jε(t, x;u) − J(t, x;u)|

≤

T+ε\
T

l0(r, x(r),u(r)) dr + |L0(x(T + ε)) − L0(x(T ))|

≤

T+ε\
T

b(x)ec|x(r)−x| dr + cb(x(T ))|x(T + ε) − x(T )|

≤ b(x)ecK(T+ε)ε + cb(x)ec|x(T )−x|Kε

≤ b(x)ecK(T+ε)ε + cb(x)ecK|T−t|Kε ≤ Cεb(x).

Finally, as in the proof of Lemma 6.2, taking the supremum over all u(·),
we get (6.11).
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Lemma 6.5. There exist ε2 > 0 and C > 0 such that for any ε < ε2, any

initial condition (t, x), and any sufficiently small 0 < h < ε and u ∈ U ,

(6.13) J∗
ε (t, x) ≤ l0(t, x, u)h + J∗

ε (t + h, x + f(t, x, u)h) + Cεhb(x).

P r o o f. Let u ∈ U be fixed and let

ẋ(r) = f(r, x(r), u), t < r ≤ T + ε,

x(t) = x.

The dynamic programming principle [4, p. 9] implies

J∗
ε (t, x) ≤

t+h\
t

l0(r, x(r), u) dr + J∗
ε (t + h, x(t + h))(6.14)

=: I1 + I2.

Using (H3) and (6.3), we get

|I1 − l0(t, x, u)h| ≤

t+h\
t

|l0(r, x(r), u) − l0(r, x, u)| dr(6.15)

+

t+h\
t

|l0(r, x, u) − l0(t, x, u)| dr

≤

t+h\
t

c|x(r) − x|b(x) dr +

t+h\
t

cb(x)|r − t| dr

≤ cb(x)

t+h\
t

K|r − t| dr + cb(x)εh/2

≤ c(K + 1)εhb(x)/2.

By virtue of (H3), the inequality (6.15) is valid for h such that |x(r)−x| < ε0

for all t ≤ r ≤ t+h. This requirement is satisfied by choosing h ≤ ε ≤ ε0/K.
On the other hand, using Lemma 6.2, (H1) and (H3), we get

(6.16) |I2 − J∗
ε (t + h, x + f(t, x, u)h)|

≤ Cb(x)|x(t + h) − x − f(t, x, u)h|

≤ Cb(x)

t+h\
t

|f(r, x(r), u) − f(t, x, u)| dr

≤ Cb(x)
[ t+h\

t

|f(r, x(r), u) − f(r, x, u)| dr

+

t+h\
t

|f(r, x, u) − f(t, x, u)| dr
]
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≤ Cb(x)
[ t+h\

t

c|x(r) − x| dr + εh
]

= Cb(x)(cKh2/2 + εh) ≤ Cb(x)εh(cK/2 + 1).

In (6.16), h is chosen such that |f(r, x, u) − f(t, x, u)| < ε for r ∈ [t, t + h].
The inequalities (6.14)–(6.16) yield (6.13).

R e m a r k 6.6. From Remark 6.3 it follows that subtracting J∗
ε (t, x)

from both sides of (6.13), dividing by h and letting h → 0, we get

(6.17) 0 ≤ l0(t, x, u) + AJ∗
ε (t, x, u) + Cεb(x)

for almost all (t, x) ∈ Σε, and all u ∈ U .

We shall now use J∗
ε to construct a smooth approximation of J∗.

Let ̺ε(t, x) be an infinitely differentiable nonnegative function such that
̺ε(t, x) = 0 if |t| + |x| > ε and

∞\
−∞

\
Rn

̺ε(t, x) dx dt = 1.

For (t, x) ∈ Σ define the convolution

J̃ε(t, x) := ̺ε ∗ J∗
ε (t, x) =

t+ε\
t−ε

\
Bε(x)

̺ε(t − s, x − y)J∗
ε (s, y) dy ds(6.18)

=

+ε\
−ε

\
Bε(0)

̺ε(s, y)J∗
ε (t − s, x − y) dy ds,

where Bε(x) is the ball in R
n with radius ε and center x.

Lemma 6.7. J̃ε belongs to C1
b (Σ).

P r o o f. Continuous differentiability of J̃ε is obvious from its definition.
On the other hand, applying Lemmas 6.1 and 6.2 to J∗

ε , we see that

J̃ε(t, x) ≤ J∗
ε (t, x) + sup

|s−t|,|x−y|<ε

|J∗
ε (s, y) − J∗

ε (t, x)|(6.19)

≤ Cb(x) + 2Cεb(x) = (1 + 2ε)Cb(x).

Let ε1 be as in Lemma 6.2. From (6.18) we see that for each ε < ε1 and
each (t, x), (s, y) subject to |t − s|, |x − y| < ε,

|J̃ε(t, x) − J̃ε(s, y)|(6.20)

=
∣∣∣

ε\
−ε

\
Bε(0)

̺ε(r, z)[J∗
ε (t − r, x − z) − J∗

ε (s − r, y − z)] dz dr
∣∣∣
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≤

ε\
−ε

\
Bε(0)

̺ε(r, z)C(|s − t| + |x − y|)b(x) dz dr

= C(|s − t| + |x − y|)b(x).

Inequality (6.20) shows that

(6.21) |DiJ̃ε| ≤ Cb(x).

Combining (6.21) and (6.19), we get the statement of the lemma.

Lemma 6.8. ‖J̃ε − J∗‖b → 0 as ε → 0.

P r o o f. In view of Lemma 6.4, it is sufficient to show that

(6.22) ‖J∗
ε − J̃ε‖b → 0 as ε → 0.

From (6.18),

(6.23) |J̃ε(t, x) − J∗
ε (t, x)|

≤

ε\
−ε

\
Bε(0)

̺ε(r, z)|J∗
ε (t − r, x − z) − J∗

ε (t, x)| dz dr

≤

ε\
−ε

\
Bε(0)

̺ε(r, z) sup
|t−s|,|x−y|<ε

|J∗
ε (t − r, x − z) − J∗

ε (t, x)| dz dr

=

ε\
−ε

\
Bε(0)

̺ε(r, z) sup
|t−s|,|x−y|<ε

|J∗
ε (s, y) − J∗

ε (t, x)| dz dr

≤

ε\
−ε

\
Bε(0)

̺ε(r, z)[ sup
|t−s|,|x−y|<ε

C(|t − s| + |x − y|)b(x)] dz dr

≤ 2Cεb(x),

where the last inequality in (6.23) follows from Lemma 6.2.

To conclude this section, we shall use the previous lemmas to prove
Theorem 5.2.

P r o o f o f T h e o r e m 5.2. Let Lε(x) := J̃ε(x, T ). Then, from Lemma
6.8 and the equality J∗(x, T ) = L0(x), we have

(6.24) ‖J̃ε − J∗‖b → 0 and ‖Lε − L0‖b → 0 as ε → 0,

which proves (5.1)–(5.2). Now, from (6.17) it follows that

(6.25) 0 ≤ l0 ∗ ̺ε + (AJ∗
ε ) ∗ ̺ε + Cε(b ∗ ̺ε) on S.
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Thus, to complete the proof of the theorem it suffices to show that, as
ε → 0,

(i) ‖(AJ∗
ε ) ∗ ̺ε − AJ̃ε‖b → 0,

(ii) ‖l0 ∗ ̺ε − l0‖b → 0, and

(iii) ‖b ∗ ̺ε‖b < ∞.

Fix ε < ε2 (where ε2 is the same as in Lemma 6.5) and (t, x, u) ∈ S.
Then (i) follows from

(6.26)
1

b(x)
|(AJ∗

ε ) ∗ ̺ε(t, x, u) − AJ̃ε(t, x, u)|

=
1

b(x)

∣∣∣
n∑

i=1

ε\
−ε

\
Bε(0)

fi(t − r, x − z, u)DiJ
∗
ε (t − r, x − z)̺ε(r, z) dz dr

−

n∑

i=1

fi(t, x, u)DiJ̃ε(t, x)
∣∣∣

=
1

b(x)

n∑

i=1

∣∣∣
ε\
−ε

\
Bε(0)

[fi(t − r, x − z, u)

− fi(t, x, u)]DiJ
∗
ε (t − r, x − z)̺ε(r, z) dz dr

∣∣∣

≤
n∑

i=1

δ(fi)‖DiJ
∗
ε ‖b,

where δ(fi) denotes the modulus of continuity of fi.

We now prove (ii) using (H3):

(6.27)
1

b(x)
|l0 ∗ ̺ε(t, x, u) − l0(t, x, u)|

≤
1

b(x)

ε\
−ε

\
Bε(0)

|l0(t − r, x − z, u) − l0(t, x, u)|̺ε(r, z) dz dr

≤
1

b(x)

ε\
−ε

\
Bε(0)

cb(x)[|r| + |z|]̺ε(r, z) dz dr ≤ 2cε.

Finally, to prove (iii) we use (6.2):

(6.28)
1

b(x)

\
Bε(0)

b(x − z)̺ε(z) dz ≤
1

b(x)
b(x)

\
Bε(0)

̺ε(z)ec|z| dz = const.

Combining (6.25)–(6.28), we get the statement of the theorem.
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