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RECURRENCE RELATIONS
WITH PERIODIC COEFFICIENTS
AND CHEBYSHEV POLYNOMIALS

Abstract. We show that polynomials defined by recurrence relations
with periodic coefficients may be represented with the help of Chebyshev
polynomials of the second kind.

Introduction. The class of orthogonal polynomials studied in this pa-
per served as a starting point for several authors [1–4] when studying more
general classes of orthogonal polynomials or continued fractions. The aim
of this note is to show that, on the other hand, this class can be described
with the help of the classical Chebyshev polynomials.

Let {Pn}n, deg Pn = n, be a sequence of polynomials defined by a three-
term recurrence

(1)
∀n > 0 : Pn(z) = (z + bn−1)Pn−1(z)− an−1Pn−2(z),

P−1 ≡ 0, P0 ≡ 1,

where the coefficients are periodic with period p:

(2) ∀n ≥ 0 : an+p = an, bn+p = bn.

Note that for convenience we define a0 := ap. The case p = 1 immediately
leads to the classical Chebyshev polynomials. We will show that, for ar-
bitrary p, the polynomials Pn may also be expressed with the help of the
Chebyshev polynomials of the second kind. For the special case p = 2 and
bn = 0, such a representation has been given in [1, p. 91]. The case of
asymptotically periodic recurrence coefficients was studied in [2].

1991 Mathematics Subject Classification: 12D10, 33C25.
Key words and phrases: orthogonal polynomials, periodic coefficients of recurrence

relation.

[319]



320 B. Beckermann et al.

The results of the first section do not require any additional assumptions,
hence they remain valid also in the case of complex coefficients. In contrast,
for our main result of Section II we will restrict ourselves to the case of real
coefficients.

I. Some properties induced by the periodicity. In the considera-
tions to follow we will often omit the argument and write simply Pn instead
of Pn(z).

Property 1. The polynomial Pp−1 divides the polynomial P2p−1:

(3) ∀p > 0 : P2p−1(z) = Qp(z)Pp−1(z),

where

(4)

Q1(z) = P1(z),
Q2(z) = P2(z)− a0,

Qp(z) = Pp(z)− a0

[ p−2∏
i=1

(z + bi) + Rp−4(z)
]
, p ≥ 3,

and Rk is a polynomial of degree k (R−1 ≡ 0).

P r o o f. The case p = 1 is trivial. For p ≥ 2, using (1) and (2) we obtain∣∣∣∣∣ P2p−1 Pp

Pp−1 P0

∣∣∣∣∣ =

∣∣∣∣∣ (z + b2p−2)P2p−2 − a2p−2P2p−3 Pp

(z + bp−2)Pp−2 − ap−2Pp−3 P0

∣∣∣∣∣
= (z + bp−2)

∣∣∣∣∣ P2p−2 Pp

Pp−2 P0

∣∣∣∣∣− ap−2

∣∣∣∣∣ P2p−3 Pp

Pp−3 P0

∣∣∣∣∣ .

In the case p = 2, the first term vanishes, and the assertion follows immedi-
ately: ∣∣∣∣∣ P3 P2

P1 1

∣∣∣∣∣ = −a0

∣∣∣∣∣ P1 P2

0 1

∣∣∣∣∣ , that is, P3 = (P2 − a0)P1.

If p ≥ 3, we apply the recurrence relation (1) for P2p−2 and Pp−2, so that
together with the periodicity (2) the above expression can be rewritten as

[(z + bp−2)(z + bp−3)− ap−2]

∣∣∣∣∣ P2p−3 Pp

Pp−3 P0

∣∣∣∣∣− ap−3(z + bp−2)

∣∣∣∣∣ P2p−4 Pp

Pp−4 P0

∣∣∣∣∣ .

As before, for p = 3 the left hand term vanishes yielding the assertion,
whereas for p > 3 we continue to transform the left hand term by apply-
ing the recurrence relation (1) for P2p−3 and Pp−3. The assertion (3) for
arbitrary p follows after p− 1 such transformations.

Later we shall obtain a more general result than (3) (formula (14)):
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Property 1 (generalized). The polynomial Pp−1 divides the polynomial
Pkp−1 for any positive integer k.

Property 2.

(5) ∀n ≥ −1 :

∣∣∣∣∣ P2p+n(z) P2p−1(z)

Pp+n(z) Pp−1(z)

∣∣∣∣∣ = −aPp−1(z)Pn(z),

where a =
∏p−1

i=0 ai.

P r o o f. Property 2 will be shown by induction on n ≥ −1, the case
n = −1 is trivial. For n = 0, we get with the help of (1) and (2),∣∣∣∣∣ P2p P2p−1

Pp Pp−1

∣∣∣∣∣ =

∣∣∣∣∣ (z + bp−1)P2p−1 P2p−1

(z + bp−1)Pp−1 Pp−1

∣∣∣∣∣ + ap−1

∣∣∣∣∣ P2p−1 P2p−2

Pp−1 Pp−2

∣∣∣∣∣
= . . . =

p−1∏
i=0

ai

∣∣∣∣∣ Pp Pp−1

P0 P−1

∣∣∣∣∣ ≡ −aPp−1.

Supposing now that assertion (5) holds for n ≤ k, one obtains for n = k +1:∣∣∣∣∣ P2p+k+1 P2p−1

Pp+k+1 Pp−1

∣∣∣∣∣ = (z + bk)

∣∣∣∣∣ P2p+k P2p−1

Pp+k Pp−1

∣∣∣∣∣− ak

∣∣∣∣∣ P2p+k−1 P2p−1

Pp+k Pp−1

∣∣∣∣∣
= −a(z + bk)Pp−1Pk + aakPp−1Pk−1 = −aPp−1Pk+1.

Property 3.

(6) ∀n ≥ −1 : P2p+n(z) = Qp(z)Pp+n(z)− aPn(z).

This is clearly formula (5) modified by using (4). The similar result was
already derived in [2] and [3].

Property 4. Let the sequence of polynomials {Vn}n be defined by

(7) ∀n ≥ 0 : Vn+1(z) = zVn(z)− aVn−1(z), V−1 ≡ 0, V0 ≡ 1.

Then

(8) ∀n ≥ −1, ∀k ≥ 1 :
Pkp+n(z) = Pp+n(z)Vk−1[Qp(z)]− aPn(z)Vk−2[Qp(z)].

P r o o f. The assertion will be shown by induction on k ≥ 1. The case
k = 1 is trivial, and for k = 2 equation (8) coincides with (6). Suppose the
result is true for k and let us verify it for k + 1. Replacing n by n + p in (8)
yields

P(k+1)p+n(z) = Pkp+(n+p)(z)

= P2p+n(z)Vk−1[Qp(z)]− aPn+p(z)Vk−2[Qp(z)].

By (6) this equals
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[Qp(z)Pp+n(z)− aPn(z)]Vk−1[Qp(z)]− aPp+n(z)Vk−2[Qp(z)]

= Pp+n(z){Qp(z)Vk−1[Qp(z)]− aVk−2[Qp(z)]} − aPn(z)Vk−1[Qp(z)]

= Pp+n(z)Vk[Qp(z)]− aPn(z)Vk−1[Qp(z)],

leading to the result for k + 1.

II. A connection between the polynomials Pn and the Cheby-
shev polynomials of the second kind Un. In the sequel, the periodic
coefficients an are supposed to be positive, and bn real:

(9) ∃p ≥ 1, ∀n ≥ 0 : an+p = an > 0, bn+p = bn ∈ R.

The Chebyshev polynomials of the second kind Un are defined by the recur-
rence relation

(10) ∀n ≥ 0 : Un+1(x) = 2xUn(x)− Un−1(x), U−1 ≡ 0, U0 ≡ 1,

or, explicitly, by

Un(x) =
sin[(n + 1) arccos(x)]

sin[arccos(x)]
, x ∈ [−1,+1].

In fact, the polynomials Vn introduced in (7) coincide, up to a simple trans-
formation, with the Chebyshev polynomials of the second kind:

(11) Vn(x) = (
√

a)nUn

(
x

2
√

a

)
.

Therefore, equation (8) leads immediately to our main result:

Theorem. The polynomials Pj defined by the recurrence relation (1)
with coefficients satisfying the conditions (9) can be expressed as follows:

(12) ∀k ≥ 1, ∀n ≥ −1 :

Pkp+n(x) = (
√

a)k−1

{
Pp+n(x)Uk−1

[
Qp(x)
2
√

a

]
−
√

aPn(x)Uk−2

[
Qp(x)
2
√

a

]}
,

where Qp(x) = P2p−1(x)/Pp−1(x) is defined by (4) and a =
∏p−1

i=0 ai.

R e m a r k 1. As we have already mentioned in the introduction, for
the particular case p = 1, the polynomials Pk coincide, up to a simple
transformation, with the Chebyshev polynomials. More precisely, from (12)
with n = 0 we conclude that

Pk(x) = (
√

a)k−1

{
P1(x)Uk−1

[
P1(x)
2
√

a

]
−
√

aUk−2

[
P1(x)
2
√

a

]}
= (

√
a)k

{
2
P1(x)
2
√

a
Uk−1

[
P1(x)
2
√

a

]
− Uk−2

[
P1(x)
2
√

a

]}
,
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that is,

(13) Pk(x) = (
√

a)kUk

[
P1(x)
2
√

a

]
.

R e m a r k 2. Taking n = −1 in (12) leads to

(14) Pkp−1(x) = (
√

a)k−1Pp−1(x)Uk−1

[
Qp(x)
2
√

a

]
,

generalizing Property 1.

Conclusion. In the proof given above we have not required the part of
the condition (9) that the coefficients bj are assumed to be real. However,
this assumption completes the conditions on the coefficients of a three-term
recurrence (1) to generate a sequence of orthogonal polynomials. Finally, we
notice that the result of our Theorem may simplify the study of zeros of the
polynomials Pn since the zeros of the Chebyshev polynomials are explicitly
known.

References

[1] T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach,
1978.

[2] J. S. Geronimo and W. Van Assche, Orthogonal polynomials with asymptotically
periodic recurrence coefficients, J. Approx. Theory 46 (1986), 251–283.

[3] —, —, Approximating the weight function for orthogonal polynomials on several
intervals, ibid. 65 (1991), 341–371.

[4] H. S. Wal l, Analytic Theory of Continued Fractions, D. Van Nostrand, 1967.

BERNHARD BECKERMANN JACEK GILEWICZ AND ELIE LEOPOLD

LABORATOIRE D’ANALYSE NUMÉRIQUE PHYMAT
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