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AVERAGE COST MARKOV CONTROL PROCESSES
WITH WEIGHTED NORMS: VALUE ITERATION

Abstract. This paper shows the convergence of the value iteration (or
successive approximations) algorithm for average cost (AC) Markov control
processes on Borel spaces, with possibly unbounded cost, under appropriate
hypotheses on weighted norms for the cost function and the transition law.
It is also shown that the aforementioned convergence implies strong forms
of AC-optimality and the existence of forecast horizons.

1. Introduction. This paper deals with discrete-time Markov control
processes (MCPs) on Borel spaces, with possibly unbounded costs, and the
average cost (AC) criterion. Under suitable hypotheses on weighted norms
for the one-stage cost function and the transition law, our main result (The-
orem 2.6) shows the convergence of the value iteration (VI)—or successive
approximations—algorithm. This result, which is very important in itself
(see e.g. [1, 2, 5, 9, 11, 15, 16, 17] and their references for different types
of applications of the VI algorithm), it is shown to have significant conse-
quences, such as strong forms of AC-optimality (Corollaries 2.8, 2.9, 2.11)
and the existence of forecast horizons (Corollary 2.12).

This paper is basically a sequel to [4], where, in particular, the existence
of a solution to the Average Cost Optimality Equation (ACOE) is shown.
This is in fact our point of departure: After introducing the necessary as-
sumptions to obtain the ACOE (cf. Theorem 2.5), it is shown that an addi-
tional “topological recurrence” condition (cf. (2.19)) yields the convergence
of the VI algorithm. The proofs of Theorem 2.6 and its corollaries are pre-
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sented in Sections 3 and 4 respectively. To conclude the paper, we present
in Section 5 an example of a control system in which all the assumptions of
Theorem 2.6 are satisfied.

2. Assumptions and main results. The discrete-time Markov control
model (X,A,Q, c) we consider has been discussed by many authors, so our
review can be brief. Our notation generally follows the companion paper
[4], which also provides basic references on this topic.

The state space X and the action (or control) set A are both Borel
spaces. For each x ∈ X, A(x) denotes the set of feasible actions in x; A(x)
is a nonempty Borel subset of A. The set

(2.1) K := {(x, a) | x ∈ X, a ∈ A(x)}

is assumed to be a Borel subset ofX×A. The transition law Q is a stochastic
kernel on X given K, and the one-stage cost c is a real-valued measurable
function on K.

Assumption 2.1. (a) The cost c is nonnegative and a 7→ c(x, a) is l.s.c.
(lower semicontinuous) on A(x) for every x ∈ X; moreover, there exists a
measurable function v : X → R such that v := infX v(x) > 0,

sup
A(x)

c(x, a) ≤ v(x) ∀x ∈ X,(2.2a) ∫
X

v(y)Q(dy | x, a) <∞ ∀(x, a) ∈ K,(2.2b)

and the mapping

(2.2c) a→
∫
X

v(y)Q(dy | x, a)

is continuous on A(x) for every x ∈ X;
(b) A(x) is compact for every state x;
(c) a 7→ Q(B | x, a) is continuous on A(x) for every x ∈ X and B ∈ BX ,

where BX denotes the Borel σ-algebra of X.

Let ∆ be the class of all control policies and ∆0 the subclass of stationary
policies. We identify ∆0 with the family of all measurable functions f : X →
A such that f(x) ∈ A(x) for x ∈ X.

As in [4], if f ∈ ∆0, we write

(2.3) c(x, f(x)) =: c(x, f) and Q(· | x, f(x)) = Q(· | x, f) = Qf (· | x).

Let h : X → R be a given measurable function. Then for each δ ∈ ∆
and x ∈ X,
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(2.4) Jn(δ, x, h) := Eδ
x

[ n−1∑
t=0

c(xt, at) + h(xn)
]

is the expected n-stage cost when using the policy δ, given the initial state
x0 = x and the terminal cost function h. The optimal n-stage cost is

(2.5) J∗n(x, h) := inf
∆
Jn(δ, x, h).

If h(·) ≡ 0 we write

(2.6) Jn(δ, x, 0) := Jn(δ, x) and J∗n(x, 0) := vn(x).

The long-run expected average cost (AC) when using a policy δ, given the
initial state x0 = x, is

(2.7) J(δ, x) := lim sup
n→∞

1
n
Jn(δ, x).

A policy δ∗ is said to be AC-optimal if

(2.8) J(δ∗, x) = inf
∆
J(δ, x) =: J∗(x) ∀x ∈ X,

and J∗ thus defined is called the optimal AC-function.
To obtain AC-optimal policies we impose the following two assumptions.

Assumption 2.2. For every stationary policy f ∈ ∆0 the (state) Markov
process defined by the stochastic kernel Qf in (2.3) is positive Harris-
recurrent [12], i.e., it is Harris-recurrent and has an invariant probability
measure qf :

(2.9) qf (B) =
∫
X

Qf (B | x) qf (dx) ∀B ∈ BX .

Assumption 2.3. There exists a probability measure ν on X and a
nonnegative number α < 1 for which the following holds: For every f ∈ ∆0

there exists a nonnegative function hf ≤ 1 on X such that for all x ∈ X
and B ∈ BX :

(a) Qf (B | x) ≥ hf (x)ν(B);
(b)

∫
X
v(y)Qf (dy | x) ≤ hf (x)‖ν‖v + αv(x), where v is the function in

(2.2) and

‖ν‖v :=
∫
X

v(x) ν(dx) <∞;

(c) inf∆0

∫
X
hf (x) ν(dx) =: γ > 0.

Let Φv be the normed linear space of all measurable functions φ on X
with

(2.10) ‖φ‖v := sup
X

| φ(x) |
v(x)

<∞.
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Under Assumptions 2.1–2.3 it is shown in [4, Theorem 2.6] that there
exist a constant %∗ ≥ 0, a function φ∗ ∈ Φv and a stationary policy f∗ such
that

%∗ + φ∗(x) ≥ min
A(x)

[
c(x, a) +

∫
X

φ∗(y)Q(dy | x, a)
]

(2.11)

= c(x, f∗) +
∫
X

φ∗(y)Q(dy | x, f∗) ∀x ∈ X,

and

(2.12) J(f∗, x) = J∗(x) = %∗ ∀x ∈ X.
In other words, the pair (%∗, φ∗) is a solution of the so-called average cost op-
timality inequality (ACOI) (2.11), while (2.12) states that f∗ is AC-optimal
and that the optimal AC-function is the constant %∗.

To get equality in (2.11) we need an additional assumption, where we
use the following notation: If d1 and d2 denote the metrics on X and A
respectively, we define a metric d on K as

d((x, a), (x′, a′)) := max{d1(x, x′), d2(a, a′)}
for all (x, a) and (x′, a′) in K. Furthermore, Ψ denotes the class of all
nondecreasing functions ψ : [0,∞) → [0,∞) such that ψ(s) → 0 as s ↓ 0.

Assumption 2.4. (a) The compact-valued multifunction x 7→ A(x) is
continuous with respect to the Hausdorff metric;

(b) for each x ∈ X, there exist functions ψc
x and ψQ

x in Ψ such that for
all a ∈ A(x) and (x′, a′) ∈ K:

(i) |c(k)− c(k′)| ≤ ψc
x[d(k, k′)], and

(ii) ‖Q(· | k)−Q(· | k′)‖v ≤ ψQ
x [d(k, k′)],

where k := (x, a), k′ := (x′, a′), and, for any finite signed measure µ on X,

(2.13) ‖µ‖v :=
∫
X

v(x)|µ|(dx),

with |µ| := total variation of µ.

R e m a r k. If the compact sets A(x) do not depend on x, i.e., A(x) ≡ A
for all x in X, then Assumption 2.4 may be replaced by the following:

Assumption 2.4′. For each x in X there exist functions ψc
x and ψQ

x such
that for all x′ ∈ X:

(i) supA |c(x, a)− c(x′, a)| ≤ ψc
x[d1(x, x′)], and

(ii) supA ‖Q(· | x, a)−Q(· | x′, a)‖v ≤ ψQ
x [d1(x, x′)].

Then Theorem 2.8 of [4] states the following:

Theorem 2.5. If Assumptions 2.1–2.4 hold , then:
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(a) There exists a canonical triplet (%∗, φ∗, f∗), where %∗ ≥ 0 is a con-
stant , φ∗ is a continuous function in Φv, and f∗ is a stationary policy ; that
is, (%∗, φ∗, f∗) satisfies the average cost optimality equation (ACOE ):

%∗ + φ∗(x) = min
A(x)

[
c(x, a) +

∫
X

φ∗(y)Q(dy | x, a)](2.14)

= c(x, f∗) +
∫
X

Q∗(y)Q(dy | x, f∗) ∀x ∈ X;

(b) (2.12) holds true, i.e., f∗ is AC-optimal and the constant %∗ is the
optimal AC-function.

Equivalently (see e.g. [4, 8, 9, 11]), Theorem 2.5(a) says that for every
x ∈ X and n = 1, 2, . . . ,

(2.15) Jn(f∗, x, φ∗) = J∗n(x, φ∗) = n%∗ + φ∗(x),

where Jn and J∗n are the functions defined in (2.4)–(2.6).
In [4] we obtained Theorem 2.5 by the so-called “vanishing discount” ap-

proach in which the AC problem is studied via β-discounted cost problems in
the limit as β ↑ 1. In contrast, basically the main problem we are concerned
with in this paper is to obtain (%∗, φ∗(·)) in (2.14) by the value iteration
(VI) algorithm, which is the following. Let vn be the optimal n-stage cost
in (2.6), i.e.,

(2.16) vn(x) := inf
∆
Jn(δ, x), x ∈ X, n ≥ 1; v0(·) := 0,

and let z ∈ X be an arbitrary (but fixed) state. Define a sequence of
constants jn and a sequence of functions φn as

(2.17) jn := vn(z)− vn−1(z) and φn(x) := vn(x)− vn(z), x ∈ X.
Then the VI algorithm is said to converge if, as n→∞,

(2.18) jn → %∗ and φn(x) → φ∗(x) ∀x ∈ X.
The following result states that (2.18) holds under the hypotheses of The-
orem 2.5 and the additional condition (2.19) in which qf , f ∈ ∆0, is the
probability measure in Assumption 2.2.

Theorem 2.6. If Assumptions 2.1–2.4 hold and , in addition, f∗ is such
that

(2.19) qf∗(U) > 0 for each nonempty open set U ⊂ X,

then the VI algorithm converges and , moreover , the convergence φn → φ∗

in (2.18) is uniform on compact sets.

R e m a r k. An obvious sufficient condition for (2.19) is that Q(U | x, a)
> 0 for every open set U ⊂ X, x ∈ X and a ∈ A(x). Other sufficient
conditions may be found, e.g., in [10].
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Theorem 2.6 has important consequences. To state them, let us first
recall the following definitions (cf. [8, 9, 11]).

Definition 2.7. A policy δ∗ is said to be:

(a) strong AC-optimal if

J(δ∗, x) ≤ lim inf
n→∞

Jn(δ, x)
n

∀δ ∈ ∆, x ∈ X;

(b) F-strong AC-optimal (“F” for Flynn—see [3]) if

lim
n→∞

Jn(δ∗, x)− vn(x)
n

= 0 ∀x ∈ X.

Corollary 2.8. Under the hypotheses of Theorem 2.6:

(a) limn→∞ vn(x)/n = %∗ for all x ∈ X; in fact ,

(2.20)
∣∣∣∣vn(x)

n
− %∗

∣∣∣∣ ≤ c1
v(x)
n

for all n ≥ 1, x ∈ X, and some constant c1;
(b) the canonical policy f∗ in (2.14)–(2.15) is F-strong AC-optimal ;
(c) J(f∗, x) := lim supn→∞ Jn(f∗, x)/n = limn→∞ Jn(f∗, x)/n = %∗

for all x ∈ X;
(d) f∗ is strong AC-optimal.

On the other hand, from elementary Dynamic Programming (see e.g.
[1, 2, 9]) it is well known that, under Assumption 2.1, the functions vn in
(2.16) can be iteratively obtained as

(2.21) vn(x) = min
A(x)

[
c(x, a) +

∫
X

vn−1(y)Q(dy | x, a)
]

for all x ∈ X and n = 1, 2, . . . , with v0(·) := 0, which, incidentally, motivates
the name of value iteration (VI) functions for the vn. Moreover—again
under Assumption 2.1 (cf. e.g. Lemma 4.2 in [4])—for every n ≥ 1 there
exists a stationary policy fn ∈ ∆0 such that fn(x) ∈ A(x) realizes the
minimum in (2.21) for all x in X, i.e.,

(2.22) vn(x) = c(x, fn) +
∫
X

vn−1(y)Q(dy | x, fn) ∀x ∈ X.

The fn form a sequence that “converges” to a canonical policy f̂ ∈ ∆0 in
the following sense.

Corollary 2.9. Under the hypotheses of Theorem 2.6 there exists a
stationary policy f̂ such that :

(a) for every x ∈ X, f̂(x) is an accumulation point of {fn(x)};
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(b) f̂ is AC-optimal and (%∗, φ∗, f̂) is a canonical triplet , i.e., (2.14)–
(2.15) hold when f∗ is replaced by f̂ .

It also turns out that the “VI policies” fn are asymptotically optimal in
the sense of (2.25) below. To state this in precise terms, let us first note
the following result (proved in Section 3), which in fact is also used to prove
Theorem 2.6.

Lemma 2.10. Under Assumptions 2.1–2.3, for every stationary policy
f ∈ ∆0 the average cost J(f, ·) is a constant J(f) given by

(2.23) J(f, x) = J(f) :=
∫
X

c(y, f) qf (dy) ∀x ∈ X.

Then we have (with ‖ · ‖v being the norm in (2.10)):

Corollary 2.11. Suppose that the hypotheses of Theorem 2.6 hold and ,
moreover , the convergence φn → φ∗ in (2.18) is such that , as n→∞,

(2.24) ‖φn − φ∗‖v → 0.

Then

(2.25) J(fn) → %∗.

Finally, we give conditions for the existence of forecast horizons N , which
is an important issue in some applications (see e.g. [6, 13]).

Corollary 2.12. Suppose that Assumptions 2.1–2.4 hold and let
(%∗, φ∗, f∗) be as in Theorem 2.5. Also suppose that , for every x in X,
the control constraint set A(x) is finite and , moreover , f∗(x) is the unique
minimizer of (2.14). Then for any initial state x ∈ X there exists an integer
N such that fn(x) = f∗(x) for n ≥ N ; that is, in (2.22) we have

vn(x) = c(x, f∗) +
∫
X

vn−1(y)Q(dy | x, f∗) ∀n ≥ N.

In Section 5 we show an example in which the hypotheses of Theorem 2.6
are all true. First, the theorem itself and its corollaries are proved in Sec-
tions 3 and 4 respectively.

3. Proof of Theorem 2.6. The main idea behind the proof of Theorem
2.6 is basically the same originally used by White [17] (cf. [5, 9, 11, 16]).
Namely, one considers the “error” functions

(3.1) en(x) := n%∗ + φ∗(x)− vn(x), x ∈ X, n = 0, 1, . . . ,

with (%∗, φ∗(·)) and vn as in (2.14)–(2.15) and (2.6) respectively. Then the
idea is to show that en converges uniformly on compact sets to a constant,
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say c2, i.e.,

(3.2) lim
n→∞

en(x) = c2 ∀x ∈ X.

Finally, with z as in (2.17) and observing that the function φ∗ can be chosen
so that φ∗(z) = 0 (see [4, Remark 5.3]) we may rewrite φn and jn as

(3.3) φn(x) = φ∗(x)− (en(x)− en(z))

and

(3.4) jn = %∗ − (en(z)− en−1(z));

thus (3.2) implies (2.18).
The remainder of this section is dedicated to proving (3.2), but, first,

as a further motivation for the proof, note that (2.21) can be equivalently
written as

(3.5) jn + φn(x) = min
A(x)

[
c(x, a) +

∫
X

φn−1(y)Q(dy | x, a)
]
,

which is of the same form as the ACOE (2.14). This clearly suggests that
(2.18) should yield the ACOE in the limit as n→∞.

Lemma 3.1. Suppose that Assumptions 2.1–2.3 hold. Then there are
constants c3, c4 and c5 such that for all x ∈ X and n = 0, 1, . . .:

(a) sup∆0
Ef

xv(xn) ≤ c3v(x);
(b) sup∆0

Ef
x |φ∗(xn)| ≤ c4v(x);

(c) supn ‖en‖v ≤ c4;
(d) supn ‖φn‖v ≤ c5.

P r o o f. Let f ∈ ∆0 be an arbitrary policy and x ∈ X an arbitrary
initial state.

(a) By the Markov property and Assumption 2.3(b),

Ef [v(xn)|x0, . . . , xn−1] =
∫
X

v(y)Qf (dy | xn−1)

≤ hf (xn−1)‖ν‖v + αv(xn−1).
Hence

Ef
xv(xn) ≤ ‖ν‖v + αEf

xv(xn−1).

Iteration of this inequality yields

Ef
xv(xn) ≤ ‖ν‖v(1 + . . .+ αn−1) + αnv(x)

≤ ‖ν‖v

1− α
+ v(x)

≤ c3v(x), with c3 :=
‖ν‖v

(1− α)v̄
+ 1.

Since c3 is independent of f and x, we obtain (a).
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(b) Ef
x |φ∗(xn)| ≤ ‖φ∗‖vE

f
xv(xn) ≤ c3‖φ∗‖vv(x), which yields (b) with

c4 := c3‖φ∗‖v.

(c) Note that, from (2.15) and (2.4)–(2.5), we may rewrite en in (3.1) as

en(x) = Jn(f∗, x, φ∗)− vn(x)
= Jn(f∗, x) + Ef∗

x φ∗(xn)− vn(x)(3.6)
= inf

∆
Jn(δ, x, φ∗)− vn(x)

= inf
∆

[Jn(δ, x) + Eδ
xφ

∗(xn)]− vn(x).(3.7)

Since vn(x) ≤ Jn(f∗, x) (see (2.6)), (3.6) and part (b) yield

en(x) ≥ Ef∗

x φ∗(xn) ≥ −c4v(x) ∀x ∈ X, n ≥ 0.

Similarly, from (3.7),

en(x) ≤ inf
∆
Jn(δ, x) + sup

∆0

Ef
xφ

∗(xn)− vn(x)

= sup
∆0

Ef
xφ

∗(xn) ≤ c4v(x) ∀x ∈ X, n ≥ 0.

Hence, |en(x)| ≤ c4v(x) for x ∈ X and n ≥ 0, which proves (c).
(d) From (c), |en(z)| ≤ c4v(z) ≤ v(z)v(x)/v for n ≥ 0, with v :=

infx v(x) > 0 (see Assumption 2.1(a)). Therefore, part (d) follows from
(c) and (3.3), with c5 := ‖φ∗‖v + c4(1 + v(z)/v).

Lemma 3.2. Under Assumptions 2.1–2.4, the family of functions {φn :
n = 0, 1 . . .} (hence {en, n = 0, 1, . . .}) is pointwise bounded and equicontin-
uous on X.

P r o o f. Pointwise boundedness of {φn} follows from Lemma 3.1(d) since
|φn(x)| ≤ c5v(x) for every x ∈ X and all n. On the other hand, from (3.5),

φn(x) = −jn + min
A(x)

[
c(x, a) +

∫
X

φn−1(y)Q(dy | x, a)
]
.

Therefore, using Lemma 3.1(d) again, the equicontinuity of {φn} follows
from Lemma 6.1 of [4].

Finally, the pointwise boundedness of {en} follows from Lemma 3.1(c),
whereas from (3.3),

|en(x)− en(y)| ≤ |φ∗(x)− φ∗(y)|+ |φn(x)− φn(y)| ∀x, y ∈ X,

so that the equicontinuity of {en} follows from that of {φn} and the conti-
nuity of φ∗ (see Theorem 2.5).

We will next prove a result that implies Lemma 2.10.
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Lemma 3.3. Under Assumptions 2.1–2.3, there exist positive constants c
and η, with η < 1, such that

(3.8) sup
∆0

∣∣∣∣Jn(f, x)
n

− J(f)
∣∣∣∣ ≤ cv(x)

n(1− η)

for all x ∈ X and n = 1, 2, . . . , with J(f) as in (2.23).

R e m a r k 3.4. (3.8) implies that in (2.7) we may replace “lim sup” by
“lim” if δ is a stationary policy, i.e., for every f ∈ ∆0 and x ∈ X:

(3.9) J(f, x) = lim
n→∞

Jn(f, x)
n

= J(f).

P r o o f o f L e m m a 3.3. Under Assumptions 2.2 and 2.3, [4, Lemma
3.4] shows the existence of constants c > 0 and 0 < η < 1 satisfying

(3.10) sup
∆0

‖Qt(· | x, f)− qf‖v ≤ cv(x)ηt

for all x ∈ X and t = 0, 1, . . . , where we have used the notation (2.13), and
‖qf‖v <∞. Hence,∣∣∣∣Jn(f, x)

n
− J(f)

∣∣∣∣ =
∣∣∣∣ 1
n

n−1∑
t=0

Ef
xc(xt, f)−

∫
X

c(y, f) qf (dy)
∣∣∣∣

≤ 1
n

n−1∑
t=0

∣∣∣ ∫
X

c(y, f) [Qt(dy | x, f)− qf (dy)]
∣∣∣.

Thus, since supX c(x, f)/v(x) ≤ 1 for all f ∈ ∆0 (see (2.2a)),∣∣∣∣Jn(f, x)
n

− J(f)
∣∣∣∣ ≤ 1

n

n−1∑
t=0

‖Qt(· | x, f)− qf‖v.

This inequality and (3.10) yield (3.8).

Finally, to complete the proof of Theorem 2.6 we have:

Lemma 3.5. Under the hypotheses of Theorem 2.6, there exists a constant
c2 for which (3.2) holds and the convergence is uniform on compact sets.

P r o o f. By Lemma 3.2 (on {en}) and the Ascoli Theorem (see e.g. [14],
p. 179) there is a subsequence {en(i)} of {en} and a continuous function u
such that

(3.11) lim
i→∞

en(i)(x) = u(x) ∀x ∈ X,

and the convergence is uniform on compact sets. Moreover, by Lemma
3.1(c), u is in Φv.
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On the other hand, a straightforward induction argument (cf. [11,
Lemma 5.4] or [9, Lemma 5.6.5]) yields

(3.12)
∫
X

en(y)Qm(dy | x, f∗) ≤ en+m(x)

for every x ∈ X and n,m ≥ 0. Now in (3.12) fix n and let m→∞ through
values of m for which (3.11) holds. This, together with (3.10), implies∫

X

en(y) qf∗(dy) ≤ u(x) ∀x ∈ X.

Now replace n by n(i) and let i→∞ to obtain, by the Dominated Conver-
gence Theorem (recall Lemma 3.1(c)),∫

X

u(y) qf∗(dy) ≤ u(x) ∀x ∈ X.

Therefore,
∫

X
u(y) qf∗(dy) = c2, where c2 := infX u(x); or, equivalently,∫

X

[u(y)− c2] qf∗ (dy) = 0.

As u(·) − c2 ≥ 0, we see that u(x) = c2 for qf∗ -almost all x ∈ X, i.e.,
qf∗(U) = 0, where U := {x : u(x) > c2}. Observe that U is an open set,
since u(·) is continuous; hence, by (2.19), U is empty. In other words,

(3.13) u(x) = c2 for all x ∈ X.

Summarizing, (3.11) and (3.13) show that the subsequence {en(i)} sat-
isfies the conclusion of the lemma. Furthermore, a completely similar argu-
ment shows that any subsequence of {en} has in turn a subsequence con-
verging uniformly on compact sets to a constant c′2, which necessarily—using
(3.12) again—equals c2. Hence {en} itself converges to c2 uniformly on com-
pact sets.

Lemma 3.5 completes the proof of Theorem 2.6.

4. Proofs of the corollaries

P r o o f o f C o r o l l a r y 2.8. (a) From (3.1) and Lemma 3.1(c), for all
x ∈ X and n ≥ 1,∣∣∣∣vn(x)

n
− %∗

∣∣∣∣ ≤ |φ∗(x)|+ |en(x)|
n

≤ c1v(x)
n

for some constant c1.
(b) From (3.6) and Lemma 3.1(b), (c),

0 ≤ Jn(f∗, x)− vn(x) ≤ |en(x)|+ Ef∗

x |φ∗(xn)| ≤ 2c4v(x);



230 E. Gordienko and O. Hernández-Lerma

hence

(4.1) 0 ≤ Jn(f∗, x)− vn(x)
n

≤ 2c4v(x)
n

.

(c) From (2.15), Jn(f∗, x)−n%∗=φ∗(x)−Ef∗

x φ∗(xn). Thus Lemma 3.1(b)
yields

(4.2)
∣∣∣∣Jn(f∗, x)

n
− %∗

∣∣∣∣ ≤ c6v(x)
n

for some constant c6, which proves (c).
Moreover, from Lemma 3.3 (see also (3.9)),

(4.3) J(f∗, x) = %∗ =
∫
X

c(y, f∗) qf∗(dy) ∀x ∈ X.

(d) From parts (c) and (b) and the definition of vn in (2.6),

J(f∗, x) = lim inf
Jn(f∗, x)

n
= lim inf

vn(x)
n

≤ lim inf
Jn(δ, x)

n
∀δ ∈ ∆ and x ∈ X.

P r o o f o f C o r o l l a r y 2.9. The existence of f̂ ∈ ∆0 satisfying part
(a) is ensured by Schäl’s [15, Proposition 12.2], and the proof that f̂ satisfies
(b) can be done as in the proofs of [7, Theorem 4.2] or [11, Theorem 6.1].

P r o o f o f C o r o l l a r y 2.11. Let D be the AC-discrepancy function
defined as

(4.4) D(x, a) := c(x, a) +
∫
X

φ∗(y)Q(dy | x, a)− φ∗(x)− %∗

for all x ∈ X and a ∈ A(x). Observe that we can write the ACOE (2.14) as

min
A(x)

D(x, a) = 0 ∀x ∈ X,

so that, in particular, D is a nonnegative function.
If f is a stationary policy we write D(x, f) := D(x, f(x)), x ∈ X.
For any stationary policy f ∈ ∆0, (2.9) and (2.23) yield

(4.5)
∫
X

D(y, f) qf (dy) = J(f)− %∗.

On the other hand, integration with respect to qf in Assumption 2.3(b)
shows that

(4.6)
∫
X

v(y) qf (dy) ≤ b0 with b0 :=
‖ν‖v

1− α
.
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Thus, combining (4.5)–(4.6),

(4.7) 0 ≤ J(f)− %∗ ≤ ‖D(·, f)‖v

∫
X

v(y) qf (dy) ≤ b0‖D(·, f)‖v.

Now, let fn ∈ ∆0 be as (2.22) or, equivalently, from (3.5), for all x ∈ X,

(4.8) jn + φn(x) = c(x, fn) +
∫
X

φn−1(y)Q(dy | x, fn).

Then, from (4.4) and (4.8),

D(x, fn)(4.9)

= c(x, fn) +
∫
X

φ∗(y)Q(dy | x, fn)− φ∗(x)− %∗

= (jn − %∗) + (φn(x)− φ∗(x))−
∫
X

(φn−1(y)− φ∗(y))Q(dy | x, fn)

≤ |jn − %∗|+ ‖φn − φ∗‖vv(x) + ‖φn−1 − φ∗‖v

∫
X

v(y)Q(dy | x, fn).

Note also that Assumption 2.3(b) yields that
∫

X
v(y)Q(dy | x, fn) is bounded

above by v(x) times a constant independent of n. Hence (4.9), (2.24) and
(2.18) imply ‖D(·, fn)‖v → 0 as n → ∞, which combined with (4.7) yields
(2.25), i.e.,

0 ≤ J(fn)− %∗ ≤ b0‖D(·, fn)‖v → 0 as n→∞.

Finally, to conclude this section we observe that the proof of Corol-
lary 2.12 is—except for minor, obvious changes—the same as the proof of
Theorem 4.4 in [6].

5. Example. In this section we consider a particular control system of
the form

(5.1) xt+1 = (xt + atηt − ξt)+, t = 0, 1, . . . , x0 = x given,

with state space X = [0,∞), and give conditions under which all the hy-
potheses of Theorem 2.6 hold true.

The model (5.1) appears in several application areas. For instance, in
inventory theory (cf. [1, 2, 9]), ηt = 1 for all t, and xt denotes the stock level
at time t; the control variable at is the amount ordered (or produced) in the
interval [t, t + 1), and ξt denotes the demand in [t, t + 1). The model also
appears in a single server queueing system of general type GI/GI/1 with
controllable service rates. In this case, which is the particular application
we have in mind, xt and ηt denote, respectively, the waiting time and a
“base” service time of the tth customer (t = 0, 1, . . .), whereas ξt denotes
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the interarrival time between the tth and (t+ 1)th customers; at stands for
the reciprocal of the service rate ut (i.e., ut := 1/at) for the tth customer.

Throughout the following we suppose:

Assumption 5.1. (a) {ηt} and {ξt} are independent sequences of non-
negative i.i.d. (independent and identically distributed) random variables;

(b) A(x) = A for all x ∈ X where A is a compact subset of the interval
(0, θ] for some (finite) number θ;

(c) the random variable ζ = θη−ξ, where η and ξ denote generic random
variables distributed as η0 and ξ0 respectively, satisfies:

(5.2) (i) E(ζ) < 0 and (ii) Eeq̄ζ <∞
for some number q > 0;

(d) η and ξ have bounded densities %1 and %2 respectively, continuous
on [0,∞).

Observe that (5.2) implies

(5.3) α := Eeqζ < 1 for some 0 < q ≤ q,

since the moment generating function g(z) := Eezζ is such that g(0) = 1
and g′(0) = E(ζ) < 0. The number α in (5.3) can be explicitly computed
in some specific cases. For instance, if η and ξ are exponentially distributed
with mean values E(η) = 1/η and E(ξ) = 1/ξ, then

(5.4) α =
[

η

η − qθ

][
ξ

ξ + q

]
and α < 1 if q < η/θ − ξ.

On the other hand, by Assumption 5.1(b) and the Remark following
Assumption 2.4, we may restrict ourselves to verifying Assumption 2.4′ (in-
stead of 2.4). Thus we shall suppose:

Assumption 5.2. The one-stage cost c is a nonnegative measurable
function such that, for every x ∈ X, c(x, ·) is l.s.c. on A and, moreover,

(5.5) sup
A
c(x, a) ≤ v(x) with v(x) = ceqx,

where q is the number in (5.3) and c is some positive constant. In addition,
c satisfies Assumption 2.4′(i).

We will now proceed to verify Assumptions 2.1–2.3 and 2.4′. We begin
with the following.

Proposition 5.3. Assumptions 5.1(a), (b) and (c)(i) imply Assump-
tion 2.2.

P r o o f. In (5.1) let at = θ for all t and call the corresponding Markov
process {xθ

t }, i.e., xθ
t+1 = (xθ

t + ζ)+, t = 0, 1, . . . , with ζ as in Assump-



Average cost Markov processes 233

tion 5.1(c). Then the condition (i) in (5.2) implies that {xθ
t } is positive

Harris-recurrent (see e.g. [12, Example 5.2]). The latter, in turn, implies
that E(τθ) < ∞, where τθ denotes the time of first return to x = 0 given
the initial state x0 = 0.

Now let f ∈ ∆0 be an arbitrary stationary policy and denote by {xf
t }

the corresponding Markov process given by (5.1) when at = f(xt) for all
t. Let τf be the time of first return of {xf

t } to x = 0, given xf
0 = 0. By

Assumption 5.1(b), f(x) ≤ θ for all x in X and, therefore, xf
t ≤ xθ

t for
t = 0, 1, . . . Hence

E(τf ) ≤ E(τθ) <∞,

so that (by Corollary 5.3 of [12]) {xf
t } is positive Harris-recurrent. As f in

∆0 was arbitrary, we obtain Assumption 2.2.

To verify Assumption 2.3 let us, first, note that

Q((−∞, y] | x, a) := P (xt+1 ≤ y | xt = x, at = a)(5.6)
= P (x+ aη − ξ ≤ y).

Hence
Q((−∞, 0] | x, a) = P (x+ aη − ξ ≤ 0)

and
Q(B | x, a) = P (x+ aη − ξ ∈ B)

if B ∈ B(0,∞). Now, if f ∈ ∆0, let

(5.7) hf (x) := P (x+ f(x)η − ξ ≤ 0), x ∈ X, and ν(·) := p0,

where p0 is the Dirac measure concentrated at x = 0, and let α and v(·) be
as in (5.3) and (5.5) respectively.

Proposition 5.4. Assumptions 5.1(a), (b), (c) imply Assumption 2.3.

P r o o f. Assumption 2.3(a) follows from (5.6)–(5.7), while 2.3(c) is ob-
tained from (5.7) and Assumptions 5.1(a), (b), (c)(i):

inf
∆0

∫
X

hf dν = inf
∆0

P (f(x)η − ξ ≤ 0) ≥ P (θη − ξ ≤ 0) = P (ζ ≤ 0) > 0.

To verify Assumption 2.3(b) note that (with ν and v as in (5.7) and (5.5)
respectively)

(5.8) ‖ν‖v = v(0) = c.

On the other hand, from (5.6)–(5.7), for any stationary policy f ,

(5.9)
∫
X

v(y)Qf (dy | x) = chf (x) + c
∞∫
0

eqy dFx+f(x)η−ξ(y),
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where Fx+f(x)η−ξ(y) := P (x+ f(x)η − ξ ≤ y). Hence∫
X

v(y)Qf (dy | x)− hf (x)‖ν‖v = c
∞∫

−x

eq(s+x) dFf(x)η−ξ(s)

≤ ceqxEe[q(f(x)η−ξ)]

≤ v(x)Eeqζ [see (5.2)–(5.3)]
= αv(x),

which yields Assumption 2.3(b).

Observe that if in (5.9) we replace f(x) by an arbitrary a ∈ A, we obtain
(2.2b). Consequently, to verify Assumption 2.1 it only remains to prove part
(c) and (2.2c). To prove this, let %1 and %2 be as in Assumption 5.1(d) and,
for every a∈A, let %a be the density of aη−ξ. Then, for every real number y,

(5.10) %a(y) =
1
a

∞∫
0

%1

(
y + s

a

)
%2(s) ds =

∞∫
y/a

%1(s)%2(as− y) ds,

and, therefore, by Assumptions 5.1(a), (d) and the Bounded Convergence
Theorem, the mapping a 7→ %a(y) is continuous on A. Observe also that
%a(y) is bounded, since

(5.11) 0 ≤ %a(y) ≤M ∀y ∈ R and a ∈ A,
where M is an upper bound for %2. Moreover, for any bounded measurable
function u on X, (5.1), (5.6) and (5.10) yield∫

X

u(y)Q(dy | x, a) = E[u(xt+1) | xt = x, at = a](5.12)

=
∞∫

−∞

u[(x+ y)+]%a(y) dy

= u(0)
−x∫

−∞

%a(y) dy +
∞∫
0

u(y)%a(y − x) dy.

Thus, by Scheffé’s Theorem (or Exercise 14 in [14], p. 90), (5.12) defines a
continuous function in a ∈ A for every state x, which implies Assumption
2.1(c)—take u(·) as the indicator function of a Borel set B in X. Finally,
to verify (2.2c), in (5.12) replace u(·) by the function v(·) in (5.5) and note
that v(y) ≤ ceqy with q as in (5.2)–(5.3); hence a similar argument yields
(2.2c). Summarizing, we have:

Proposition 5.5. Assumptions 5.1 and 5.2 imply Assumption 2.1.

It only remains to verify Assumption 2.4′(ii) and the condition (2.19),
which requires additional hypotheses. Let us suppose:
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Assumption 5.6. (a) For every a ∈ A there exists a positive number
ε > 0 such that the function

%a,ε(y) := sup{%a′(y) | a′ ∈ A and |a′ − a| ≤ ε}, y ∈ R,
satisfies

∞∫
−∞

eqy%a,ε(y) dy <∞;

(b) there is a function ψ in Ψ such that

(5.13) |%a(z + y)− %a(z)| ≤ ψ(|y|)ga(z)

for all z, y in R and a ∈ A, where ga is a function satisfying

(5.14) sup
A

∞∫
−∞

eqzga(z) dz <∞;

(c) %1 and %2 are strictly positive on X.

R e m a r k. By (5.10), Assumption 5.6(a) is satisfied if %1(x) is a mono-
tone function in x ≥ 0.

Let us now verify Assumption 2.4′(ii). Let M and v(·) be as in (5.11)
and (5.5) respectively. Then, as in (5.12), for any x, x′ in X and a ∈ A we
obtain

‖Q(· | x, a)−Q(· | x′, a)‖v

≤ c|P (aη − ξ ≤ −x)− P (aη − ξ ≤ −x′)|

+ c
∞∫
0

eqy|%a(y − x)− %a(y − x′)| dy

≤ cM |x− x′|

+ c
∞∫

−x

eq(y+x)|%a(y)− %a(y + x− x′)| dy (by (5.13))

≤ cM |x− x′|

+ cψ(|x− x′|)eqx
∞∫

−∞

eqyga(y) dy (by (5.14))

≤ ψ̂(|x− x′|),

where ψ̂ ∈ Ψ is a constant times the function |x|+ ψ(x). That is, Assump-
tion 2.4′(ii) is satisfied.

Finally, in (5.12) let u(·) be the indicator function of an arbitrary open set
U in X. Then from (5.10) and Assumption 5.6(c) we obtain Q(U | x, a) > 0
for all x in X and a in A. This implies (2.19) (see the Remark following
Theorem 2.6).
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In conclusion, Assumptions 5.1, 5.2 and 5.6 imply that the system (5.1)
satisfies all the hypotheses of Theorems 2.5 and 2.6.

As a special case, let η and ξ be exponentially distributed with mean
values 1/η and 1/ξ respectively (cf. (5.4)). Then the density %a in (5.10)
becomes

%a(x) =
{
N(a)e−ξ̄|x| if x < 0,
N(a)e−ηx/a if x ≥ 0,

where N(a) := (ηξ/a)(ξ + η/a)−1. Similarly, all of the quantities in this
section can be explicity calculated or estimated; in particular, the right-hand
side of (5.13) can be found by a direct estimation of |%a(z + y)− %a(z)|.
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[4] E. Gord ienko and O. Hern ández-Lerma, Average cost Markov control pro-
cesses with weighted norms: existence of canonical policies, this volume, 199–218.
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