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AVERAGE COST MARKOV CONTROL PROCESSES
WITH WEIGHTED NORMS: EXISTENCE

OF CANONICAL POLICIES

Abstract . This paper considers discrete-time Markov control processes
on Borel spaces, with possibly unbounded costs, and the long run average
cost (AC) criterion. Under appropriate hypotheses on weighted norms for
the cost function and the transition law, the existence of solutions to the
average cost optimality inequality and the average cost optimality equation
are shown, which in turn yield the existence of AC-optimal and AC-canonical
policies respectively.

1. Introduction. Among the several approaches to prove the exis-
tence of average cost optimal (hereafter abbreviated AC-optimal) policies
for Markov control processes (MCPs) two of the most widely used are the
so-called vanishing discount approach, and the one based on strong ergod-
icity assumptions. In the former, the idea is to impose conditions on an
associated β-discounted cost problem in such a way that as β ↑ 1 we ob-
tain in the limit either the average cost optimality inequality (ACOI) or the
average cost optimality equation (ACOE), each of which in turn yields an
AC-optimal policy (see e.g. [1, 7, 8, 9, 16, 24]). On the other hand, im-
posing strong ergodicity assumptions usually allows one to obtain directly
the ACOE; this approach, however, has been mainly used for MCPs with
bounded cost functions [1, 3, 6, 10].

In this paper we combine the two approaches to obtain the ACOI and
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the ACOE for MCPs on Borel spaces with possibly unbounded (from above)
cost functions. Namely, we impose ergodicity hypotheses under which the
vanishing discount approach is applicable. The main difference between our
paper and the previous literature is that, following Kartashov [12, 13], the
ergodicity conditions we use are expressed in terms of weighted norms. This
allows, in particular, “differential cost” functions in the ACOI or the ACOE
(see φ∗ in (2.8), (2.10)) which may be unbounded.

Our main hypotheses and results (Theorems 2.6 and 2.8) are presented
in Section 2. Sections 3–6 contain the proofs of Theorems 2.6 and 2.8, and
important corollaries of these results are stated in Section 7. Finally, Sec-
tion 8—an appendix—summarizes some results for Harris-recurrent Markov
chains, which are needed in the statement of our hypotheses.

2. The control model and main results

R e m a r k 2.1. If X is a Borel space (i.e., a Borel subset of a complete
and separable metric space), its Borel σ-algebra is denoted by BX . Let X
and Y be Borel spaces. A stochastic kernel [1, 2, 3, 6, 9] (or transition
probability function) on X given Y is a function P (B | y) such that P (· | y)
is a probability measure on BX for each fixed y ∈ Y , and P (B | ·) is a
measurable function on Y for each fixed B ∈ BX .

Let (X,A,Q, c) be a discrete-time Markov control model with state space
X, action (or control) set A, transition law Q, and one-stage cost function
c satisfying the following conditions (cf. [1, 2, 3, 6, 9, 11]). X and A are
both Borel spaces. For each x ∈ X there is a nonempty Borel set A(x) in
BA which represents the set of feasible actions in the state x. The set

(2.1) K := {(x, a) : x ∈ X, a ∈ A(x)}

is assumed to be a Borel subset of X × A. The transition law Q is a
stochastic kernel on X given K and, finally, the one-stage cost c is a real-
valued measurable function on K.

The interpretation of (X,A,Q, c) as representing a MCP is well known
(see the references in the previous section).

Assumption 2.2. (a) The one-stage cost c is nonnegative and a 7→ c(x, a)
is lower semicontinuous (l.s.c.) on A(x) for each x ∈ X; moreover, there
exists a measurable function v : X → R such that v := infX v(x) > 0,

sup
A(x)

c(x, a) ≤ v(x) ∀x ∈ X,(2.2a) ∫
X

v(y)Q(dy | x, a) <∞ ∀(x, a) ∈ K,(2.2b)
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and

(2.2c) a 7→
∫
X

v(y)Q(dy | x, a) is continuous on A(x) for every x ∈ X;

(b) A(x) is compact for each state x;
(c) the transition law Q is strongly continuous on A, i.e., for each mea-

surable and bounded function u on X and each state x, the map

a 7→
∫
X

u(y)Q(dy | x, a)

is continuous on A(x).

Let ∆ the class of all (possibly randomized and nonstationary) control
policies [1, 2, 3, 6, 9, 11], and let ∆0 be the subclass of (deterministic)
stationary policies. By a standard convention, we will identify ∆0 with the
class of all measurable functions f : X → A such that f(x) ∈ A(x) for all x
in X. (∆0 is nonempty: see Example 2.6 in [21].)

R e m a r k. Let f ∈ ∆0 be an arbitrary stationary policy. Then, when
using f , the state process is a Markov chain with transition kernel Q(· |
x, f(x)), which will also be written as Qf (· | x) or Q(· | x, f), i.e.,

(2.3a) Q(· | x, f(x)) ≡ Qf (· | x) ≡ Q(· | x, f), x ∈ X.

We will also use the notation

(2.3b) c(x, f(x)) = c(x, f), x ∈ X.

Let P δ
x be the induced probability measure when using the policy δ ∈ ∆

given the initial state x0 = x (see e.g. Hinderer [11, p. 80] for the construction
of P δ

x ).
The corresponding expectation operator is denoted by Eδ

x.
Let

(2.4) Jn(δ, x) := Eδ
x

[ n−1∑
t=0

c(xt, at)
]
, n = 1, 2, . . . ,

be the expected n-stage cost when using the policy δ, given the initial state
x0 = x, and let

(2.5) J(δ, x) := lim sup
n→∞

Jn(δ, x)
n

be the corresponding long-run expected average cost (AC) per unit time.
A policy δ∗ is said to be AC-optimal if J(δ∗, x) = J∗(x) for all x ∈ X,

where
J∗(x) := inf

∆
J(δ, x), x ∈ X,
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is the optimal AC-function. (In Remark 2.9 we introduce the stronger con-
cept of canonical policy.)

The main problem we are concerned with is precisely to show the exis-
tence of AC-optimal (and canonical) policies. To do this we shall require
several hypotheses, in addition to Assumption 2.2. In particular, in As-
sumptions 2.3 and 2.4 below, we use the notion of Harris recurrence (see
Section 8) and the notation (2.3).

Assumption 2.3. For each stationary policy f ∈ ∆0 the (state) Markov
process defined by the stochastic kernel Qf in (2.3a) is positive Harris-
recurrent, i.e., it is Harris-recurrent and has an invariant probability mea-
sure qf :

(2.6) qf (B) =
∫
X

Qf (B | x) qf (dx) ∀B ∈ BX .

By Assumption 2.3 and Proposition 8.1(b), for each f in ∆0 there exists
a triplet (nf , νf , hf ) consisting of an integer nf , a probability measure νf

on X, and a nonnegative measurable function hf ≤ 1 on X which satisfies
the analogue of inequalities (i)–(iii) in Proposition 8.1. The following as-
sumption requires that these inequalities are satisfied uniformly in f ∈ ∆0

with nf ≡ 1, and requires the function v in Assumption 2.2 to be analogous
to a so-called α-excessive function.

Assumption 2.4. There exist a probability measure ν on X and a
number 0 ≤ α < 1 for which the following holds: For each f ∈ ∆0 there is
a nonnegative measurable function hf ≤ 1 on X such that, for every x ∈ X
and B ∈ BX :

(a) Qf (B | x) ≥ hf (x)ν(B);
(b)

∫
X
v(y)Qf (dy | x) ≤ hf (x)‖ν‖v + αv(x), and

(2.7) ‖ν‖v :=
∫
X

v(y) ν(dy) <∞;

(c) inf∆0

∫
X
hf (x) ν(dx) =: γ > 0.

The notation in (2.7) will be used in the following more general sense.

Definition 2.5. Mv denotes the normed linear space consisting of all
finite signed measures µ on X for which

‖µ‖v :=
∫
X

v(x) |µ|(dx) <∞,

where |µ| stands for the total variation of µ. Similarly, Φv denotes the
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normed linear space of all measurable fuctions φ : X → R with

‖φ‖v := sup
X

|φ(x)|
v(x)

<∞.

We are now ready to state one of our main results.

Theorem 2.6. Suppose that Assumptions 2.2–2.4 hold. Then there exists
a constant %∗ ≥ 0, a function φ∗ in Φv, and a stationary policy f∗ such that :

(a) we have

%∗ + φ∗(x) ≥ min
A(x)

[
c(x, a) +

∫
X

φ∗(y)Q(dy | x, a)
]

(2.8)

= c(x, f∗) +
∫
X

φ∗(y)Q(dy | x, f∗) ∀x ∈ X;

(b) f∗ is AC-optimal and %∗ is the optimal AC-function, i.e.,

(2.9) J(f∗, x) = J∗(x) = %∗ ∀x ∈ X.
The inequality in (2.8), which may be strict [9], is known as the average

cost optimality inequality (ACOI). Our second main result, Theorem 2.8,
gives conditions for equality to hold in (2.8), thus yielding the average cost
optimality equation (ACOE)

(2.10) %∗ + φ∗(x) = min
A(x)

[
c(x, a) +

∫
X

φ∗(y)Q(dy | x, a)
]
.

To state this result we need additional notation and assumptions.
Let d1 and d2 be the metrics on X and A respectively, and let d be the

metric on K (the set in (2.1)) defined as

(2.11) d((x, a), (x′, a′)) := max{d1(x, x′), d2(a, a′)},
for all (x, a) and (x′, a′) in K. Moreover, let Ψ be the class of nondecreasing
functions ψ : [0,∞) → [0,∞) such that lims↓0 ψ(s) = 0.

In addition to Assumption 2.2 we shall suppose the following:

Assumption 2.7. (a) The compact-valued multifunction x 7→ A(x) is
continuous with respect to the Hausdorff metric;

(b) for each x in X, there exist functions ψc
x and ψQ

x in Ψ such that, for
all a ∈ A(x) and (x′, a′) ∈ K:

(i) |c(k)− c(k′)| ≤ ψc
x[d(k, k′)] and

(ii) ‖Q(· | k)−Q(· | k′)‖v ≤ ψQ
x [d(k, k′)],

where k := (x, a) and k′ := (x′, a′).

An example of a MCP satisfying Assumptions 2.2–2.4 and 2.7 is pre-
sented in [5, Section 5].
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Theorem 2.8. Suppose that the hypotheses of Theorem 2.6, as well as
Assumption 2.7 are valid. Then there exists a constant %∗ ≥ 0, a continuous
function φ∗ in Φv, and a stationary policy f∗ such that :

(a) %∗ and φ∗ satify the ACOE (2.10) and , in addition,

(2.12) %∗ + φ∗(x) = c(x, f∗) +
∫
X

φ∗(y)Q(dy | x, f∗) ∀x ∈ X;

(b) (2.9) holds, i.e., f∗ is AC-optimal and %∗ is the optimal AC-function.

R e m a r k 2.9. A triplet (%∗, φ∗, f∗) satisfying (2.10) and (2.12) is called
a canonical triplet [1, 3, 9, 17], and f∗ ∈ ∆0 is said to be a canonical policy .
According to Theorem 2.8(b), a canonical policy is AC-optimal, but the
converse is not true in general; in other words (as shown in the above-given
references), there are AC-optimal policies f∗ in ∆0 for which (2.10) and
(2.12) do not hold.

The proofs of Theorems 2.6 and 2.8 are presented in Sections 3–6. Some
important corollaries are given in Section 7.

We conclude this section with an elementary, but useful remark.

R e m a r k 2.10. The function x 7→
∫

X
v(y)Qf (dy | x) is in Φv for all

f ∈ ∆0; in fact,

(2.13) sup
∆0

sup
X

∫
X

v(y)Qf (dy | x)/v(x) ≤ ‖ν‖v/v + α.

Indeed, since v(x) ≥ v for all x ∈ X (see Assumption 2.2(a)) and hf (·) ≤ 1,
the inequality in Assumption 2.4(b) yields∫

X

v(y)Qf (dy | x) ≤ (‖ν‖v/v + α)v(x),

which in turn yields (2.13). An inequality related to (2.13) is given in (3.2)
below.

3. Lemmas on ergodicity conditions. Under Assumptions 2.3 and
2.4, Kartashov [14, Corollary 2] shows that the invariant probability measure
qf has ‖qf‖v finite for every stationary policy f . In the following elementary
lemma we show inter alia that ‖qf‖v is bounded above uniformly in f ∈ ∆0.

Lemma 3.1. Suppose that Assumptions 2.3 and 2.4 hold , and let v and
v be as in Assumption 2.2(a). Then for every stationary policy f ∈ ∆0:

(a) γ ≤
∫

X
hf dν ≤ 1, with γ as in Assumption 2.4(c);

(b) v ≤ ‖qf‖v ≤ b0, with b0 := ‖ν‖v/(1− α);
(c) b1 ≤

∫
X
hf dqf ≤ 1, with b1 := v(1− α)/‖ν‖v = v/b0.
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P r o o f. (a) This follows from Assumption 2.4(c) and the fact that hf ≤1.
(b), (c). The first inequality in (b) follows from the definition of v, and

the second inequality in (c) is due to hf ≤ 1. On the other hand, from part
(a), (2.6) and Assumption 2.4(b),

‖qf‖v :=
∫
v(y)qf (dy) =

∫ ∫
v(y)Qf (dy | x) qf (dx)

≤ ‖ν‖v

∫
hf dqf + α‖qf‖v.

(Cf. Remark 2.10.) This implies, on the one hand, that

‖qf‖v ≤
‖ν‖v

1− α
= b0 (since

∫
hfdqf ≤ 1),

and, on the other hand,∫
hf dqf ≥

(1− α)‖qf‖v

‖ν‖v
≥ b1.

Let f ∈ ∆0 be an arbitrary (but fixed) stationary policy, and consider
the transition kernel Qf in (2.3). As usual, the n-step transition kernel
(n = 1, 2, . . .) is given by

Qn
f (B | x) =

∫
X

Qn−1
f (B | y)Qf (dy | x),

where Q0
f (· | x) is the Dirac measure px concentrated at x.

Let Mv be as in Definition 2.5. Then Qf defines a linear operator from
Mv to itself given by

(3.1) Qfµ(·) :=
∫
X

Qf (· | x)µ(dx), µ ∈Mv.

Moreover, using Assumption 2.4(b), a direct calculation (cf. Remark 2.10)
shows that the operator norm of Qf satisfies

(3.2) ‖Qf‖v := sup{‖Qfµ‖v : ‖µ‖v ≤ 1} ≤ ‖ν‖v

v
+ α,

where v is the constant in Assumption 2.2(a).

Lemma 3.2. Suppose that Assumptions 2.3 and 2.4 hold. Then, when
using a stationary policy f ∈ ∆0, the corresponding state process is aperiodic
and uniformly ergodic with respect to the norm ‖·‖v, the latter meaning that

(3.3) ‖Qt
f −Πf‖v → 0 as t→∞,

where Πf : Mv →Mv denotes the stationary projector of Qf , defined as

(3.4) Πfµ(·) := µ(X)qf (·) ∀µ ∈Mv.

P r o o f. By Kartashov’s [12] Theorem E, it suffices to verify the following
conditions (with qf , hf and ν as in Assumptions 2.3 and 2.4):
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(E.1)
∫

X
hf dν > 0,

∫
X
hf dqf > 0;

(E.2) the kernel τf (B | x) := Qf (B | x)− hf (x)ν(B) is nonnegative;

(E.3) ‖τf‖v := sup{‖τfµ‖v : ‖µ‖v ≤ 1} ≤ % for some 0 < % < 1.

The first inequality in (E.1) follows from Assumption 2.4(c), and the
second from Proposition 5.6 in [18, p. 72]. Similarly, (E.2) follows from
Assumption 2.4(a), and, finally, (E.3) holds with % = α as in Assump-
tion 2.4(b), since the latter yields

‖τfµ‖v =
∫ ∫

v(y)Qf (dy | x)|µ|(dx)−
( ∫

X

v dν
)( ∫

X

hf d|µ|
)

≤ ‖ν‖v

∫
X

hfd|µ|+ α‖µ‖v − ‖ν‖v

∫
X

hfd|µ|

≤ α if ‖µ‖v ≤ 1.

Let G be the function on (0, 1]× (0, 1] defined as

(3.5) G(s, r) := exp
(
− 1− s

s
· log r
1− r

)
, 0 < s, r ≤ 1.

Then from the conditions (E.1)–(E.3) in the proof of Lemma 3.1 and the
Corollary to Theorem 6 in [13], we obtain the following estimate of the rate
of convergence in (3.3):

Lemma 3.3. Under Assumptions 2.3 and 2.4, for any f ∈ ∆0,

(3.6) ‖Qt
f −Πf‖v ≤

(
αt + θt+1

0

(t+ 2)e
α

)
(1 + σ)

for all t > θ0/(1− θ0), where σ and θ0 are positive constants satisfying

σ ≤ b0
v

(with b0 as in Lemma 3.1(b)),(3.7)

θ0 = 1− 1− α

1 + ασw
< 1, and(3.8)

w = 2G
( ∫

hf dqf ,
∫
hf dν

)
− 1,(3.9)

with G as in (3.5) (using Lemma 3.1(a),(c)).

The next step is to use (3.6) to obtain an exponential rate of convergence
of Qt

f to Πf uniform in f ∈ ∆0. Before stating Lemma 3.4, recall that px

denotes the Dirac measure concentrated at x, and note that

(3.10) ‖px‖v = v(x) and Qt
fpx(·) = Qt

f (· | x) = Qt(· | x, f).

Also observe that the proof of Lemma 3.4 shows how the constant c and η
appearing in the lemma can be estimated in terms of the quantities v, α,
‖ν‖v and γ in Assumption 2.4.
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Lemma 3.4. Under Assumptions 2.3 and 2.4, there exist positive con-
stants c and η, with η < 1, such that for every x ∈ X and t = 0, 1, . . . ,

(3.11) sup
∆0

‖Qt
fpx − qf‖v ≤ cv(x)ηt.

P r o o f. Let G and w as in (3.5), (3.9), and define

w∗ := 2G(b1, γ)− 1,

where b1 and γ are the constants in Lemma 3.1(a), (c). Thus w ≤ w∗
since G(s, r) is decreasing in s ∈ (0, 1] and r ∈ (0, 1). Now let b0 be as in
Lemma 3.1(b) and define

θ∗ := 1− 1− α

1 + αw∗b0/v
< 1.

Then (3.7)–(3.8), together with w ≤ w∗, imply θ0 ≤ θ∗. Hence, since w∗
and θ∗ are independent of f ∈ ∆0, the inequality (3.6) yields

(3.12) sup
∆0

‖Qt
f −Πf‖v ≤

(
αt +

θt+1
∗ (t+ 2)e

α

)(
1 +

b0
v

)
for all t > θ∗/(1 − θ∗). Now, let t∗ := [θ∗/(1 − θ∗) + 1], where [r] stands
for the integral part of r. Then, for any t ≤ t∗ and f ∈ ∆0, the inequality
(3.2) and the fact that ‖Πf‖v ≤ b0 (see Lemma 3.1(b)) give

(3.13) ‖Qt
f −Πf‖v ≤ ‖Qf‖t

v + ‖Πf‖v ≤ [max(1, ‖ν‖v/v + α)]t∗ + b0,

where the right-hand side is independent of f ∈ ∆0. Therefore, from (3.12)–
(3.13) we see that there are constants c and η, η < 1, satisfying

(3.14) sup
∆0

‖Qt
f −Πf‖v ≤ cηt ∀t = 0, 1, . . .

Finally, to complete the proof of the lemma it suffices to note that

‖Qt
fpx − qf‖v = ‖Qt

fpx −Πfpx‖v ≤ ‖Qt
f −Πf‖v‖px‖v,

which combined with (3.14) and (3.10) yields (3.11).

R e m a r k. Since v(·) ≥ v (see Assumption 2.2),

‖µ‖v ≥ v|µ|(X) ∀µ ∈Mv.

Thus, under Assumptions 2.3 and 2.4, Lemma 3.4 ensures geometric ergod-
icity of the transition kernels Qf , f ∈ ∆0, in the weighted norm ‖ · ‖v and
also in the total variation norm. Observe also (from (3.1)) that the geomet-
ric ergodicity is uniform in f ∈ ∆0, but is not uniform in the initial state
x ∈ X. This situation is typical, e.g., in controlled queueing models.

To conclude this section we will use Lemma 3.4 to show that the expected
cost Ef

xc(xt, f) (recall the notation (2.3b)) as a function of the initial state
x belongs to the space Φv (Definition 2.5) for all f ∈ ∆0 and t = 0, 1 . . . In
precise terms we have:
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Lemma 3.5. Under Assumptions 2.2–2.4, there is a constant c1 such that

(3.15) sup
t

sup
∆0

Ef
xc(xt, f) ≤ c1v(x) ∀x ∈ X.

P r o o f. For arbitrary f ∈ ∆0, x ∈ X and t ≥ 0,

Ef
xc(xt, f) =

∫
c(y, f)Qt(dy | x, f) ≤ I + II,

where

I :=
∣∣∣ ∫

X

c(y, f)Qt(dy | x, f)−
∫
X

c(y, f) qf (dy)
∣∣∣,

II :=
∫
X

c(y, f) qf (dy).

Then, recalling the notation (3.10),

I ≤
∫
X

c(y, f) |Qt
fpx − qf |(dy) ≤

∫
X

v(y) |Qt
fpx − qf |(dy)(3.16)

= ‖Qt
fpx − qf‖v ≤ cv(x) (by Lemma 3.4, as η < 1),

and, similarly, by Lemma 3.1(b),

(3.17) II ≤
∫
X

v(y)qf (dy) = ‖qf‖v ≤ b0 ≤
b0v(x)
v

.

Thus from (3.16)–(3.17) we obtain (3.15) with c1 := c+ b0/v.

4. Lemmas on discounted problems. For every β ∈ (0, 1), x ∈ X
and δ ∈ ∆, let

(4.1) Vβ(δ, x) := Eδ
x

[ ∞∑
t=0

βtc(xt, at)
]

= lim
n→∞

Jβ
n (δ, x)

be the total expected β-discounted cost (β-DC) when using the policy δ,
given the initial state x0 = x, where (cf. (2.4))

(4.2) Jβ
n (δ, x) := Eδ

x

[ n−1∑
t=0

βtc(xt, at)
]
.

A policy δ∗ is said to be β-DC optimal if

(4.3) Vβ(δ∗, x) = inf
∆
Vβ(δ, x) =: V ∗β (x) ∀x ∈ X;

V ∗β is called the optimal β-DC function.
One of the main objectives in this section is to prove the following the-

orem, which is a well-known result under other sets of assumptions [2, 3, 6,
11].
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Theorem 4.1. Suppose that Assumptions 2.2–2.4 hold , and let β ∈ (0, 1)
be an arbitrary , but fixed , discount factor. Then:

(a) V ∗β is the (pointwise) minimal solution in Φv of the β-discounted cost
optimality equation (β-DCOE )

(4.4) V ∗β (x) = min
A(x)

[
c(x, a) + β

∫
X

V ∗β (y)Q(dy | x, a)
]
, x ∈ X;

(b) there exists a stationary policy fβ ∈ ∆0 such that fβ(x) ∈ A(x)
attains the minimum on the right-hand side of (4.4) for every x in X, i.e.,

(4.5) V ∗β (x) = c(x, fβ) + β
∫
X

V ∗β (y)Q(dy | x, fβ),

and fβ is β-DC optimal.

To prove Theorem 4.1 it is convenient to introduce some additional no-
tation and preliminary results. The hypotheses of Theorem 4.1 are supposed
to hold throughout this section.

Let Φ+
v := {u ∈ Φv : u ≥ 0} be the natural positive cone of Φv, and

for each positive number β ≤ 1 and u ∈ Φ+
v let Tβu be the function on X

defined as

(4.6) (Tβu)(x) := inf
A(x)

[
c(x, a) + β

∫
X

u(y)Q(dy | x, a)
]
.

The following lemma states that Tβ maps Φ+
v into itself and that the infimum

on the right-hand side of (4.6) is attained; hence we may write “minimum”
instead of “infimum”.

Lemma 4.2. For any u in Φ+
v and 0 < β ≤ 1:

(a) The function

u′(x, a) := c(x, a) + β
∫
X

u(y)Q(dy | x, a), (x, a) ∈ K,

is measurable on K and l.s.c. in a ∈ A(x) for every x ∈ X;
(b) there exists f ∈ ∆0 such that

Tβu(x) = u′(x, f(x))(4.7)

= c(x, f(x)) + β
∫
X

u(y)Qf (dy | x) ∀x ∈ X,

and Tβu is in Φ+
v .

P r o o f. (a) First, by Assumption 2.2(a), if u is in Φ+
v , then

(4.8) 0 ≤ u′(x, a) ≤ v(x) + β‖u‖v

∫
X

v(y)Q(dy | x, a) <∞,
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so that u′ is a finite-valued function and its measurability follows from that
of c and the properties of the transition law Q. Now, to see that a 7→ u′(x, a)
is l.s.c., let un be a nondecreasing sequence of bounded functions such that
un ↑ u. Then if {al} is a sequence in A(x) converging to a ∈ A(x), we have

lim inf
l→∞

∫
u(y)Q(dy | x, al) ≥ lim inf

l

∫
un(y)Q(dy | x, al)

=
∫
un(y)Q(dy | x, a) ∀n,

by Assumption 2.2(c). Thus, letting n→∞, monotone convergence yields

lim inf
l

∫
u(y)Q(dy | x, al) ≥

∫
u(y)Q(dy | x, a),

i.e., a 7→
∫
u(y)Q(dy | x, a) is l.s.c. on A(x) for every x ∈ X, which

combined with the l.s.c. of a 7→ c(x, a) completes the proof of part (a).
(b) The existence of a “minimizer” f ∈ ∆0 satisfying (4.7) follows from

(a) and Corollary 4.3 (and the remark following it) in [21]. The fact that
Tβu is in Φ+

v follows from (4.7)–(4.8) and Assumption 2.4(b).

For each 0 < β ≤ 1, let {vβ
n} be the sequence of value iteration functions

defined recursively as

(4.9) vβ
n(x) := Tβv

β
n−1(x), x ∈ X, n = 1, 2, . . . ,

with vβ
0 (·) ≡ 0. An elementary induction argument and Lemma 4.2 yield

the following.

Lemma 4.3. For every 0 < β ≤ 1 and n = 1, 2, . . . , vβ
n is in Φ+

v and there
exists fβ

n ∈ ∆0 such that , for all x ∈ X,

vβ
n(x) = min

A(x)

[
c(x, a) + β

∫
X

vβ
n−1(y)Q(dy | x, a)

]
(4.10)

= c(x, fβ
n ) + β

∫
X

vβ
n−1(y)Q(dy | x, fβ

n ).

Moreover, from elementary stochastic dynamic programming [2, 3, 9,
11], vβ

n is the optimal n-stage cost, i.e. (see (4.2)),

(4.11) vβ
n(x) = inf

∆
Jβ

n (δ, x).

This implies that for any positive β < 1,

vβ
n(x) ≤ Jβ

n (δ, x) ≤ Vβ(δ, x) ∀δ ∈ ∆, x ∈ X,
which in turn yields

vβ
n(x) ≤ V ∗β (x) ∀x ∈ X.

Thus, since Tβ is monotone (i.e., u ≥ u′ ⇒ Tβu ≥ Tβu
′), the functions vβ

n

form a nondecreasing sequence converging to a function u ≤ V ∗β . Therefore,
to complete the proof of Theorem 4.1, one can use standard arguments (see
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e.g. [2, 8, 9]) to show that: (i) u satisfies the β-DCOE (4.4), (ii) u is the
minimal, measurable, nonnegative solution of (4.4), and (iii) u = V ∗β .

On the other hand, by Lemma 3.5, V ∗β is indeed in Φv, as (3.15) gives

(4.12) V ∗β (x) ≤ c1v(x)
1− β

∀x ∈ X.

This completes the proof of Theorem 4.1(a), and, finally, part (b) follows
from Lemma 4.2 (with 0 < β < 1).

We next introduce two auxiliary functions to be used in the proof of
Theorem 2.6.

Definition 4.4. Let z ∈ X be an arbitrary, fixed state, and for every
0 < β < 1 and x ∈ X, let

(4.13) φβ(x) := V ∗β (x)− V ∗β (z), jβ := (1− β)Vβ
∗(z).

Observe that the β-DCOE (4.4) can be written, equivalently, as

(4.14) jβ + φβ(x) = min
A(x)

[
c(x, a) + β

∫
X

φβ(y)Q(dy | x, a)
]
.

Similarly, we may rewrite (4.5) as

(4.15) jβ + φβ(x) = c(x, fβ) + β
∫
X

φβ(y)Q(dy | x, fβ).

We also have:

Lemma 4.5. There are constants c1 and c2 such that , for every β in (0, 1)
and x ∈ X,

(a) 0 ≤ jβ ≤ c1v(z), and
(b) |φβ(x)| ≤ c2(1 + v(z)/v)v(x), i.e., φβ is in Φv.

P r o o f. (a) follows from (4.12).
(b) As a consequence of Theorem 4.1, to find a β-DC optimal policy we

may restrict ourselves to the class ∆0 of stationary policies, i.e., we may
write (4.3) as

V ∗β (x) = inf
∆0

Vβ(f, x).

Thus

|φβ(x)| = | inf
∆0

Vβ(f, x)− inf
∆0

Vβ(f, z)| ≤ sup
∆0

|Vβ(f, x)− Vβ(f, z)|(4.16)

≤ sup
∆0

∞∑
t=0

βt|Ef
xc(xt, f)− Ef

z c(xt, f)|.
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To estimate the right-hand side of (4.16), inside the absolute value add and
subtract

∫
X
c(y, f) qf (dy), and then use (2.2a) and (3.11) to obtain

|Ef
xc(xt, f)−Ef

z c(xt, f)| ≤ ‖Qt
fpx− qf‖v +‖Qt

fpz− qf‖v ≤ cηt[v(x)+v(z)].

Thus, since v(x) + v(z) ≤ (1 + v(z)/v)v(x) and β < 1, (4.16) yields

|φβ(x)| ≤ c(1− η)−1

(
1 +

v(z)
v

)
v(x),

and (b) follows with c2 := c(1− η)−1, which is a constant independent of β
and x.

5. Proof of Theorem 2.6. After the preliminary results in Sections 3
and 4, the proof of Theorem 2.6 is similar, mutatis mutandis, to the proof
of Theorem 4.2 in [8]. To begin with, Lemma 4.5(a) ensures the existence
of a number %∗ ≥ 0 such that

lim sup
β↑1

jβ = %∗,

where jβ := (1 − β)V ∗β (z); see (4.13). Let {βn} be a sequence of discount
factors such that βn ↑ 1 and

(5.1) lim
n→∞

(1− βn)V ∗βn
(z) = %∗.

The following lemma shows that (5.1) holds if z is replaced by any state
x ∈ X.

Lemma 5.1. limn→∞(1− βn)V ∗βn
(x) = %∗ for all x in X.

P r o o f. Since

|(1− βn)V ∗βn
(x)− %∗| ≤ (1− βn)|φβn(x)|+ |(1− βn)V ∗βn

(z)− %∗|,
the desired result follows from (5.1) and Lemma 4.5(b).

Moreover, by a well-known Tauberian theorem (cf. [25] or [1, 8, 9]) the
optimal AC-function J∗(x) satisfies

lim sup
β↑1

(1− β)V ∗β (x) ≤ J∗(x) ∀x ∈ X;

hence, by Lemma 5.1,

(5.2) %∗ ≤ J∗(x) ∀x ∈ X.
We also have:

Lemma 5.2. Suppose that there exist a constant %∗ ≥ 0, a function φ∗ ∈
Φv and a stationary policy f∗ ∈ ∆0 such that

(5.3) %∗ + φ∗(x) ≥ c(x, f∗) +
∫
X

φ∗(y)Q(dy | x, f∗) ∀x ∈ X.
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Then f∗ and %∗ satisfy Theorem 2.6(b), i.e.,

(5.4) J(f∗, x) = J∗(x) = %∗.

P r o o f. Iteration of (5.3) yields, for all n ≥ 1 and x ∈ X,

(5.5) n%∗ + φ∗(x) ≥ Jn(f∗, x) +
∫
X

φ∗(x)Qn(dy | x, f∗).

On the other hand, by Lemma 3.4,

(5.6)
∣∣∣ ∫ φ∗(y)Qn(dy | x, f∗)−

∫
φ∗(y) qf∗(dy)

∣∣∣
≤ ‖φ∗‖v‖Qn

f∗px − qf∗‖v ≤ ‖φ∗‖vcv(x)ηn → 0 as n→∞.

Thus, dividing by n in (5.5) and letting n→∞, we obtain

%∗ ≥ J(f∗, x) ∀x ∈ X.

Finally, since (by definition of J∗ and (5.2))

%∗ ≤ J∗(x) ≤ J(f∗, x) ∀x ∈ X,

we obtain (5.4).

It follows from Lemma 5.2 that the proof of Theorem 2.6 will be complete
if we can show the existence of a triplet (%∗, φ∗, f∗), with %∗ ≥ 0, φ∗ in Φv,
and f∗ in ∆0, satisfying (2.8). To obtain this, let %∗ be as in Lemma 5.1,
and define

(5.7) φ∗(x) := lim inf
n→∞

φβn(x), x ∈ X.

By Lemma 4.5(b), the function φ∗ is in Φv. Finally, let fβ ∈ ∆0 be the
β-DC (0 < β < 1) optimal policy in (4.14)–(4.15) (see also Theorem 4.1)
and consider the sequence {fβn

}. By Schäl’s [23, Proposition 12.2], there
is a stationary policy f∗ such that f∗(x) ∈ A(x) is an accumulation point
of {fβn(x)} for each x in X. Then a straightforward modification in the
proof of [8, Theorem 4.2]—replacing φβn

(x) by the nonnegative function
φβn(x) + c3v(x) ≥ 0, where c3 := c2(1 + v(z)/v) (see Lemma 4.5(b)), and
using (2.2c)—shows that (%∗, φ∗, f∗) thus defined satisfies the ACOI (2.8).

R e m a r k 5.3. Note that, from (5.7) and (4.13), φ∗(z) = 0.

6. Proof of Theorem 2.8. Throughout this section we suppose that
the hypotheses of Theorem 2.8 (i.e., Assumptions 2.2, 2.3, 2.4 and 2.7) hold
true.

Let φβ be as in (4.13). The first step in the proof of Theorem 2.8 is to
show that:

(6.1) the family of functions {φβ : 0 < β < 1} is equicontinuous.
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This will follow from (4.14) and Lemma 4.5(b), together with the following
general result in which Ψ is the class of functions introduced in the paragraph
preceding Assumption 2.7. We also use the following notation: If u ∈ Φv,
0 < β ≤ 1 and b > 0:

Uβ(x) := inf
A(x)

[
c(x, a) + β

∫
X

u(y)Q(dy | x, a)
]
, x ∈ X,

Gb := {u ∈ Φv : ‖u‖v ≤ b}.

Lemma 6.1. If Assumption 2.7 holds, then for each given b > 0 there
exists a family of functions {ψx : x ∈ X} in Ψ such that for every u ∈ Gb,
x ∈ X and 0 < β ≤ 1,

(6.2) |Uβ(x)− Uβ(x′)| ≤ ψx[d1(x, x′)] ∀x′ ∈ X,

where d1 is the metric on X.

P r o o f. Let u be an arbitrary function in Gb and define

u′(x, a) := c(x, a) + β
∫
X

u(y)Q(dy | x, a), (x, a) ∈ K,

so that Uβ(x) = infA(x) u
′(x, a). Now, by Assumption 2.7(b), and writing

k := (x, a), k′ := (x′, a′),

|u′(k)− u′(k′) ≤ |c(k)− c(k′)|+ β
∫
|u(y)||Q(dy | k)−Q(dy | k′)|

≤ ψc
x[d(k, k′)] + β‖u‖vψ

Q
x [d(k, k′)] ≤ ψ̂x[d(k, k′)],

where ψ̂x := ψc
x + bψQ

x is a function in Ψ . This yields—as in the proof
of Gordienko’s [4, Lemma 1]—the existence of functions ψx in Ψ satisfying
(6.2), which proves the lemma.

As already noted, (4.14), Lemma 4.5(b) and Lemma 6.1 together imply
(6.1). Now let {βn} be the sequence in (5.1). Then, by (6.1) and the Ascoli
Theorem (see e.g. Royden [22, p. 179]), there exists a subsequence of {φβn}
(also denoted by {φβn}) and a continuous function φ∗ on X such that

(6.3) lim
n→∞

φβn(x) = φ∗(x) ∀x ∈ X,

the convergence being uniform on compact subsets of X. Moreover, by
Lemma 4.5(b), φ∗ is in Φv, and, on the other hand, by (6.3), {φβn} satisfies
(5.7). Therefore, all the conclusions of Theorem 2.6 hold, of course, in the
present case.

Thus, to complete the proof of Theorem 2.8 it only remains to show that

(6.4) %∗ + φ∗(x) ≤ min
A(x)

[
c(x, a) +

∫
X

φ∗(y)Q(dy | x, a)
]
;
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cf. (2.8) and (2.10). To prove (6.4) note that, from (4.14),

jβn + φβn(x) ≤ c(x, a) + βn

∫
X

φβn
(y)Q(dy | x, a)

for every x ∈ X and a ∈ A(x). Finally, letting n→∞, (6.3), (2.2b) and the
Dominated Convergence Theorem yield

%∗ + φ∗(x) ≤ c(x, a) +
∫
X

φ∗(y)Q(dy | x, a),

which implies (6.4).

7. Corollaries and concluding remarks. In this section we state
two important consequences of Theorems 2.6 and 2.8. The first one was in
fact proved in the last paragraph of Section 5.

Corollary 7.1. Under the assumptions of Theorem 2.6, there exists a
sequence of discount factors βn ↑ 1, a sequence {fβn

} of βn-DC optimal
stationary policies, and an AC-optimal stationary policy f∗ such that for
every state x, f∗(x) is an accumulation point of {fβn(x)}.

In short, Corollary 7.1 states that there is an AC-optimal policy which
is an “accumulation point” of DC-optimal policies as the discount factor
increases to 1.

To state the second corollary we need some additional notation: Let
Jn(δ, x) be as in (2.4) and, given a measurable function h : X → R, let

(7.1) Jn(δ, x, h) := Eδ
x

[ n−1∑
t=0

c(xt, at) + h(xn)
]

= Jn(δ, x) + Eδ
xh(xn)

be the expected n-stage cost when using the policy δ, given the initial state
x, and the terminal cost function h. Let

(7.2) J∗n(x, h) := inf
∆
Jn(δ, x, h)

be the corresponding n-stage optimal cost , and if h(·) ≡ 0 write

(7.3) Jn(δ, x, 0) := Jn(δ, x), J∗n(x, 0) = J∗n(x).

Then, by a well-known characterization of canonical triplets—see e.g. [16,
Theorem 3.2] (for bounded one-stage costs c, see [3, pp. 166–167], or [1,
Theorem 6.2])—we conclude that Theorem 2.8 can be restated as follows.

Corollary 7.2. Under the assumptions of Theorem 2.8, there is a
canonical triplet (%∗, φ∗, f∗) such that

(7.4) Jn(f∗, x, φ∗) = J∗n(x, φ∗) = n%∗ + φ∗(x)

for every x ∈ X and n = 1, 2, . . .
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In other words, the first equality in (7.4) states that, for every n ≥ 1
and every initial state x0 = x, f∗ ∈ ∆0 is an optimal policy for the n-stage
problem with terminal cost function φ∗, whereas the second equality says
that the corresponding optimal cost is n%∗ + φ∗(x).

In a companion paper [5] we show that the policy f∗ in Theorem 2.8
and Corollary 7.2 is in fact “AC-optimal” in several ways stronger than the
AC-optimality defined in Section 2, and also that the optimal (constant) AC-
function %∗ may be obtained by the so-called value iteration (or successive
approximations) procedure. The latter yields, in particular, that

lim
n→∞

J∗n(x)
n

= %∗ ∀x ∈ X,

where J∗n(x) is the function in (7.3), so that %∗ can be obtained as the limit of
“averaged” finite (n-stage) horizon problems. Moreover, among additional
results, [5] presents an example in which all the hypotheses of Theorem 2.8
are satisfied.

8. Appendix. Let X be the Borel (state) space of Section 2, and let
{xt : t = 0, 1, . . .} be an X-valued (non-controlled) Markov process with
transition kernel P (B | x), with B ∈ BX , x ∈ X. This process—or the
transition kernel—is said to be Harris-recurrent if there exists a nontrivial
σ-finite measure λ on X such that

P (xt ∈ B for some t | x0 = x) = 1 ∀x ∈ X
whenever B ∈ BX satisfies λ(B) > 0 [10, 20]. The following proposition is
well known [15, 18, 19].

Proposition 8.1. If {xt} is Harris-recurrent , then:

(a) there exists a nontrivial , σ-finite invariant measure π for the transi-
tion kernel P ; moreover , π is unique up to a multiplicative constant ;

(b) there exists a triplet (n, ν, h) consisting of an integer n ≥ 1, a prob-
ability measure ν, and a nonnegative function h ≤ 1 such that

(i) Pn(B | x) ≥ h(x)ν(B) for B ∈ BX and x ∈ X,
(ii)

∫
X
h dν > 0, and

(iii) 0 <
∫

X
h dπ <∞.

The Markov process is called positive Harris-recurrent if it is Harris-
recurrent and it has an invariant probability measure (cf. Proposition 8.1(a)).
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[10] O. Hern ández-Lerma, R. Montes -de -Oca and R. Cavazos -Cadena, Re-

currence conditions for Markov decision processes with Borel state space: a survey ,
Ann. Oper. Res. 28 (1991), 29–46.

[11] K. Hinderer, Foundations of Non-Stationary Dynamic Programming with Discrete
Time Parameter , Lecture Notes Oper. Res. 33, Springer, New York, 1970.

[12] N. V. Kartashov, Inequalities in theorems of ergodicity and stability of Markov
chains with common phase space. I, Theory Probab. Appl. 30 (1985), 247–259.

[13] —, Inequalities in theorems of ergodicity and stability of Markov chains with com-
mon phase space. II , ibid. 30 (1985), 507–515.

[14] —, Strongly stable Markov chains, J. Soviet Math. 34 (1986), 1493–1498.
[15] V. K. Mal inovsk i ı̆, Limit theorems for Harris Markov chains, I , Theory Probab.

Appl. 31 (1986), 269–285.
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