Introduction. Let us consider a system of linear algebraic equations
\[Ax = b, \]
where \(A \) is an \(N \times N \) real, invertible matrix. In [1] a method of decomposition of (1) was proposed. The purpose of such a decomposition is to enable parallelization of the algorithm, and if possible to make the problem better conditioned.

Let \(R = UA - AU \). The general idea of the method mentioned above is based on the following observation: if an \(N \times N \) matrix \(U \) of rank \(r < N \) commutes sufficiently well with \(A \), i.e. \(R \) is sufficiently small, then \(U \) defines an approximate decomposition of (1).

Let \(U = QF \), where \(Q \) is an \(N \times r \) matrix and \(F \) is an \(r \times N \) matrix, both of rank \(r \). In [1] it is proposed to replace (1) by one of following systems, which can be solved by iteration:

\[
\begin{align*}
 Q^T AQy_{n+1} + Q^T RQy_n + Q^T RSz_n &= Q^T Ub, \\
 S^T ASz_{n+1} - S^T RQy_n - S^T RSz_n &= G(I - U)b,
\end{align*}
\]

or

\[
\begin{align*}
 AQy_{n+1} + FRQy_n + FRSz_n &= FUb, \\
 GASz_{n+1} - GRQy_n - GRSz_n &= G(I - U)b,
\end{align*}
\]

where \(I - U = SG \) with an \(N \times s \) matrix \(S \) and an \(s \times N \) matrix \(G \), and, in general, \(N - r \leq s \leq N \). Moreover, \(x_n = Qy_n + Sz_n \) converges to the solution \(x = A^{-1}b \) of the system (1).

We may easily transform (2) and (3) to a more convenient form not containing \(R \) (see [1]):

1991 *Mathematics Subject Classification*: 65F10, 65F35.

Key words and phrases: decomposition of a matrix, nearly commuting matrices, parallelization.
(4) \[Q^T AQ v_{n+1} = Q^T U r_n, \quad S^T AS w_{n+1} = S^T (I - U) r_n, \]

or

(5) \[FAQ v_{n+1} = FU r_n, \quad GASw_{n+1} = G(I - U) r_n, \]

where

\[v_{n+1} = y_{n+1} - Fx_n, \quad x_n = Q y_n + Sz_n, \]
\[w_{n+1} = z_{n+1} - Gx_n, \quad r_n = b - Ax_n. \]

If \(U \) is a projector, i.e. if \(U^2 = U \), each of the systems (4) and (5) contains exactly \(N \) equations \((s = N - r)\), hence such a choice is preferable.

This paper concerns the following problem:

Given \(U = QF \), where \(Q \) and \(F \) are \(N \times r \) and \(r \times N \) matrices respectively, both of rank \(r \leq N \), we have to construct an \(N \times N \) matrix \(V \), satisfying the following conditions:

1. \(\text{rank}(V) = \text{rank}(U) = r; \)
2. \(V^2 = V; \)
3. \(\text{Im}(V) = \text{Im}(U); \)
4. If at least one of the processes (4) and (5) converges and \(R \) is sufficiently small, then after replacing \(U \) by \(V \), at least one of (4) and (5) will converge as well.

The matrix \(V \)

Lemma 1. Let \(U \) be an \(N \times N \) matrix of rank \(r \leq N \). Assume that there are \(r \) linearly independent columns \(u_{p_1}, \ldots, u_{p_r} \) of \(U \) and \(r \) linearly independent columns \(w'_{p'_1}, \ldots, w'_{p'_r} \) of \(U^T \) such that \((w'_{p'_i}, u_{p_i}) \neq 0\) for \(i = 1, \ldots, r \). Then there exist four matrices \(Q, Q', F, F' \) of dimensions \(N \times r, N \times r, r \times N, r \times N \) respectively, such that

\[U = QF, \quad U^T = Q'F' \]

and

\[Q^T Q' = Q' Q = I_r. \]

Proof. Observe that in this case a kind of Gram–Schmidt process of biorthogonalization can be applied to the double system of vectors \(u_{p_1}, \ldots, u_{p_r}, w'_{p'_1}, \ldots, w'_{p'_r} \).

We start with

\[u_{p_1} = \gamma_{1,1} q_1, \quad w'_{p'_1} = \gamma'_{1,1} q'_1, \quad \gamma_{1,1} \gamma'_{1,1} = (w'_{p'_1}, u_{p_1}) \neq 0, \]
and then we proceed with the formulas

\[u_{pk} = \sum_{j=1}^{k} \gamma_{k,j} q_j, \quad \gamma_{k,j} = (q'_j, u_{pk}), \quad j = 1, \ldots, k-1, \]

\[w_{pk}' = \sum_{j=1}^{k} \gamma'_{k,j} q'_j, \quad \gamma'_{k,j} = (q_j, w_{pk}'), \quad j = 1, \ldots, k-1, \]

\[\gamma_{k,k} \gamma'_{k,k} = (w_{pk}', u_{pk}) - \sum_{j=1}^{k-1} \gamma_{k,j} \gamma'_{k,j} \]

for \(k = 1, \ldots, r \). In this way we get

\[u_s = \sum_{j=1}^{r} \gamma_{s,j} q_j, \quad \gamma_{s,j} = (u_s, q'_j), \]

\[w_s' = \sum_{j=1}^{r} \gamma'_{s,j} q'_j, \quad \gamma'_{s,j} = (w_s, q_j), \]

for all \(s = 1, \ldots, N, \ j = 1, \ldots, N \). The last formulas can be written in the form

\[U = QF \quad \text{and} \quad U^T = Q'F', \]

where \(Q \) and \(Q' \) are the \(N \times r \) matrices with columns \(q_j \) and \(q'_j \), respectively, and \(F \) and \(F' \) are the \(r \times N \) matrices of the coefficients \(\gamma_{i,j} \) and \(\gamma'_{i,j} \), respectively.

Assume now that the decompositions from Lemma 1: \(U = QF \) and \(U^T = Q'F' \) are possible, and are given. Define

\[V = QQ^T \quad \text{and} \quad R' = VA - AV. \]

Proposition 1. \(V \) is a projector.

Proof. \(VV = QQ^T QQ^T = QI, Q^T = V. \)

Since \(V \) is a projector of rank \(r \), \(I - V \) is a projector of rank \(N - r \). Hence \(I - V = S'G' \), where \(S' \) and \(G' \) are \(N \times (N - r) \) and \((N - r) \times N \) matrices respectively. This decomposition may be obtained for example by usual Gram-Schmidt orthogonalization, applied to the columns of \(I - V \).

Proposition 2. \(U = UV = VU. \)

Proof. We have \(VU = QQ^T QF = QIF = QF = U \). Moreover, \(UV = (Q'F')^T QQ^T = F'^T Q^T QQ^T = F'^T IF^T Q^T = (Q'F')^T = U. \)
Proposition 3.
\[R(I - V) = UR', \quad (I - V)R = R'U. \]

Proof. By Proposition 2 it follows that \(R = UA - AU = UVA - AVU \); since \(AU = UA - R \), we have
\[R = UVA - UAV + RV = UR' + RV \]
and so \(UR' = R(I - V) \). Similarly, \(R = UA - AU = VUA - AVU \), and \(UA = AU + R \), hence
\[R = VAU + VR - AVU = R'U + VR, \]
whence \(R'U = (I - V)R \).

Proposition 4. \(Q^T R' Q = 0 \).

Proof. Observe that \(R' = VA - AV = A(I - V) - (I - V)A \). This yields
\[VR'V = VA(I - V)V - V(I - V)AV = 0, \]
because \(V \) is a projector and \(V(I - V) = (I - V)V = 0 \). On the other hand, \(0 = VR'V = QQ^T R'QQ^T \) and \(0 = Q^T VR' Q' = Q^T QQ^T R' QQ^T Q' \).
Now, \(Q^T Q \) and \(Q^T Q' \) are the Gram matrices of the bases \(q_1, \ldots, q_r \), and \(q'_1, \ldots, q'_r \), and hence are invertible. Finally, we deduce that \(Q^T R' Q = 0 \).

Proposition 5. \(G' R' S' = 0 \).

Proof. Since \(V \) is a projector, we have
\[(I - V)R'(I - V) = (I - V)(VA - AV)(I - V) = 0, \]
because \((I - V)V = V(I - V) = 0 \). Therefore
\[S' G' R' S' G' = 0 \]
and
\[S'^T S' G' R' S' G'^T = 0. \]
We conclude that \(G' R' S' = 0 \), the Gram matrices \(S'^T S' \) and \(G'^T G'^T \) being invertible.

Proposition 6. \(R'Q = (I - V)RF^T (FF^T)^{-1} = O(R) \).

Proof. From Proposition 3, \((I - V)R = R'QF \), and hence
\[R'Q = (I - V)RF^T (FF^T)^{-1} \].
Proposition 7. If FQ is invertible (that is, U is in some sense close to a projector), then
\[Q^T R' = (FQ)^{-1}(Q^T Q)^{-1}Q^T R(I - V) = O(R). \]

Proof. By Proposition 3, $R(I - V) = UR'$, and by Proposition 2, $U = UV = QFQQ^T$. Hence $R(I - V) = QFQQ^T R'$, which implies
\[Q^T R(I - V) = Q^T QFQQ^T R'. \]
The assertion follows by invertibility of FQ and $Q^T Q$.

Theorem 1. Assume that the hypotheses of Lemma 1 are satisfied, the matrix U depends continuously on R, where $R = UA - AU$, and FQ is invertible for R small. Then the process (5), with U replaced by V, converges for R small enough. This process can now be written as follows:
\begin{align*}
Q^T AQv_{n+1} &= Q^T r_n, \\
G'AS'w_{n+1} &= G'(I - V)r_n, \\
v_{n+1} &= y_{n+1} - Q^T x_n, \\
x_n &= Qy_n + S'z_n, \\
w_{n+1} &= z_{n+1} - G'x_n, \\
r_n &= b - Ax_n.
\end{align*}

Proof. Let us return to the equation (3), equivalent to (5). Now, if U is replaced by V, in view of Propositions 1–7, the equation (3) admits the following form:
\begin{align*}
Q^T AQy_{n+1} + Q^T R'S'z_n &= Q^T b, \\
G'AS'S_{n+1} - G'R'Qy_{n} &= G'(I - V)b.
\end{align*}
By Propositions 1–7, the coefficients of all terms containing y_n and z_n are of order $O(R)$; hence the convergence follows by standard arguments.

Case of A symmetric. Put now $V = QQ^T$, $R = UA - AU$, $R' = VA - AV$, and $U = QF$ with $Q^T Q = I_r$. A decomposition of this kind may be obtained for example by application of the Gram–Schmidt process to the columns of U.

Proposition 8. V is an orthogonal projector.

Proof. $VV = QQ^T QQ^T = QI_r Q^T = V$. Moreover, $V^T = (QQ^T)^T = QQ^T = V$.

Since $I - V$ is of rank $N - r$, we may decompose (by the Gram–Schmidt process)
\[I - V = S'G', \text{ where } S'^T S' = I_{N-r}. \]

Proposition 9. If $A = AT$, then $R^T = -R'$.

Proof. We have $R^T = (VA - AV)^T = ATV - VTA = AV - VA = -R'$.

Decomposition of a system of linear equations 195
PROPONION 10. \(R'Q = (I - V)RF^T(FF^T)^{-1} = O(R). \)

Proof. We have \(Q^TU = Q^TF = F, \) hence \(U = QQ^TU = VU. \)

\(R = UA - AU = VUA - AV = V(AU + R) - AVU = R'U + VR, \)
and so \((I - V)R = R'U = R'QF. \) Since \(FF^T \) is invertible, we get \(R'Q = (I - V)RF^T(FF^T)^{-1}. \)

PROPONION 11. If \(A = A^T, \) then \(Q^TR' = -(FF^T)^{-1}FR^T(I - V) = O(R). \)

Proof. We have \(R'Q = (I - V)RF^T(FF^T)^{-1}, \)
whence by Proposition 9,
\[-Q^TR^T = Q^TR' = -(FF^T)^{-1}FR^T(I - V). \]

PROPONION 12. If \(A = A^T, \) then \(Q^TRQ = 0. \)

Proof. Observe that \((I - V)Q = Q - QQ^TQ = Q - Q = 0 \) and \(Q^TRQ = -(FF^T)^{-1}FR^T(I - V)Q = 0. \)

PROPONION 13. \(S^T R'S' = 0. \)

Proof. We have
\[(I - V)R'(I - V) = (I - V)(VA - AV)(I - V)\]
\[= (I - V)VA(I - V) - (I - V)AV(I - V) = 0\]
because \(V(I - V) = (I - V)V = 0, \) where \(V \) is an orthogonal projector.
Since \(I - V \) is symmetric, it follows that \(I - V) = (I - V)^T = G^T S'^T \)
and \((I - V)R'(I - V) = G^T S'^T R'S'G'. \) Observe that \(G^T G' \) is invertible, whence \(G'(I - V)R'(I - V)G'^T = 0, \) which completes the proof.

THEOREM 2. Assume that \(A = A^T, \) and that \(U = QF, \) where \(Q^TQ = I_r, \) depends continuously on \(R = UA - AU. \) Then the process (4), with \(U \) replaced by \(V = QQ^T, \) which is now of the following form:
\[Q^TAQ_{v_{n+1}} = Q^T r_n, \quad S'^T A S' w_{n+1} = S'^T S'G'r_n, \]
\[v_{n+1} = y_{n+1} = v_{n+1} - Q^T x_n, \quad x_n = Qy_n + S'z_n, \]
\[w_{n+1} = z_{n+1} = z_{n+1} - G'x_n, \quad r_n = b - Ax_n, \]
converges for \(R \) small enough.

Proof. We recall the equation (2), equivalent to (4), which now takes the form
\[Q^TAQ_{y_{n+1}} + Q^T R'S'z_n = Q^T (I - V)b, \]
\[S'^T A S' z_{n+1} - S'^T R'Qy_n = G'(I - V)b, \]
From Propositions 8–12 it follows that the terms containing \(y_n \) and \(z_n \) are of order \(O(R) \); hence, for \(R \) small the convergence follows by standard arguments.

Example. Assume that an \(N \times N \) matrix \(A \) and an \(M \times M \) matrix \(C \), with \(M < N \), are two finite-dimensional approximations of a certain linear operator. For simplicity, assume both matrices \(A \) and \(C \) to be symmetric and invertible.

Let

\[
p : \mathbb{R}^M \to \mathbb{R}^N \quad \text{and} \quad r : \mathbb{R}^N \to \mathbb{R}^M
\]

be linear extension and restriction operators, respectively (see [2]). Put

\[
U = pCr : \mathbb{R}^N \to \mathbb{R}^N.
\]

If \(p \) and \(r \) are properly chosen (see [2]), then we may expect that \(R = UA - AU \) will be small for sufficiently large \(N \) and \(M \), \(M < N \). We may also expect (at least in certain situations—see the Laplace operator for example), that in general the matrix \(C \) will correspond to a lower part of the spectrum of the original operator than the matrix \(A \). This phenomenon may be explained as follows: approximation on a rough grid in general does not allow passing higher frequency oscillations.

We may apply our algorithm (9) to the matrix \(A \) and \(U \). Application of the Gram–Schmidt process to the columns of the matrix \(pC \) will give \(pC = Q\Gamma \) with \(Q^TQ = I_M \). Hence we get

\[
pC r = QF
\]

with \(F = \Gamma r \). We can construct in an arbitrary way an \(N \times (N - M) \) matrix \(\tilde{Q} \) in order to get an \(N \times N \) orthogonal matrix

\[
[Q|\tilde{Q}].
\]

We have \(V = QQ^T \) and

\[
I - V = [Q|\tilde{Q}][Q|\tilde{Q}]^T - QQ^T = QQ^T + \tilde{Q}\tilde{Q}^T - QQ^T = \tilde{Q}\tilde{Q}^T.
\]

In other words, \(S' = \tilde{Q} \) and \(G' = \tilde{Q}^T \).

Now the system (9) can be written in the following form:

\[
Q^TAv_{n+1} = Q^Tr_n, \quad \tilde{Q}^TA\tilde{Q}z_{n+1} = \tilde{Q}^Tr_n,
\]
\[
v_{n+1} = y_{n+1} - Q^Tx_n, \quad x_n = Qy_n + \tilde{Q}z_n,
\]
\[
w_{n+1} = z_{n+1} - \tilde{Q}^Tx_n, \quad r_n = b - Ax_n.
\]
References

KRZYSZTOF MOSZYŃSKI
DEPARTMENT OF MATHEMATICS, COMPUTER SCIENCE AND MECHANICS
UNIVERSITY OF WARSAW
BANACHA 2
02-097 WARSZAWA, POLAND
E-mail: KMOSZYNS@MIMUW.EDU.PL

Received on 28.9.1994