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GROWTH AND ACCRETION OF MASS
IN AN ASTROPHYSICAL MODEL

Abstract. We study asymptotic behavior of radial solutions of a nonlocal
Fokker–Planck equation describing the evolution of self-attracting particles.
In particular, we consider stationary solutions in balls and in the whole
space, self-similar solutions defined globally in time, blowing up self-similar
solutions, and singularities of solutions that blow up in a finite time.

1. Introduction. The parabolic-elliptic system of partial differential
equations in a domain Ω of Rn,

ut = ∆u +∇ · (u∇ϕ),(1)
∆ϕ = u,(2)

supplemented with appropriate boundary and/or growth conditions (when
Ω = Rn), was studied in papers [1], [6], [4], [2], [9], [10–11]. This system can
be interpreted as a nonlocal Fokker–Planck equation when the drift coeffi-
cient ∇ϕ is reconstructed from the relation (2). Physical interpretations of
the system (1)–(2), described in more detail in [6], [10–11], include the evolu-
tion version of the Chandrasekhar equation for the gravitational equilibrium
of polytropic stars, and an evolution equation for self-interacting clusters of
particles obtained from a kinetic model of Vlasov–Poisson–Boltzmann type.

Results on local-in-time solvability of the initial(-boundary) value prob-
lem for (1)–(2) have been proved even in more general situations ([5] based
on techniques in [3], and [1]). Questions related to the existence of solu-
tions defined globally in time versus finite time blow up of solutions are far
more delicate, and some results can be found in [6], [4], [2], [9]. The ex-
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istence of solutions that cannot be continued to global-in-time ones (hence
describing gravitational collapse phenomena) is intimately connected with
nonexistence of stationary solutions to (1)–(2); see [6], [4], [2], [9]. Concern-
ing the existence, multiplicity or nonexistence of stationary solutions we cite
also [7–8]. Roughly speaking, besides strong dependence of qualitative prop-
erties of solutions on the topology of the domain Ω, there is a parameter,
whose dimension is mass×(length)2−n, which can be called concentration.
This parameter measures how stationary states may be complicated, and
controls when solutions of the evolution problem may cease to exist. Math-
ematically, criteria for the occurrence of these phenomena can be expressed
in terms of the Morrey space norm of exponent n/2; see [6], [2], [1]. Except
for [4], [9], all the above-mentioned papers deal with general solutions to the
problem (1)–(2). Even in [4], [9], devoted entirely to radially symmetric so-
lutions, we avoided—for simplicity sake—discussions of some fine properties
of solutions.

This paper deals with the equation (cf. [4, (6)])

(3) Qt = Qrr − (n− 1)r−1Qr + σ−1
n r1−nQQr,

where σn is the area of the unit sphere in Rn, satisfied by Q(r, t) =∫
Br

u(x, t) dx defined for a radial nonnegative solution u of (1)–(2) in either a
ball Ω = BR, or the whole space Ω = Rn. Hence the integrated density Q is
a nondecreasing positive function defined on either the interval [0, R] or the
half-line [0,∞). Since the conservation of the total mass M =

∫
Ω

u(x, t) dx
is a natural requirement (cf. [6, (3)]), we add the condition

(4) Q(0, t) = 0, Q(R, t) = M,

with an admissible value M = ∞ if R = ∞. For the initial data we put

(5) Q(r, 0) = Q0(r)

with a positive nondecreasing function Q0 satisfying the obvious compati-
bility condition Q0(0) = 0, Q0(R) = M .

Note that under the radial symmetry assumption the nonlocal problem
(1)–(2) is equivalent to a (local!) differential equation for Q. Moreover,
natural but nonlinear boundary conditions for (1)–(2) become a simpler
Dirichlet condition (4). Finally, the formulation (3)–(4) permits us to deal
with less regular densities u (e.g. including measures, not only L1 functions)
than those considered in [6].

We will study in this paper: asymptotic growth of stationary solutions
to (3) when n ≥ 3, R = ∞, conditions for the uniqueness of steady states
in a ball (pertinent to the smallness assumption of Th. 2 in [4] on global-
in-time solutions), growth of self-similar solutions defined globally in time,
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asymptotic properties of blowing up self-similar solutions, and minimal sin-
gularities of solutions that blow up in a finite time.

The methods used in this note are connected with elementary comparison
techniques for ordinary and (parabolic) partial differential equations, hence
they are much simpler than those in the cited papers.

2. Steady states. Time independent solutions of (3)–(4) satisfy

(6) Qrr − (n− 1)r−1Qr + σ−1
n r1−nQQr = 0, Q(0) = 0, Q(R) = M.

Due to scaling properties of (6) it is sufficient to consider the cases R = 1
(a finite ball) and R = ∞ (the whole space Rn). Indeed, if Q solves (6) on
[0, R], R < ∞, then Q̃(r) = R2−nQ(Rr) solves (6) on [0, 1] with the total
mass condition Q̃(1) = MR2−n.

Proposition 1. If n ≥ 3, R = ∞, Q 6≡ 0, then necessarily M = ∞,
and limr→∞ r2−nQ(r) exists for each solution to (6).

The two-dimensional case was studied in detail in [4] and [9], see also
[7–8]. Note that if n = 2, then M = 8π is the unique value of M > 0 for
which solutions of (6) with R = ∞ do exist; cf. [9, Section 2]. Moreover, for
n = 3, the asymptotically linear growth of Q(r) was proved in [9, Section 2].

P r o o f o f P r o p o s i t i o n 1. First, it is very easy to obtain an upper
bound for Q. Indeed, multiplying (6) by rn−1 and integrating on [0, %], after
some integrations by parts, we arrive at

rn−1Qr|%0 − 2(n− 1)rn−2Q|%0

+2(n− 1)(n− 2)
%∫

0

rn−3Q(r) dr + (2σn)−1Q2(%) = 0

for each % ≥ 0. Together with monotonicity properties of Q this leads to

Q2(%) ≤ 2σn 2(n− 1)%n−2Q(%), i.e. Q(%) ≤ 2σn 2(n− 1)%n−2.

For a proof of the asymptotic growth property in Proposition 1 we recall a
useful reformulation of the problem (6) (involving the phase plane method)
studied in [4, (9)]. Namely, if s = log r, v(s) = σ−1

n r3−nQr(r), w(s) =
σ−1

n r2−nQ(r), then v and w satisfy the (autonomous!) system

(7) v′ = (2− w)v, w′ = v − (n− 2)w, ′ =
d

ds
,

together with the boundary conditions

(8) w(−∞) = 0, w(log R) = σ−1
n M

(R = 1, R = ∞ being of interest).
Let us recall from [4] that L(v, w) = (w − 2)2/2 + (v − 2(n − 2)) −

2(n− 2) log(v/(2(n− 2))) is a Lyapunov function for the dynamical system
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(7) in the positive quadrant v > 0, w > 0. Note that the (forward) invariance
of this quadrant with respect to the flow of (7) means that each solution
of the equation (6) with Q(0) ≥ 0, Q′(0) ≥ 0 is positive and nondecreasing
(this justifies the use of monotonicity of Q in the first part of the proof).

Using this Lyapunov function we can prove (as in [9] for n = 3) that the
separatrix joining the stationary points (0, 0) and (2(n− 2), 2) is the unique
trajectory with v(s) > 0 for all s ∈ R. Now lims→∞ w(s) = 2 is equivalent
to the relation limr→∞ r2−nQ(r) = 2σn. Moreover, limr→∞ r3−nQr(r) =
2(n−2)σn, hence the asymptotic growth of Q and Qr is established. Observe
that if 3 ≤ n ≤ 9 then r2−nQ(r) is not monotone, since the separatrix turns
around the point (2(n− 2), 2) infinitely many times.

An analysis in [4, Section 2] shows that for R = 1 and M > M∗(n) with
some M∗(n) > 0 (e.g. M∗(n) = 2σn for n ≥ 10) there are no solutions to
(7)–(8), if 3 ≤ n ≤ 9 then solutions are not unique in some range of M ’s:
M ∈ (M∗(n),M∗(n)), 0 < M∗(n) < M∗(n), and in all the remaining cases
the uniqueness of solutions holds (cf. [4, Th. 2]).

Proposition 2. If R = 1, 5 ≤ n ≤ 9, then M∗(n) > 2σn(n−4)/(n−2),
i.e. for each M ∈ (0, 2σn(n− 4)/(n− 2)] solutions of (7)–(8) are unique.

This result is of interest for questions of the continuation in time of solu-
tions to (3)–(5). Namely, Th. 2 in [4] states that Q0(r) ≤ ((n− 4)/(n− 2))
×2σnrn−2, 0≤ r≤ 1, is a sufficient condition for global-in-time existence of
solutions and their convergence to a stationary solution. Proposition 2 as-
sures that in this range of mass M there exists a unique stationary solution.

P r o o f o f P r o p o s i t i o n 2. First note that local maxima and local
minima of the w-coordinate on the spiral trajectory connecting the origin
with the point (2(n − 2), 2) are situated on the line v = (n − 2)w (where
w′ = 0). The second observation is that the Lyapunov function L enjoys
the property L(2(n− 2), w) = (w− 2)2/2, so this is monotone for w ∈ [0, 2]
and w ∈ [2,∞). Denoting by w∗ (w∗ resp.) the first local maximum (resp.
minimum) of w on the separatrix, v∗ = (n− 2)w∗, v∗ = (n− 2)w∗, and by
w ∈ (0, 2) the w-coordinate of the first point where v = 2(n− 2), we have

L(v∗, w∗) < L(2(n− 2), w) < 2 = L(2(n− 2), 0),

L(v∗, w∗) < (w∗ − 2)2/2 = L(2(n− 2), w∗).

Monotonicity properties of L and a particularly simple form of the function

(9) L((n− 2)w,w) =
1
2
(w − 2)2 + (n− 2)(w − 2)− 2(n− 2) log

w

2
allow us to estimate w∗ from above, and then w∗ from below. This will
lead to some bounds for M∗(n) = σnw∗ and M∗(n) = σnw∗. Reasonable
precision can be obtained with a calculator, but for our purposes it suffices
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to estimate (9) crudely using the inequalities

log(1 + ε) < ε− ε2/2 + ε3/3, log(1− ε) < −ε− ε2/2− ε3/3,

valid for each ε > 0, applied to w = 2(1 ± ε). We skip the details of
calculations noting that for the proof of Proposition 2 we obtain e.g.

for n = 5 : w∗ < 3.6, w∗ > 0.8,
for n = 6 : w∗ < 3.5, w∗ > 1.2,
for n = 7 : w∗ < 3.38, w∗ > 1.2,
for n = 8 : w∗ < 10/3, w∗ > 4/3,
for n = 9 : w∗ < 3.2, w∗ > 10/7.

Of course, these bounds can be substantially improved by tracing approx-
imations of the separatrix using any O.D.E. solver, but here we controlled
accuracy in a quite simple way. In principle, successive local maxima and
minima of w (that determine the number of steady states corresponding to
a given mass) can be estimated by the same method.

3. Self-similar solutions. Homogeneity properties of the system
(1)–(2) imply that if u solves this system, then the rescaled function
uλ(x, t) = λ2u(λx, λ2t), λ > 0, is also a solution. It is natural to consider
solutions which satisfy the scaling property uλ ≡ u, i.e. forward self-similar
solutions. They are defined globally in time, and it is expected that they de-
scribe large time behavior of general solutions to (1)–(2). For a discussion of
these particular solutions (existence, singularities, etc.) without radial sym-
metry assumption, we refer to [1]. If uλ ≡ u, then u(x, t) = t−1U(xt−1/2)
for a function U (whose singularity at the origin resembles that of a func-
tion homogeneous of degree −2; for a precise meaning of this see (23) in
[1] and [1, Section 3]). Here we would like to point out some properties of
integrated densities associated with radial self-similar u’s. For u ≡ uλ we
have

(10) Q(r, t) = σntn/2−1ζ(r2/t)

with a nondecreasing positive function ζ. It can be verified that ζ = ζ(y),
y = r2/t, satisfies the equation ([1, (32)])

(11) ζ ′′ +
1
4
ζ ′ − n− 2

2y
ζ ′ − n− 2

8y
ζ +

1
2yn/2

ζζ ′ = 0, ′ =
d

dy
, ζ(0) = 0.

Below we give a refinement of the result in [1, Prop. 3].

Proposition 3. (i) For n = 2 there exists a nondecreasing solution of
(11) such that limy→∞ ζ(y) = Z if and only if Z ∈ [0, 4).
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(ii) If n ≥ 3, then for each nondecreasing solution ζ 6≡ 0 of (11),

ζ(y) ≤
(

1− 2
n

)
yn/2 + 4(n− 1)yn/2−1,

and limy→∞ y1−n/2ζ(y) is a finite strictly positive number.

P r o o f. (i) For n = 2, Proposition 3(i) in [1] gives the existence of
self-similar solutions with Z ∈ [0, 2(1+ e−2)) and nonexistence when Z > 4.

For n = 2, (11) reads ζ ′′+ζ ′/4+ζζ ′/(2y) = 0 and the change of variables
s = (log y)/2, v(s) = 2y(dζ/dy)(y), w(s) = ζ(y) transforms (11) into the
problem

v′ = (2− w)v − e2s

2
v, w′ = v, ′ =

d

ds
,

v(−∞) = 0, w(−∞) = 0.

Evidently, lims→∞ w(s) < 4 because the function (w − 2)2 + 2v is strictly
decreasing along the phase trajectory of the above system.

We also consider an autonomous system

v′ = (2− w)v − εv, w′ = v,

where ε > 0, v = vε, w = wε, with the same condition at s = −∞. A com-
parison of these vector fields gives the relation w(s) ≤ w(s) for all s ≤ sε

with e2sε = 2ε. Since w(s) = 2(2− ε)Ae(2−ε)s(1+Ae(2−ε)s)−1 with an arbi-
trary A > 0 is a solution of the auxiliary system, w(sε) = 2(2−ε)A(2ε)1−ε/2

× (1 + A(2ε)1−ε/2)−1, so sup Z = supw(s) ≥ lim supε→0, s≤sε, A>0 w(s) = 4.
(ii) Note that the Chandrasekhar stationary solution ũ(x) = 2(n−2)|x|−2

of (1)–(2) corresponds to ζ̃(y) = 2yn/2−1, n ≥ 3.
Multiply (11) by yn/2 and integrate on [0, Y ]. After some elementary

calculations we obtain

yn/2ζ ′|Y0 − (n− 1)
Y∫

0

yn/2−1ζ ′(y) dy

+
1
4
yn/2ζ|Y0 −

n− 1
4

Y∫
0

yn/2−1ζ(y) dy +
1
4
ζ2(Y ) = 0.

Taking into account monotonicity of ζ and the initial condition for ζ we
write

ζ2(Y ) + Y n/2ζ(Y ) ≤ (n− 1)
Y∫

0

yn/2−1ζ(y) dy + 4(n− 1)Y n/2−1ζ(Y )

≤ 2
n− 1

n
Y n/2ζ(Y ) + 4(n− 1)Y n/2−1ζ(Y ),
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which gives the conclusion

ζ(Y ) ≤
(

2− 1− 2
n

)
Y n/2 + 4(n− 1)Y n/2−1.

The change of variables in (11) (analogous to that in the proof of Proposi-
tion 1), s = (log y)/2, v(s) = 2y2−n/2(dζ/dy)(y), w(s) = y1−n/2ζ(y), now
leads to a nonautonomous system in the plane

(12) v′ = (2−w)v +
e2s

2
((n− 2)w− v), w′ = v − (n− 2)w, ′ =

d

ds
.

If we compare the vector field (7) associated with the steady state problem
in the proof of Proposition 1 with that in (12) in the sectors below and
above the line v = (n− 2)w, then we see that forward self-similar solutions
are determined by curves which are surrounded with the separatrix of the
autonomous problem (7). In other words, spirals of these curves are arranged
in a more tight manner than those of the separatrix for (7). Of course, for
n = 2 and n ≥ 10, there is a unique scroll of such a curve, since the
eigenvalues of the linearization of the vector field at (2(n− 2), 2) are real.

Just as forward self-similar solutions are important for the large time
asymptotics of arbitrary global-in-time solutions, backward (or blowing up)
self-similar ones are expected to describe behavior of solutions that cannot
be continued beyond a finite time T (i.e. that explode at t = T ). We
mentioned them in [4, Sec. 4]. If u has the self-similar form u(x, t) =
(T − t)−1V (x(T − t)−1/2) and u is radially symmetric, then the associated
integrated density Q equals Q(r, t) = σn(T − t)n/2−1ξ(r2/(T − t)). Here
y = r2/(T − t) and ξ = ξ(y) is a positive nondecreasing function satisfying

(13) ξ′′ − 1
4
ξ′ − n− 2

2y
ξ′ +

n− 2
8y

ξ +
1

2yn/2
ξξ′ = 0, ′ =

d

dy
, ξ(0) = 0.

Note that if ξ(y) = z(s), y = s2, then z solves the equation

z̈ −
(

s

2
+

n− 1
s

)
ż +

(
n

2
− 1

)
z + s1−nzż = 0, ˙ =

d

ds
,

considered in [4, (23)].
Besides the stationary Chandrasekhar solution ξ̃(y) = 2yn/2−1, there is

a particular solution ξ#(y) = yn/2/n of (13) corresponding to the spatially
uniform and growing-in-time density u#(x, t) = (T − t)−1. The result below
shows that these examples display typical growth of solutions to (13).

Proposition 4. (i) If n ≥ 2, then for each nondecreasing solution ξ 6≡ 0
of (13), limy→∞ ξ(y) = ∞.

(ii) Moreover , ξ is bounded from above by

ξ(y) ≤ yn/2 + 4(n− 1)yn/2−1.
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P r o o f. The property (i) was observed by A. Krzywicki and justified
using a different argument than the following one.

We begin with the case n = 2 and the equation

ξ′′ − 1
4
ξ′ +

1
2y

ξξ′ = 0.

Suppose, for a contradiction, that ξ(y) ≤ A for a nondecreasing solution ξ
and some constant A < ∞. From (13) we obtain the differential inequality
ξ′′ − ξ′/4 + (A/(2y))ξ′ ≥ 0, and after two integrations,

ξ(y) ≥ ξ(y0) +
y∫

y0

(ξ′(y0)e−y0/4y
A/2
0 )es/4s−A/2 ds

(y0 > 0, ξ′(y0) > 0), which tends to +∞ as y →∞.
The case n ≥ 3 is only slightly more difficult. Let ω = ξ′−((n−2)/(2y))ξ;

then

(14) ω′ − 1
4
ω − n− 2

2y2
ξ + (2yn/2)−1

(
ω +

n− 2
2y

ξ

)
ξ = 0.

Suppose that ξ(y) ≤ A < ∞, so that (2yn/2−1)−1ξ(y) − 1 ≤ 0 for large y.
The equation (14) then implies ω′ + (A(2yn/2)−1 − 1/4)ω ≥ 0, so after an
integration,

ω(y) ≥ a0e
y/4 with a0 = ω(y0) exp

(
− y0

4
− A

n− 2
y
1−n/2
0

)
> 0, y0 > 0.

Finally, we get (ξ(y)y1−n/2)′ ≥ a0e
y/4y1−n/2, and

ξ(y) ≥ yn/2−1a0

y∫
y0

es/4s1−n/2 ds,

which tends to +∞ as y →∞.
(ii) We proceed as in the proof of Proposition 3: (13) multiplied by yn/2

and integrated on [0, Y ] leads to

yn/2ξ′|Y0 − (n− 1)
Y∫

0

yn/2−1ξ′(y) dy

− 1
4
yn/2ξ|Y0 +

n− 1
4

Y∫
0

yn/2−1ξ(y) dy +
1
4
ξ2(Y ) = 0.

Then we obtain

ξ2(Y ) ≤ Y n/2ξ(Y ) + 4(n− 1)Y n/2−1ξ(Y ),

so the upper bound for the growth of ξ is as announced.
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4. Blowing up solutions. We recall that the system (3)–(4) on Ω =
BR, with an initial condition (5) of sufficiently large concentration MR2−n =
Q0(R)R2−n > 2nσn, cannot have solutions defined globally in time. The
proof of this result ([4, Th. 3]) uses the virial method, i.e. the evolution
of moments of the density u is considered (e.g. v(t) =

∫
Ω
|x|2u(x, t) dx).

Refinements of this nonexistence result can be found in [2], where the system
(1)–(2) is considered in general star-shaped domains Ω.

Corollaries of [2] together with an analysis of solvability of the Cauchy
problem in [1, Sec. 2] may be interpreted that, loosely speaking, a sufficiently
high local concentration of u0 does not allow even to define solutions of the
evolution problem.

Here we would like to make a next step in understanding blow up and
nonexistence of solutions phenomena by studying a simple case of radial
solutions with u0 having a local singularity at the origin.

Our purpose is to determine what critical singularities of u lead to a
blow up, and what kind of singularities can be smoothed out owing to
the parabolic regularization effect enjoyed by (1)–(2) (cf. [3, Th. 2(ii)],
[6, Th. 2(ii)]).

Below we consider solutions of the problem (3)–(5) on [0, R]× [0, T ] with
either R = 1 or R = ∞ and some T > 0.

Theorem. (i) If n ≥ 3 and Q0(r) > 2σnrn−2 for each r ∈ (0,∞), then
the solution of (3)–(5) cannot be global in time.

(ii) If n = 2 and Q(r, t) ≤ 4πα + Nr2 for some α < 1, N > 0 and all
r ∈ [0, 1], t ∈ [0, T ], then Q(r, t) ≤ Cr2 with a constant C independent of
time.

(iii) If n ≥ 3 and Q(r, t) ≤ 2σnαrn−2 +Nrn for some α < 1, N > 0 and
all r ∈ [0, 1], t ∈ [0, T ], then Q(r, t) ≤ Crn with a constant C independent
of time.

For an interpretation of the Theorem we formulate the following remarks:

• The assumption Q0(r) > 2σnrn−2, r ∈ (0,∞), is satisfied e.g. when
u0(x) > 2(n − 2)|x|−2. Note that a sufficient condition for blow up in the
initial-boundary value problem in terms of Q0(1) solely is Q0(1) > 2nσn,
see [4, Th. 3].

• (ii) implies that if a finite time blow up of solutions is accompanied by
a concentration of mass near the origin, then this mass is greater than 4π.

• (iii) implies that as long as u is strictly below the Chandrasekhar
steady state ũ(x) = 2(n− 2)|x|−2 (corresponding to Q̃(r) = 2σnrn−2), Q is
flat enough at the origin. In other words, the critical singularity of u0 that
prohibits the smoothing of the solution u must be (at least) as strong as
2(n− 2)r−2.
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P r o o f o f T h e o r e m. We transform (3)–(5), using a new independent
variable y = rn, into the problem

(15)
Qt = n2y2−2/nQyy + nσ−1

n QQy,

Q(0, t) = 0, Q(Rn, t) = M, Q(y, 0) = Q0(y),

exactly as in [4, Sec. 3]. In spite of the singular coefficient y2−2/n the
parabolic equation in (15) is slightly simpler to analyze than (3). First we
note that the parabolic maximum principle and, more generally, the com-
parison principle hold for (15). The proof of this, which is rather technical,
follows from considerations similar to those in the proof of Theorem 2 in
[4], where (15) is approximated by regularized equations with the leading
coefficient (y + ε)2−2/n, ε > 0.

(i) We look for a subsolution Q of the problem (15) with R = ∞, M = ∞
in the form Q(y, t) = β(t)y1−2/n with a function β. An easy calculation
shows that Q is a subsolution provided

β̇ ≥ (n− 2)β(σ−1
n β − 2), ˙ =

d

dt
.

This differential inequality leads to |1− 2σn/β| ≥ ce(n/2−1)t for some c > 0.
For β(0) > 2σn, c < 1, and β(t) ≥ 2σn(1− ce(n/2−1)t)−1 blows up in a finite
time. Note that on the level of approximating equations the above formal
argument works with y replaced by y + ε, ε > 0 small enough.

(ii) Our hypothesis for (15) reads Q(y, t) ≤ 4πα + Ny, and this implies

Qt ≤ 4yQyy + π−1Qy(4πα + Ny).

The comparison principle for linear parabolic equations allows us to estimate
Q by a supersolution Q which solves the problem Qyy +Qy(α/y+N/(4π)) =
0 with the boundary conditions in (15), i.e. Q(y, t) ≤ Cy1−α. Now if
δ = 1− α > 0, then

Qt ≤ 4yQyy + π−1CyδQy.

Again by the comparison principle we get Q(y, t) ≤ Cy with a suitable
constant C.

(iii) The assumption Q(y, t) ≤ 2σnαy1−2/n + Ny implies the differential
inequality

Qt ≤ n2y2−2/nQyy + nσ−1
n Qy(2σnαy1−2/n + Ny),

so Q ≤ Q, where Qyy + Qy(2α/(ny) + N(nσn)−1y2/n−1) = 0. Explicitly we
have Q(y, t) ≤ Cy1−2α/n. Using again the comparison principle, from

Qt ≤ n2y2−2/nQyy + nσ−1
n Qy(Cy1−2α/n)

the estimate Q ≤ Q̂ ≤ Cy with a suitably large C follows. Here Q̂ is a
solution of Q̂yy + (nσn)−1Q̂y(Cy2/n−1−2α/n) = 0.
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