
APPLICATIONES MATHEMATICAE
23,2 (1995), pp. 151–167

G. SCHEITHAUER and J. TERNO (Dresden)

A BRANCH&BOUND ALGORITHM
FOR SOLVING ONE-DIMENSIONAL

CUTTING STOCK PROBLEMS EXACTLY

Abstract. Many numerical computations reported in the literature show
only a small difference between the optimal value of the one-dimensional
cutting stock problem (1CSP) and that of the corresponding linear pro-
gramming relaxation. Moreover, theoretical investigations have proven that
this difference is smaller than 2 for a wide range of subproblems of the
general 1CSP.

In this paper we give a branch&bound algorithm to compute optimal
solutions for instances of the 1CSP. Numerical results are presented of about
900 randomly generated instances with up to 100 small pieces and all of them
are optimally solved.

1. Introduction. The one-dimensional cutting stock problem (1CSP)
is the following:

One-dimensional material objects of a given length L are divided into
smaller pieces of desired lengths l1, . . . , lm in order to fulfill the order
demands b1, . . . , bm. The goal is to minimize the total amount of stock
material or, equivalently, to minimize the total waste.

It is well known [6] that the 1CSP can be modelled as a linear integer
optimization problem as follows. Any feasible cutting pattern can be repre-
sented by an m-dimensional nonnegative integer vector aj = (a1j , . . . , amj)T

satisfying
∑m

i=1 liaij ≤ L. Defining integer variables xj to give the number
of stock material to be cut according to pattern aj one has

1991 Mathematics Subject Classification: 90C10, 90C05.
Key words and phrases: integer optimization, cutting stock problem, branch&bound,

rounding.

[151]

152 G. Scheithauer and J. Terno

z =
n∑

j=1

xj → min s.t.
n∑

j=1

aijxj ≥ bi, i = 1, . . . ,m,

xj ≥ 0, integer, j = 1, . . . , n,

where n denotes the number of cutting patterns. Without loss of generality,
all input data can be assumed to be integers, and in order to ensure solv-
ability, we suppose maxi=1,...,m li ≤ L. Furthermore, we assume bi ≥ 1 for
all i and l1 > . . . > lm.

This model can be written in the short form

(P) z = eT x → min s.t. Ax ≥ b, x ∈ Zn
+,

where e = (1, . . . , 1)T and the coefficient matrix A contains either all feasible
cutting patterns or, in an equivalent model, all maximal cutting patterns
aj as columns. A pattern a ∈ Zm

+ is called maximal if 0 ≤ L − lT a <
mini=1,...,m li. In general we consider the case where only the maximal
cutting patterns are contained in the matrix. In case an instance (m, l, L, b)
of the 1CSP is given, the instance (m,n,A, c, b) for model (P) is uniquely
determined but the converse is not true (cf. [15]).

Because of the (in general) exponential number n of variables and the
integrality condition the 1CSP is at least NP-hard. For that reason, a
frequently used solution strategy to obtain nearly optimal integer solutions
consists in solving the linear programming (LP) relaxation

(Q) z = eT x → min s.t. Ax ≥ b, x ∈ Rn
+,

of (P) using the revised simplex method with column generation and an
appropriate rounding (cf. [6], [7], [16]).

On the other hand, many numerical computations (cf. [13], [17]) show
only a small difference between the optimal value of the 1CSP (denoted by
z∗(E)) and that of the corresponding LP relaxation (denoted by zc(E)).
Up to now no instance E with z∗(E) > dzc(E)e + 1 was found [5], [10],
[13], [14].

Moreover, in [1] and [14] investigations are reported regarding the gap
between the optimal value z∗(E) and zc(E) for instances E of the 1CSP.
There the so-called integer round-up property (IRUP) and the modified
integer round-up property (MIRUP) were proven for several subproblems of
the 1CSP. And there is a founded hope that the MIRUP holds true for the
general 1CSP.

The aim and the organization of this paper are as follows. Based on these
investigations for the 1CSP a solution strategy is proposed which is directly
oriented on the MIRUP conjecture. In order to compute an optimal (inte-
ger) solution for an instance of the 1CSP the solution strategy (Section 3)
uses first a reduction (Section 2) of the instance. For that purpose an op-

Branch&bound algorithm 153

timal or nearly optimal solution of the continuous relaxation problem is
computed. Next, a very efficient greedy strategy secures in most cases the
determination of an optimal solution. In the other cases a branch&bound
algorithm is applied to the reduced instance (Sections 4 and 6). In order
to improve the performance of the solution process a termination crite-
rion for computing LP bounds using the simplex method is discussed in
Section 5. Numerical experiments with randomly generated instances (hav-
ing up to 100 small pieces) show the efficiency of the proposed algorithm
(Section 7).

2. Problem reduction. Baum and Trotter [1] define an integer mini-
mization problem of type (P) to have the integer round-up property (IRUP)
if for any instance E its optimal value z∗(E) is given by the smallest inte-
ger greater than or equal to the optimal value of its LP relaxation, i.e. (1)
z∗(E) = dzc(E)e. It is well known [10], [5], [12] that the 1CSP does not
belong to the class of problems having the IRUP.

In [12] the modified integer round-up property (MIRUP) is defined. An
integer minimization problem is said to have the MIRUP if for any instance
E the optimal value is bounded from above by the LP lower bound rounded
up plus 1, i.e. z∗(E) ≤ dzc(E)e + 1. Furthermore, the conjecture whether
the general 1CSP has the MIRUP is numerically investigated in [13].

Let M denote the set of all instances of the 1CSP having the MIRUP,
and let M∗ be the set of those instances having the IRUP.

In order to investigate the 1CSP with respect to the IRUP or the MIRUP
some reductions of the right hand side can be made similar to [14].

Let E = (m, l, L, b) be an instance of the 1CSP with coefficient matrix
A and let xc denote an optimal solution of the LP relaxation (Q) of P.
Rounding down yields an integer vector x with (2) xj = bxc

jc and a real
vector of fractional parts {xj} = xc

j − xj , j = 1, . . . , n. If x 6= xc then
a residual instance can be defined with the right hand side b := b − Ax.
Hence, the residual instance E := (m, l, L, b) is also an instance of the
1CSP.

Lemma 1. Let E be an instance of the 1CSP and E a corresponding
residual instance. Then:

(a) E ∈M∗ ⇒ E ∈M∗,
(b) E ∈M⇒ E ∈M.

(1) dxe denotes the smallest integer not smaller than x.
(2) bxc denotes the largest integer not larger than x.

154 G. Scheithauer and J. Terno

P r o o f. We have

z∗(E) ≤ eT x + z∗(E) ≤ eT x + dzc(E)e = deT x + zc(E)e = dzc(E)e.(a)
z∗(E) ≤ eT x + z∗(E) ≤ eT x + dzc(E)e+ 1(b)

= deT x + zc(E)e+ 1 = dzc(E)e+ 1.

A generalization of Lemma 1 implies the following problem reduction:

Lemma 2. Let E = (m, l, L, b) be an instance of the 1CSP with coefficient
matrix A and let xs ∈ Rn

+ be such that Axs ≥ b and eT xs ≤ dzc(E)e.
Suppose that the residual problem E := (m, l, L, b − Abxsc) has a solution
xr ∈ Zn

+.

(a) If eT xr ≤ deT xse then there exists a solution x∗ ∈ Zn
+ of E with

eT x∗ ≤ dzc(E)e, i.e. E ∈M∗.
(b) If eT xr ≤ deT xse+ 1 then there exists a solution x∗ ∈ Zn

+ of E with
eT x∗ ≤ dzc(E)e+ 1, i.e. E ∈M.

P r o o f. We set x∗ := bxsc+xr. Then x∗ ∈ Zn
+ and Ax∗ = Abxsc+Axr ≥

Abxsc+ b−Abxsc = b. Furthermore,

eT x∗ = eT bxsc+ eT xr ≤ eT bxsc+ deT xse = deT xse ≤ dzc(E)e,(a)
eT x∗ = eT bxsc+ eT xr ≤ eT bxsc+ deT xse+ 1(b)

= deT xse+ 1 ≤ dzc(E)e+ 1.

Hence, if an optimal solution of the residual instance is found then an
optimal solution of the initial instance can be constructed or at least an
integer solution is obtained, proving the MIRUP. Moreover, Lemma 2 shows
that only a nearly optimal solution of the continuous relaxation of the initial
instance is necessary to construct a suitable residual instance.

In order to prove the validity of the IRUP or the MIRUP we have the
following lemma for special sets of instances.

Lemma 3. Let E = (m, l, L, b) be a residual instance.

(a) If lT b ≤ 1.5L or if 2L < lT b ≤ 2.5L then E ∈M∗.
(b) If lT b ≤ 3L then E ∈M.
(c) If zc(E) > m− 1 then E ∈M∗.
(d) If zc(E) > m− 2 then E ∈M.

Most of these statements are proven in [14].

3. Solution concept. Let E = (m, l, L, b) be an instance of the 1CSP.
Based on the possibilities of reduction, first the corresponding LP relaxation
(Q) is solved until either an optimal solution x is found or a feasible solution
x with eT x ≤ dzc(E)e is obtained. Next, a residual instance E = (m, l, L, b)
is defined where x := bxc, m :=

∑m
i=1 sign(max{0, [Ax]i − bi}) and l and

Branch&bound algorithm 155

b consist of the corresponding piece lengths and reduced order quantities,
respectively.

In case x is an optimal solution of (Q) we have zc(E) = eT x− eT x.
By applying two heuristics a feasible integer solution xh of E with value

zh = eT xh is constructed. An optimal solution of E is found if zh ≤ dzc(E)e.
Otherwise, the residual problem E has to be solved exactly. Because of the
NP-hardness of the 1CSP a branch&bound algorithm is used. If z∗(E) =
dzc(E)e then an optimal solution of E is known.

In the case z∗(E) ≥ dzc(E)e+1 one has to decide using sufficient condi-
tions whether z∗(E) ≥ dzc(E)e + 1 follows, or whether the branch&bound
algorithm has to be applied to a somewhat extended problem until a solution
x∗ of E is found with z∗(E) = dzc(E)e.

That there exist instances E of the 1CSP with

z∗(E) < z + z∗(E)

can be illustrated by the following instance. Let L = 396, l1 = 132, l2 =
99, l3 = 44, l4 = 36 with b1 = 2, b2 = 3, b3 = 9 and b4 = 6. The continuous
solution is

2
3

3
0
0
0

 +
3
4

0
4
0
0

 + 1

0
0
9
0

 +
6
11

0
0
0
11

 =

2
3
9
6

with zc(E) = 391/132 since the applied patterns contain no waste. We have
z = 1. The residual problem E with b = (2, 3, 0, 6)T has the optimal value
z∗(E) = 3 but z∗(E) = 3.

4. Lower bounds and heuristics. In order to solve one-dimensional
cutting stock problems exactly a branch&bound algorithm is proposed which
is only applied to residual instances. Three bounds are used. Let Er =
(mr, l

r, L, V, br) denote a subproblem generated in the branch&bound algo-
rithm where the level r gives the number of fixed cutting patterns having
occurrence greater than 0 and where V denotes a set of forbidden cutting
patterns (occurrence 0).

The first lower bound is the natural material bound

bound1(Er) := d(lr)T br/Le.

The second lower bound used is derived from an adapted LP relaxation
and is obtained by solving the problem

(Qr) zc(Er) := min{eT x : Ax ≥ br, xj ≥ 0, aj 6≤ br ⇒ xj = 0
aj ∈ V ⇒ xj = 0 (j = 1, . . . , n)}.

156 G. Scheithauer and J. Terno

In order to reduce the computational effort the number of simplex steps
(of solved knapsack problems) is limited to 6m if r = 0, and to 2m if
r > 0. Let z(Er) denote the value computed with 6m or 2m simplex steps,
respectively. The exactness of z(Er) to be a lower bound of z∗(Er) can be
verified using the termination criterion which is defined in the next section.
In some cases the exactness of z(Er) cannot be proven. Therefore the second
bound is defined as follows:

bound2(Er) :=
{
dz(Er)e if z(Er) is a valid bound,
bound2(Er−1) otherwise.

The third lower bound is obtained by using the quotient of the actual
order demands and a cutting pattern which is the solution of a knapsack
problem (K) with weights ki := bL/lic. Let us define the problem (K) and
the amount γ(b):

µ(b) := max
{ m∑

i=1

ai/ki : lT a ≤ L, a ≤ b, a 6∈ V, a ≥ 0, integer
}

,(K)

γ(b) :=
m∑

i=1

bi

ki
.

Then
bound3(Er) := dγ(br)/µ(br)e

is a lower bound of z∗(Er) (cf. [14]).
Now we describe two heuristics to get a feasible cutting pattern a ∈ Zm

+

for an instance E = (m, l, L, b) of the 1CSP with right hand side b.
In the first heuristic the cutting pattern is constructed by using a direct

greedy method.

Heuristic 1 (L, b, a)

• ∆L := L, ∆b := b;
• for i := 1 to m do

ai := min{∆bi, b∆L/lic}; ∆bi := ∆bi − ai; ∆L := ∆L− ai · li.

In the second heuristic the cutting pattern is constructed by using a
modified greedy method. Let ζ := zc(E) − eT bxc(E)c. That is, ζ is the
sum of all fractional parts of the optimal solution xc of the corresponding
linear relaxation problem. Using the “weight” 1/ζ a more equalized cutting
pattern is constructed in comparison to Heuristic 1.

Heuristic 2 (L, b, a)

• ∆L := L; ∆b := b, ζ := max{1, ζ};
• for i := 1 to m do

ai := min{d∆bi/ζe, b∆L/lic}; ∆bi := ∆bi − ai; ∆L := ∆L− ai · li;

Branch&bound algorithm 157

• if L− lT a ≥ lm then Heuristic 1 (∆L,∆b,∆a), a := a + ∆a.

In order to get a feasible solution for the instance E the first or second
heuristic are repeatedly applied until ∆b = 0.

5. Termination criterion. Using the LP relaxation to get lower
bounds for problem (P) one has to overcome the difficulties which arise
from not knowing the coefficient matrix A. By applying the primal (re-
vised) simplex method for (Q) a valid lower bound is not obtained until (Q)
is solved exactly or a feasible solution x ∈ Rn

+ with value z = eT x is found
such that z ≤ dzc(b)e, where zc(b) denotes the optimal value of (Q) for the
right hand side b.

Because A is not available explicitly it is impossible to compute lower
bounds by using the dual problem of (Q).

Since for instances of medium size the number of simplex steps needed
varies in a wide range and problems of numerical stability may occur (the
objective function value decreases very slowly within a block of simplex
steps) it is sometimes not advantageous to continue the column generation
process until the optimality criterion of the simplex method is satisfied.
Since it is sufficient to have a feasible solution x ∈ Rn

+ with value z = eT x
and

(1) z ≤ dzc(b)e

we need a criterion to decide whether (1) is satisfied or not. Such a criterion
can be obtained using Farkas’ Lemma [11]. We consider the problem whether
there exists a vector x ∈ Rn

+ with

(2) −Ax ≤ −b, eT x = z0,

where z0 := bzc. For z0 < zc(b) there is no solution of problem (2). Hence,
Farkas’ Lemma yields

Lemma 4. The system of inequalities

−AT u + u0e ≥ 0,

bT u− z0u0 > 0,(3)
u ≥ 0

has a feasible solution (u0, u) if and only if z0 < zc(b).

Hence, if the feasible solution x of (Q) satisfies (1) and zc(b) 6∈ Z then
(3) is solvable for z0 := bzc. On the other hand, if x does not satisfy (1)
then (3) has no solution for z0 := bzc.

Assume that (1) holds. Then by (3),

bT u− z0u0 ≥ ε > 0.

158 G. Scheithauer and J. Terno

Replacing ui by εui gives

bT u− z0u0 ≥ 1.

Therefore the solvability of (3) is equivalent to the solvability of the mini-
mization problem

(4)
w = u0 → min s.t. u0e−AT u ≥ 0, −z0u0 + bT u ≥ 1,

u ≥ 0,

where the matrix AT consists of all maximal cutting patterns as rows. Hence
“row generation” is required, i.e. we have to choose m linear independent
rows (cutting patterns) aj which form a matrix A = (a1, . . . , am). Solving
problem (4) with coefficient matrix AT instead of AT leads to the solution
(u0, u). If

max{uT a : lT a ≤ L, a ∈ Zm
+} ≤ u0

then a solution of (4) is found. Otherwise a new row can be inserted in the
basis matrix.

Now we discuss the application of Lemma 4 in the process of solving
(Q). In a certain step we want to prove the validity of the condition (1)
in order to stop the column generation. Therefore we try to solve the sys-
tem of inequalities (3) or problem (4), respectively. The process of solving
(Q) is to be continued if after a given number of generation steps no de-
cision whether (3) is solvable or not is found. In particular, in the case
zc(b) ∈ Z only the optimality criterion of the simplex method works. On
the other hand, if (1) could not be proven then most of the generated
rows are useful for the solution process of (Q). Hence the computational
effort of solving (4) is dominated by its usefulness for the total solution
process.

6. The branch&bound algorithm. In this section a branch&bound
algorithm is described to solve a residual instance E = (m, l, L, b) of the
one-dimensional cutting stock problem.

In the algorithm a parameter β with β ∈ {1, 2, . . .} controls the compu-
tation of LP bounds for subproblems. Furthermore, two branching rules are
used which also depend on β and differ in choosing a cutting pattern to be
fixed. Both are bisection methods.

Within the algorithm the “level” r gives the number of fixed cutting
patterns with occurrence 1, and sr is the number of all fixed cutting patterns
up to level r including those having occurrence 0. The latter are called
forbidden cutting patterns.

In order to control the computation of LP bounds (bound2) the param-
eter β is used as follows. Only if sr mod β = 0 then the LP bound is

Branch&bound algorithm 159

computed for the current subproblem. Hence, if β = 1 then an LP bound is
to be computed for each subproblem.

In the case sr mod β = 0 the next cutting pattern aj to be fixed is
chosen from the current LP solution xc according to a maximal xc

j , i.e.
xc

j = max{xc
k : k = 1, . . . , n}.

If β > 1 then the two branching rules, which define variants (a) and (b),
are as follows.

(a) (“LP-cutting-pattern-strategy”) If sr mod β 6= 0 then the next cut-
ting pattern a∗ to be fixed is chosen from the last LP solution xc computed
according to a maximal xc-value and not considered before. (If such a pat-
tern does not exist a new LP bound has to be computed.)

(b) (“High-density-cutting-pattern-strategy”) If sr mod β 6= 0 then the
next cutting pattern a∗ to be fixed is the solution of the following knapsack
problem (here Er = (mr, l

r, L, br) denotes the current subproblem and ki :=
bL/lri c, i = 1, . . . ,mr):

max
{ mr∑

i=1

ai

ki
:

mr∑
i=1

lri ai ≤ L, 0 ≤ ai ≤ br
i , integer

}
.

Define the following sets and variables used in the branch&bound algo-
rithm to solve the residual instance E = (m, l, L, b):

r : The level of a node within the branching tree; the number of fixed
cutting patterns with occurrence 1.

sr : Number of all fixed cutting patterns.
C : A set which contains all fixed cutting patterns with occurrences 1.
V : A set which contains all forbidden cutting patterns.
V r : A set which contains all forbidden cutting patterns of level r.
z∗ : Denotes the value of the best known solution.
zc : The optimal value of LP relaxation of E.
β : A parameter to control the computation of LP bounds.

Branch&bound algorithm

1. Initialization:
Set r := 0, sr := 0, E0 := E, b0 := b, z∗ := m, C := ∅, V := ∅,
V 1 := ∅, z(C) := 0;

2. Computing actual bounds:
If z(C) + bound1(Er) ≥ z∗ then go to Step 3.
If sr mod β = 0 and z(C) + bound2(Er) ≥ z∗ then go to Step 3.
If variant (b) and sr mod β 6= 0 and z(C) + bound3(Er) ≥ z∗ then
go to Step 3.
Go to Step 4.

160 G. Scheithauer and J. Terno

3. Back track :
If r = 0 then STOP.
If V r+1 6= ∅ then V := V \V r+1, V r+1 := ∅;
C := C\{ar}, V r := V r ∪ {ar}, V := V ∪ {ar},
br := br + ar, z(C) := z(C)− 1, r := r − 1, sr := sr + 1.
Go to Step 2.

4. Branching :
Select the next cutting pattern, say a∗, according to the variants (a)
or (b), respectively.
Set r := r + 1, sr := sr−1 + 1, ar := a∗, br := br−1 − ar,

C := C ∪ {ar}, z(C) := z(C) + 1, V r+1 := ∅.
Define Er.

5. Applying heuristics:
Using Heuristics 1 and 2 the values z1 and z2 are obtained.
If z(C) + min{z1, z2} < z∗ then z∗ := z(C) + min{z1, z2}.
If z∗ ≤ dzce then STOP.
Go to Step 2.

R e m a r k s. Only small β-values (β ≤ 5) are tested. Therefore the
computation of a new LP bound was not necessary in variant (a) because
always cutting patterns were present to be fixed.

If one is only interested in solutions just having the MIRUP, the ter-
mination test in Step 5 is to be modified to read “If z∗ ≤ dzce + 1 then
STOP”.

7.Computational results. In order to investigate the one-dimensional
cutting stock problem we solved a series of randomly generated instances.
The input data are chosen from a uniform distribution on some ranges
given below. For a given material length L and a chosen m ∈ [m,m] the
piece lengths li are in [dL/(m− 2)e, L/2] and the order quantities bi are in
[2m, 10m].

The LP relaxation for the original problem is solved using the simplex
method with column generation where the new pattern is obtained by the
greedy algorithm, and if this fails, i.e. the transformed objective function
coefficient is nonnegative, the corresponding knapsack problem is solved
exactly. Usually a dynamic programming forward state algorithm proves
the best method but a branch&bound strategy with upper bounds was
also tested. The latter is useful if L is large or the order demands bi are
small (in E). Therefore within the branch&bound algorithm the second
method is used because of the small order demands in E. The generation

Branch&bound algorithm 161

process is terminated if the optimality condition is satisfied or, secondly,
if a given maximum number of solved column generation problems is ex-
ceeded or, third, if the decrease of the objective function value is smaller
than 0.1 in the last m/2 iteration steps.

In the latter two cases it is checked, using the termination criterion,
whether the current objective function value z satisfies the condition dzc(E)e
= dze. If not, then the column generation process is continued until one of
the termination criteria is met. The column ter cri reports the frequency
of these two cases. Hence, 20 − ter cri counts how often the LP bound is
computed exactly.

The column val IR gives the number of instances which have the IRUP.
The columns of problem sol. characterize the termination of the residual

problem E to determine an optimal integer solution. lb counts the number
of terminations because of Lemma 3 and h1 and h2 give the number of
instances where Heuristic 1 or 2, respectively, leads to a termination because
an optimal solution was found. If these all fail, the branch&bound algorithm
must be used and bb counts how often this occurs.

In the columns with heading “average total time” the average times with
respect to 20 instances are reported. The times are given in seconds required
on a PC 486 DX, 66 MHz. Here the column t-LP gives the time for solving
the LP relaxation of the original problem.

The columns nodes, LP-b and t-bb give an impression of the complexity
of the computed branch&bound-searching-trees. The columns nodes contain
the minimal and maximal number of the inspected nodes of the searching
tree which occur for an instance solved. Similarly, LP-b gives the minimal
and maximal number of computed LP bounds and t-bb reports all the time
required in average per branch&bound computation.

The following tables summarize the results for L = 1000 (Tables 2.∗),
L = 2000 (Tables 3.∗), L = 3000 (Table 4.1), L = 4000 (Table 5.1) and
L = 5000 (Table 6.1). The different L-values relate to the increase of com-
putational amount because of the dependence of the knapsack algorithms
on the size of L. Different values are used for β (β ∈ {1, . . . , 5}). For each
range [m,m], 20 instances were generated. The numbers 1, . . . , 9 identify
the ranges as defined in Table 1.

TABLE 1
Ranges for the number m of small pieces

range 1 2 3 4 5 6 7 8 9

m 11 21 31 41 51 61 71 81 91
m 20 30 40 50 60 70 80 90 100

162 G. Scheithauer and J. Terno

The tables numbered with N.1 (N ∈ {2, . . . , 6}) contain characteristics
for getting an optimal solution. All 900 instances generated were solvable
and have the IRUP (column val IR). In most cases an optimal solution was
obtained with Heuristic 1 (direct greedy method, column h1).

TABLE 2.1
L = 1000

ter val problem sol.
no cri IR lb h1 h2 bb t-LP

1 0 20 0 19 0 1 .3
2 0 20 0 14 0 6 2.5
3 0 20 0 13 1 6 11.0
4 2 20 0 16 2 2 25.3
5 1 20 0 18 0 2 48.2
6 0 20 0 18 0 2 84.6
7 0 20 0 17 0 3 126.4
8 1 20 0 18 0 2 208.5
9 0 20 0 17 0 3 308.5

TABLE 2.2
L = 1000, average total time

β = 1 β = 2 β = 2 β = 3 β = 3 β = 4 β = 4 β = 5 β = 5
no (a) (b) (a) (b) (a) (b) (a) (b)

1 .3 .3 .3 .3 .3 .3 .3 .3 .3
2 3.6 3.1 3.2 3.0 3.1 2.9 3.0 2.9 3.0
3 13.7 12.7 12.8 12.3 12.2 12.1 13.0 12.1 13.2
4 29.8 28.5 31.4 28.4 121.9 27.9 123.0 63.3 *26.0
5 53.1 51.3 51.8 50.9 51.3 50.5 51.4 50.3 50.9
6 90.5 88.0 88.5 87.1 93.6 86.9 96.4 86.5 94.7
7 153.0 140.3 141.8 136.4 136.2 134.7 135.9 133.3 134.6
8 230.4 223.7 229.2 226.0 224.3 224.0 226.9 225.2 220.3
9 329.6 319.3 322.6 316.7 319.7 317.7 317.2 317.1 316.1

Tables 2.3–2.5 show the typical behavior of a branch&bound algorithm.
For some series there are instances which need much more computational
effort than the remaining ones. (A similar behavior was observed for
L = 2000, . . . , L = 5000.) Whenever the values are marked with one
or two asterisks (* or **) they are taken with respect to 19 or 18 instances.
The remaining one or two instances were not solvable with the chosen
parameter combination (β, (a) or (b)) because of computer memory
restrictions.

Branch&bound algorithm 163

TABLE 2.3
L = 1000, branch&bound characteristics

β = 1 β = 2, (a) β = 2, (b)
no bb nodes LP-b t-bb nodes LP-b t-bb nodes LP-b t-bb

1 1 2/2 2/2 .2 3/3 2/2 .3 3/3 2/2 .3
2 6 3/11 3/11 3.5 4/11 2/6 2.0 5/17 3/9 2.3
3 6 3/13 3/13 8.8 3/12 2/6 5.6 5/15 3/8 6.0
4 2 9/20 9/20 37.9 9/19 5/10 26.4 17/44 9/26 54.6
5 2 4/19 4/19 40.9 3/19 2/10 23.4 11/22 6/11 27.1
6 2 11/21 11/21 58.5 14/24 7/12 35.6 17/29 9/15 37.8
7 3 11/35 11/35 176.8 13/26 7/13 95.2 10/35 5/18 102.3
8 2 5/35 5/35 214.7 5/35 3/18 155.7 36/51 18/26 204.0
9 3 1/20 1/20 140.4 1/17 1/9 80.1 1/38 1/19 94.0

TABLE 2.4
L = 1000, branch&bound characteristics

β = 3, (a) β = 3, (b) β = 4, (a)
no bb nodes LP-b t-bb nodes LP-b t-bb nodes LP-b t-bb

1 1 4/4 2/2 .2 3/3 1/1 .1 4/4 1/1 .1
2 6 3/9 1/3 1.5 7/27 3/8 1.8 3/9 1/3 1.2
3 6 5/13 2/5 4.2 4/13 2/5 4.0 4/16 1/4 3.7
4 2 12/24 4/8 25.5 20/1107 8/455 958.9 12/23 3/6 20.0
5 2 3/22 1/8 19.8 12/27 4/10 22.3 3/23 1/6 16.1
6 2 10/23 4/8 27.2 18/190 6/73 89.2 18/24 5/6 25.6
7 3 9/32 3/11 69.2 8/34 3/12 65.2 18/26 5/7 57.8
8 2 23/40 8/14 178.5 44/51 15/17 154.3 19/49 5/13 158.5
9 3 1/19 1/7 62.5 1/39 1/13 74.3 1/35 1/9 69.2

TABLE 2.5
L = 1000, branch&bound characteristics

β = 4, (b) β = 5, (a) β = 5, (b)
no bb nodes LP-b t-bb nodes LP-b t-bb nodes LP-b t-bb

1 1 3/3 1/1 .1 4/4 1/1 .1 3/3 1/1 .1
2 6 5/15 2/5 1.4 3/11 1/3 1.2 5/40 1/9 1.4
3 6 4/16 1/4 4.1 4/16 1/4 3.7 6/48 2/16 4.5
4 2 28/1612 10/559 970.1 15/1098 3/279 373.8 *3/11 *3/11 *9.1
5 2 12/47 3/19 23.9 3/24 1/5 14.1 13/57 3/17 18.2
6 2 21/162 6/60 17.5 13/24 3/5 21.0 21/217 5/72 99.6
7 3 7/57 2/15 63.0 11/35 3/7 48.3 7/90 2/24 54.2
8 2 32/98 8/29 179.9 34/68 7/14 170.8 31/76 7/16 114.4
9 3 1/39 1/10 58.0 1/27 1/6 64.9 1/38 1/8 50.3

In Tables 5.1 and 6.1 additionally a comparison is given between the use
of a forward state algorithm (FSS) and a branch&bound algorithm (b&b)
for solving the column generation problems to solve the LP relaxation (Q).

164 G. Scheithauer and J. Terno

(In the cases up to L = 3000 the forward state algorithm always leads to
better running times in comparison to the branch&bound algorithm.)

TABLE 3.1
L = 2000

ter val problem sol.
no cri IR lb h1 h2 bb t-LP

1 0 20 0 20 0 0 .4
2 0 20 0 17 0 3 3.8
3 0 20 0 12 2 6 15.3
4 9 20 0 16 0 6 40.7
5 10 20 0 16 0 4 77.5
6 9 20 0 17 0 3 145.7
7 6 20 6 14 0 0 235.9
8 7 20 3 12 0 5 342.3
9 8 20 1 13 0 6 507.7

TABLE 3.2
L = 2000, average total time

β = 1 β = 2 β = 2 β = 3 β = 3 β = 4 β = 4

no (a) (b) (a) (b) (a) (b)

1 .4 .4 .4 .4 .4 .4 .4
2 4.1 4.0 4.0 4.0 4.0 4.0 4.1
3 18.4 17.0 16.9 16.5 16.5 16.3 16.7
4 50.3 46.6 46.4 45.4 45.3 44.9 45.1
5 91.5 88.1 90.7 87.1 87.9 *84.4 88.9
6 179.9 173.8 174.2 172.5 173.2 169.3 179.9
7 247.6 247.0 247.0 244.9 247.0 244.9 244.9
8 452.4 424.6 420.3 446.3 *398.8 455.6 *387.6
9 676.5 639.0 *606.3 601.9 607.2 748.8 **554.7

TABLE 4.1
L = 3000

average total time
ter val problem sol. β = 1 β = 2 β = 2 β = 3 β = 3

no cri IR lb h1 h2 bb t-LP (a) (b) (a) (b)

1 0 20 0 16 3 1 .7 .7 .7 .7 .7 .7
2 0 20 0 16 0 4 4.1 4.9 4.5 4.5 4.4 4.5
3 3 20 0 15 0 5 22.0 25.2 24.5 25.0 23.9 24.6
4 17 20 3 14 0 3 50.3 69.7 67.3 74.0 *64.8 89.1
5 14 20 6 11 1 2 100.4 135.8 133.3 133.4 258.8 141.4
6 18 20 0 11 0 9 194.3 280.6 263.8 272.9 362.6 329.6
7 11 20 0 13 0 7 277.1 405.7 379.6 386.6 373.4 *650.2
8 14 20 0 13 1 6 457.0 659.0 663.7 638.7 630.0 *125.7
9 16 20 3 11 0 6 662.0 884.2 801.5 *784.6 789.8 *772.5

Branch&bound algorithm 165

TABLE 5.1
L = 4000, β = 1

ter val problem sol. FSS b&b
no cri IR lb h1 h2 bb t-LP time t-LP time

1 0 20 0 19 1 0 .6 .6 1.0 1.0
2 2 20 0 18 0 2 6.3 7.3 15.4 16.7
3 1 20 5 10 0 5 20.6 24.2 41.4 45.3
4 13 20 5 9 0 6 47.9 80.5 81.0 132.0
5 14 20 0 15 0 5 115.7 189.2 124.2 234.8
6 14 20 1 14 0 5 197.9 275.1 231.8 372.3
7 19 20 4 12 1 3 331.3 478.8 352.3 508.0
8 14 20 1 7 2 10 533.3 910.2 *512.6 *851.5
9 19 20 0 13 0 7 805.2 1178.7 760.4 1201.2

T AB L E 6.1
L = 5000, β = 1

ter val problem sol. FSS b&b
no cri IR lb h1 h2 bb t-LP time t-LP time

1 0 20 0 16 1 3 .8 1.0 1.4 1.0
2 0 20 1 16 0 3 4.6 5.2 9.0 10.0
3 3 20 4 10 0 6 22.8 30.9 54.8 67.7
4 17 20 1 16 1 2 64.5 101.4 83.4 167.1
5 15 20 3 11 0 6 *133.9 *205.9 178.0 339.7
6 18 20 6 9 0 5 247.6 282.5 291.3 520.4
7 16 20 4 10 1 9 383.8 699.5 254.3 638.7
8 16 20 2 13 1 4 685.0 1023.1 568.7 845.4
9 13 20 4 12 0 4 1049.3 1516.4 907.6 1196.3

As the columns ter cri indicate, the number of LP relaxations (Q) solved
up to optimality decreases with an increasing number of small pieces and
with the size of L. Thus the essential importance of the termination criterion
(defined in Section 5) becomes apparent.

All randomly generated instances of the 1CSP have the IRUP. The effort
of time to compute the knapsack problems for the LP relaxation (for the
generation of cutting patterns) strongly increases with the material length
L. This is a consequence of the used forward state algorithm within the
computation of the initial lower LP bound.

A comparison between the choice of various values of β shows that it is
generally advantageous to use β > 1 but the worst-case-behaviour advises
choosing β = 2 or β = 3. The difference between variants (a) (LP-cutting-
pattern-strategy) and (b) (high-density-cutting-pattern-strategy) is not of
much significance in relation to the LP relaxation of the original problem.
The variant (a) is better if the residual problems E are relatively big and
the other variant is advantageous if the order demands of E are very small.

166 G. Scheithauer and J. Terno

Additionally, note that if the computation should be terminated when a
solution is found proving the MIRUP then for all instances the application
of the branch&bound algorithm was not necessary (similarly to [13]).

8. Concluding remarks. In this paper we proposed a branch&bound
algorithm for the one-dimensional cutting stock problem. The essential fea-
ture of this algorithm is the orientation on the conjecture that the modified
integer round-up property holds for the problem considered.

The computational experiments with problems with up to 100 small
pieces show that branching is necessary only in about 20% of the instances.
The computational time also increases with the increase of the material
length L because the solution of the knapsack problems in the column gen-
eration process needs more time.

The average computational time shows that the proposed algorithm is
a very good tool for solving instances of the one-dimensional cutting stock
problem exactly.

Acknowledgements. The authors wish to thank Uta Sommerweiß for
implementing the algorithms and doing the extensive computational tests.

References

[1] S. Baum and L. E. Trotter, Jr., Integer rounding for polymatroid and branching
optimization problems, SIAM J. Algebraic Discrete Methods 2 (1981), 416–425.

[2] E. G. Cof fmann, Jr., M. R. Garey, D. S. Johnson and R. E. Targon,
Performance bounds for level oriented two-dimensional packing algorithms, SIAM
J. Comput. 9 (1980), 808–826.

[3] A. Diege l, Integer LP solution for large trim problem, Working Paper, University
of Natal, South Africa, 1988.

[4] H. Dyckhof f and U. Finke, Cutting and Packing in Production and Distribution,
Physica Verlag, Heidelberg, 1992.

[5] M. Fie ldhouse, The duality gap in trim problems, SICUP-Bulletin No. 5, 1990.
[6] P. C. Gi lmore and R. E. Gomory, A linear programming approach to the cutting

stock problem, Oper. Res. 9 (1961), 849–859.
[7] —, —, A linear programming approach to the cutting stock problem, II , ibid.

11 (1963), 863–888.
[8] R. E. Johnston, Rounding algorithms for cutting stock problems, Asia-Pacific

J. Oper. Res. 3 (1986), 166–171.
[9] O. Marcotte, The cutting stock problem and integer rounding , Math. Program-

ming 33 (1985), 82–92.
[10] —, An instance of the cutting stock problem for which the rounding property does

not hold , Oper. Res. Lett. 4 (1986), 239–243.
[11] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,

Wiley, New York, 1988.

Branch&bound algorithm 167

[12] G. Sche i thauer and J. Terno, About the gap between the optimal values of the
integer and continuous relaxation one-dimensional cutting stock problem, in: Oper-
ations Research Proceedings 1991, Springer, Berlin, 1992, 439–444.

[13] —, —, The modified integer round-up property for the one-dimensional cutting stock
problem, Preprint MATH-NM-10-1993, TU Dresden (submitted).

[14] —, —, Theoretical investigations on the modified integer round-up property for one-
dimensional cutting stock problem, Preprint MATH-NM-12-1993, TU Dresden (sub-
mitted).

[15] —, —, Equivalence of cutting stock problems, Working Paper, TU Dresden, 1993.
[16] J. Terno, R. Lindemann und G. Sche i thauer, Zuschnittprobleme und ihre

praktische Lösung , Verlag Harry Deutsch, Thun und Frankfurt/Main, und Fach-
buchverlag, Leipzig, 1987.

[17] G. Wäscher and T. Gau, Two approaches to the cutting stock problem, IFORS
’93 Conference, Lisboa 1993.

GUNTRAM SCHEITHAUER

JOHANNES TERNO

INSTITUTE OF NUMERICAL MATHEMATICS

TECHNICAL UNIVERSITY DRESDEN

MOMMSENSTR. 13

D-01062 DRESDEN, GERMANY

E-mail: SCHEIT@MATH.TU-DRESDEN.DE

TERNO@MATH.TU-DRESDEN.DE

Received on 5.5.1994

