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A NOISY DUEL UNDER ARBITRARY MOTION. VIII

1. Introduction. In [20], [21] and in this paper an m versus n bullets
noisy duel is considered in which duelists can move at will. It is assumed
that Player I has greater maximal speed. The cases m = 1, 2, 3, n = 1, 2, 3
are solved. Let a be the point in which Player I is at the beginning of the
duel, 0 ≤ a < 1 (Player II is at 1). In contrast to [14]–[19] where the duels
are solved for small a, now we solve the duels for any 0 ≤ a < 1.

In this paper we consider the cases m = 2, n = 2; m = 1, n = 3; m = 2,
n = 3.

Denote by P (s) the probability (the same for both players) that a player
succeeds (destroys the opponent) if he fires when the distance between the
players is 1− s. We assume that P (s) is increasing and continuous in [0, 1],
has continuous second derivative in (0, 1), and P (s) = 0 for s ≤ 0, P (1) = 1.

Player I gains 1 if only he succeeds, gains −1 if only Player II succeeds
and gains 0 in the remaining cases. It is assumed that the duel is a zero-sum
game.

The game is over if at least one player is destroyed or all bullets are shot.
In the other case the duel lasts infinitely long and the payoff is zero.

The duel is noisy—each player hears every shot of his opponent.
As will be seen from the sequel, without loss of generality we can assume

that Player II is motionless. It is also assumed that the maximal speed of
Player I is 1 and that at the beginning of the duel Player I is at the point 0
and Player II is at the point 1.

We suppose that between successive shots of the same player there has to
pass a time ε̂ > 0. We also assume that the reader knows the papers [14]–[19]
and remembers the definitions, assumptions and results given there.

For other results in the theory of games of timing see [1]–[13], [22], [23].
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2. The duel (2, 2). Consider the case where Players I and II have two
bullets each and the duel begins when Player I is at the point a, 0 ≤ a < 1.
Let Q(s) = 1− P (s).

The duel (2, 2), 〈a〉

C a s e 1: Q(a) ≥ Q(a12) ∼= 0.812085. We define the following strategies
ξ and η of Players I and II.

Strategy of Player I. If Player II has not fired before, reach the
point a22, fire a shot at aε

22 and play optimally afterwards. If he fired, play
optimally the resulting duel.

Strategy of Player II. If Player I has not fired before, fire at 〈a22〉
and play optimally afterwards. If Player I has not reached the point a22, do
not fire.

The aε
22 is an absolutely continuous random variable taking values be-

tween 〈a22〉 and 〈a22〉+ α(ε) for properly chosen α(ε). The 〈a22〉 is the first
time when Player I reaches the point a22.

In [15] it is proved that if Q(a) ≥ Q(a22) ∼= 0.812085, then the strategies
ξ and η are optimal in limit (i.e. as ε̂ → 0) and the limit value of the game

is va
22 = −P (a22) + Q(a22)

2
va
21 = 0.148461.

C a s e 2: 0.781133 ∼= Q(â22) ≤ Q(a) ≤ Q(a22) ∼= 0.812083. Define ξ and
η as follows:

Strategy of Player I. If Player II has not fired before, fire at aε
22

and play optimally the resulting duel.

Strategy of Player II. Fire at 〈a〉 and play optimally the resulting
duel.

We now have

va
22 = −P (a) + Q(a)

2
va
21 = −1 + (1 + v21)Q(a),

where v21 =
√

2− 1 ∼= 0.414214.
Suppose that Player I fires at 〈a〉. For such a strategy ξ̂ we obtain

K(ξ̂, η) ≤ Q2(a)va
11 + k(ε̂) ≤ −1 + (1 + v21)Q(a) + k(ε̂)

if

Q2(a)v11 − (1 + v21)Q(a) + 1 ≤ 0,

i.e. if

(1) Q(a) ≥ Q(â22) ∼= 0.781133.



A noisy duel under arbitrary motion. VIII 137

On the other hand, suppose that Player II fires after 〈a22〉+α(ε) or does
not fire at all. For such a strategy η̂ we obtain

K(ξ, η̂) ≥ P (a) + Q(a)
1
va
12 − k(ε̂)(2)

= 1−Q(a) + (−1 + (1 + v11)Q(a))Q(a)− k(ε̂)
= 1− 2Q(a) + (1 + v11)Q2(a)− k(ε̂)
≥ −1 + (1 + v21)Q(a) + k(ε̂)

provided that

0.853553 ∼= Q(a12) ≥ Q(a) ≥ Q(a11) ∼= 0.585787.

The inequality (2) holds if

Q(a) ≤ Q(a22) ∼= 0.812085.

From (1) and (2) it follows that the strategies ξ and η are optimal in
limit and the limit value of the game is va

22 = −1 + (1 + v21)Q(a) if

0.781133 ∼= Q(â22) ≤ Q(a) ≤ Q(a22) ∼= 0.812085.

C a s e 3: Q(a) ≤ Q(â22) ∼= 0.781133. Define ξ and η as follows:

Strategy of Player I. Fire at 〈a〉 and play optimally the resulting
duel.

Strategy of Player II. Fire at 〈a〉 and play optimally the resulting
duel.

We now have

(3) va
22 = Q2(a)va

11 =

 v11Q
2(a) if Q(a11) ≤ Q(a) ≤ Q(â22),

Q2(a)(2Q(a)− 1) if 1/2 ≤ Q(a) ≤ Q(a11),
0 if Q(a) ≤ 1/2.

Suppose that Player II does not fire at 〈a〉. For such a strategy η̂ we
obtain

K(ξ, η̂) ≥ P (a) + Q(a)
1
va
12 − k(ε̂)

=


1− 2Q(a) + (1 + v11)Q2(a)− k(ε̂)

if Q(a11) ≤ Q(a) ≤ Q(a12) ∼= 0.853553,
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a)− k(ε̂)

if Q(a) ≤ Q(a11) ∼= 0.585787.

(a) Let Q(a11) ≤ Q(a) ≤ Q(a12). We obtain

1− 2Q(a) + (1 + v11)Q2(a) ≥ v11Q
2(a),

which is always satisfied.
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(b) Let 1/2 ≤ Q(a) ≤ Q(a11). We have

(4) 1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a) ≥ 2Q3(a)−Q2(a).

Let S(Q) be the difference between the left and right sides:

S(Q) = 1− 2Q(a) + 3Q2(a)− 4Q3(a) + Q4(a).

The function S(Q) is decreasing for Q > 1/2 and S(Q(a11)) ∼= S(0.585787)
> 0. Thus for the case (b) the inequality (4) holds.

(c) Q(a) ≤ 1/2. Now we have to prove that

S(Q) = Q4(a)− 2Q3(a) + 2Q2(a)− 2Q(a) + 1 ≥ 0.

But
S(Q) = (Q2(a) + 1)(Q(a)− 1)2

and it is always nonnegative.

On the other hand, suppose that Player I does not fire at 〈a〉. For such
a strategy ξ̂ we obtain

K(ξ̂, η) ≤ − P (a) + Q(a)
2
va
21 + k(ε̂)

=



−1 + (1 + v21)Q(a) + k(ε̂)
if Q(a) ≥ Q(a21) ∼= 0.707107,

−1 + 2Q(a)− (1− v11)Q2(a) + k(ε̂)
if Q(a21) ≥ Q(a) ≥ Q(a11) ∼= 0.585787,

−1 + 2Q(a)− 2Q2(a) + 2Q3(a) + k(ε̂)
if Q(a) ≤ Q(a11).

Consider the following cases:

(a) Q(a) ≥ Q(â22) ∼= 0.781133. In this case we obtain

−1 + (1 + v21)Q(a) ≤ v11Q
2(a),

which is satisfied if Q(a) ≥ Q(â22) ∼= 0.781133.
(b) Q(â22) ≥ Q(a) ≥ Q(a11) ∼= 0.585787. In this case we obtain

−1 + 2Q(a)− (1− v11)Q2(a) ≤ v11Q
2(a),

which is always satisfied.
(c) Q(a11) ≥ Q(a) ≥ 1/2. In this case we have

−1 + 2Q(a)− 2Q2(a) + 2Q3(a) ≤ 2Q3(a)−Q2(a),

which is also always satisfied.
(d) In the last case Q(a) ≤ 1/2 we obtain

S(Q) = −1 + 2Q(a)− 2Q2(a) + 2Q3(a) ≤ 0.

The function S(Q) is increasing for Q(a) ≤ 1/2 and S(1/2) < 0. Thus the
inequality holds.
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From the above it follows that if Q(a) ≤ Q(â22) then the strategies ξ
and η are optimal in limit and the limit value of the game is given by (3).

Now we define the duels (m,n), 〈1, a ∧ c, a〉 and (m,n), 〈2, a, a ∧ c〉. We
have supposed that a time ε̂ has to elapse between successive shots of the
same player. Let

(m,n), 〈2, a, a ∧ c〉, 0 < c ≤ ε̂,

be the duel in which Player I has m bullets, Player II has n bullets but if
c < ε̂, Player I can fire his bullets from time 〈a〉 on, and Player II from time
〈a〉+c on. If c = ε̂ the rule is the same with the only exception that Player I
is not allowed to fire at time 〈a〉.

Similarly we define the duel (m,n), 〈1, a ∧ c, a〉.
The duel (2, 2), 〈1, a ∧ c, a〉
C a s e 1: Q(a) ≥ Q(a22) ∼= 0.812085. The strategies optimal in limit are

the same as in the duel (2, 2), 〈a〉, Case 1.

C a s e 2: Q(a) ≤ Q(a22). Let 〉t〈 be the point in which Player I has been
at time t. Define ξ and η as follows:

Strategy of Player I. If Player II has not fired before, fire at 〉〈a〉+c〈ε
and play optimally the resulting duel.

Strategy of Player II. Fire at t, 〈a〉 < t < 〈a〉+c, and play optimally
afterwards.

We now have

(5)
1
va
22 = −P (a) + Q(a)

2
va
21

=


−1 + (1 + v21)Q(a)

if 0.812085 ∼= Q(a22) ≥ Q(a) ≥ Q(a21) =
√

2/2,
−1 + 2Q(a)− (1− v11)Q2(a)

if Q(a21) ≥ Q(a) ≥ Q(a11) ∼= 0.585787,
−1 + 2Q(a)− 2Q2(a) + 2Q3(a) if Q(a) ≤ Q(a11).

Player II always assures these values.
On the other hand, suppose that Player II fires before or at 〈a〉+ c. We

obtain
K(ξ, η̂) ≥ −P (a) + Q(a)

2
va
21 − k(ε̂) =

1
va
22 − k(ε̂).

Finally, suppose that Player II does not fire before 〈a〉 + c + α(ε). We
obtain

K(ξ, η̂) ≥ P (a) + Q(a)
1
va
12 − k(ε̂)

=


1− 2Q(a) + (1 + v11)Q2(a)− k(ε̂)

if Q(a12) ≥ Q(a) ≥ Q(a11),
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a)− k(ε̂)

if Q(a) ≤ Q(a11).
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Consider the following cases:

(a) 0.707107 ∼=
√

2/2 = Q(a21) ≤ Q(a) ≤ Q(a12) ∼= 0.853553. In this
case we have

1− 2Q(a) + (1 + v11)Q2(a) ≥ −1 + (1 + v21)Q(a).

This inequality is satisfied if Q(a) ≤ Q(a22) ∼= 0.812085.
(b) 0.585787 ∼= Q(a11) ≤ Q(a) ≤ Q(a21). We obtain

1− 2Q(a) + (1 + v11)Q2(a) ≥ −1 + 2Q(a)− (1− v11)Q2(a).

This inequality always holds.
(c) Q(a) ≤ Q(a11). In this case we have

1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a) ≥ −1 + 2Q(a)− 2Q2(a) + 2Q3(a).

We can rewrite this inequality in the form

2(1−Q(a))2 + Q2(a)(2− 4Q(a) + Q2(a)) ≥ 0.

Both expressions on the left hand side are nonnegative for Q(a) ≥ Q(a11),
which ends the proof of the inequality.

Thus if Q(a) ≤ Q(a22), then the strategies ξ and η are optimal in limit
and the limit value of the game is given by (5).

The duel (2, 2), 〈2, a, a ∧ c〉

C a s e 1: Q(a) ≥ Q(a22) ∼= 0.812085. In this case the strategies optimal
in limit are the same as in the duel (2, 2), 〈a〉, Case 1.

C a s e 2: Q(a) ≤ Q(a22) ∼= 0.812085. Define ξ and η as follows:

Strategy of Player I. Fire at time t, 〈a〉 < t < 〈a〉 + c, and play
optimally the resulting duel.

Strategy of Player II. If Player I has not fired before, fire at 〉〈a〉+c〈ε
and play optimally afterwards.

We now have
2
va
22 = P (a) + Q(a)

1
va
12

=


1− 2Q(a) + (1 + v11)Q2(a)

if Q(a11) ≤ Q(a) ≤ Q(a22) ∼= 0.812085,
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a)

if Q(a) ≤ Q(a11).

Player I always assures these values.
On the other hand, suppose that Player I fires before or at 〈a〉 + c. We

obtain
K(ξ̂, η) ≤ P (a) + Q(a)

1
va
12 + k(ε̂) =

2
va
22 + k(ε̂).
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Finally, suppose that Player I does not fire before 〈a〉 + c + α(ε). We
obtain

K(ξ̂, η) ≤ − P (a) + Q(a)
2
va
21 + k(ε̂)

=



−1 + (1 + v21)Q(a) + k(ε̂)
if Q(a) ≥ Q(a21) =

√
2/2,

−1 + 2Q(a)− (1− v11)Q2(a) + k(ε̂)
if Q(a21) ≥ Q(a) ≥ Q(a11),

−1 + 2Q(a)− 2Q2(a) + 2Q3(a) + k(ε̂)
if Q(a) ≤ Q(a11).

Consider the following cases:

(a) Q(a22) ≥ Q(a) ≥ Q(a21) =
√

2/2. Then

−1 + (1 + v21)Q(a) ≤ 1− 2Q(a) + (1 + v11)Q2(a).

This inequality is satisfied if Q(a) ≤ Q(a22) ∼= 0.812085 (see case 2(a) of the
duel (2, 2), 〈1, a ∧ c, a〉).

(b) Q(a21) ≥ Q(a) ≥ Q(a11). Now we have

−1 + 2Q(a)− (1− v11)Q2(a) ≤ 1− 2Q(a) + (1 + v11)Q2(a),

which is always satisfied.
(c) Q(a) ≤ Q(a11). In this case we obtain

−1 + 2Q(a)− 2Q2(a) + 2Q3(a) ≤ 1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a)

or
S(Q) = 2− 4Q(a) + 4Q2(a)− 4Q3(a) + Q4(a) ≥ 0.

This function is decreasing for Q ≤ Q(a11) and S(Q(a11)) ∼= S(0.585787)
> 0. Thus the inequality holds for Q(a) ≤ Q(a11).

Thus if Q(a) ≤ Q(a22) ∼= 0.812085, then the strategies ξ and η are
optimal in limit.

3. Results for the duel (2, 2). We have

1
va
22 =


v22 = 0.148461 if Q(a) ≥ Q(a22) ∼= 0.812085,
−1 + (1 + v21)Q(a) if Q(a22) ≥ Q(a) ≥ Q(a21) =

√
2/2,

−1 + 2Q(a)− (1− v11)Q2(a)
if Q(a21) ≥ Q(a) ≥ Q(a11) ∼= 0.585787,

−1 + 2Q(a)− 2Q2(a) + 2Q3(a) if Q(a) ≤ Q(a11);

va
22 =


0.148461 if Q(a) ≥ Q(a22),
−1 + (1 + v21)Q(a) if Q(a22) ≥ Q(a) ≥ Q(â22) ∼= 0.781133,
v11Q

2(a) if Q(â22) ≥ Q(a) ≥ Q(a11),
2Q3(a)−Q2(a) if Q(a11) ≥ Q(a) ≥ 1/2,
0 if Q(a) ≤ 1/2;
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2
va
22 =


0.148461 if Q(a) ≥ Q(a22),
1− 2Q(a) + (1 + v11)Q2(a) if Q(a22) ≥ Q(a) ≥ Q(a11),
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q4(a)

if Q(a) ≤ Q(a11).

4. The duel (1, 3)

The duel (1, 3), 〈a〉
C a s e 1: Q(a) ≥ Q(a13) ∼= 0.814115. Define ξ and η as follows:

Strategy of Player I. Escape if Player II has not fired yet. If he
fired (say at a′), play optimally the resulting duel (1, 2), 〈2, a′, a′ ∧ ε̂〉.
Strategy of Player II. Fire at 〈a〉 and play optimally afterwards.

In [15] it is proved that for Q(a) ≥ Q(a13) the strategies ξ and η are
optimal in limit and

va
13 =

{
−1 + Q(a) if Q(a) ≥ Q(a12),
−1 + (1 + v11)Q2(a) if Q(a13) ≤ Q(a) ≤ Q(a12) ∼= 0.853553.

C a s e 2: Q(a) ≤ Q(a13). Define ξ and η as follows:

Strategy of Player I. Fire at 〈a〉 and escape.

Strategy of Player II. Fire at 〈a〉 and play optimally the resulting
duel.

We now have
va
13 = −Q2(a) + Q4(a).

Suppose Player II does not fire at 〈a〉. It is assumed that he fires imme-
diately after the shot of Player I. Thus we have

K(ξ, η̂) ≥ P (a)−Q(a)(1−Q3(a))− k(ε̂)

= 1− 2Q(a) + Q4(a)− k(ε̂) ≥ −Q2(a) + Q4(a)− k(ε̂).

On the other hand, suppose Player I does not fire at 〈a〉. We have

K(ξ̂, η) ≤ − P (a) + Q(a)
2
va
12 + k(ε̂)

=

−1 + (1 + v11)Q2(a) + k(ε̂)
if Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539,

1− 2Q(a) + Q3(a) + k(ε̂) if Q(a) ≤ Q(ǎ12).

Consider the following cases:

(a) 0.853553 ∼= Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539. In this case we
obtain the inequality

Q4(a)− (2 + v11)Q2(a) + 1 ≥ 0,

which is satisfied if Q(a) ≤ Q(a13).
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(b) Let Q(a) ≤ Q(ǎ12). In this case we obtain

−1 + 2Q(a)− 2Q2(a) + Q4(a) ≤ −Q2(a) + Q4(a),

which is always satisfied.

The duel (1, 3), 〈1, a ∧ c, a〉
C a s e 1: Q(a) ≥ Q(ǎ12) ∼= 0.780539.

Strategy of Player I. Escape if Player II has not fired. If he fired,
play optimally the resulting duel.

Strategy of Player II. Fire before 〈a〉+ c and play optimally after-
wards.

In [15] it is proved that the above strategies are optimal in limit if Q(a) ≥
Q(ǎ12) and the limit value of the game is

1
va
13 =

{
−1 + Q(a) if Q(a) ≥ Q(a12),
−1 + (1 + v11)Q2(a) if Q(a12) ≥ Q(a) ≥ Q(ǎ12).

C a s e 2: Q(a) ≤ Q(ǎ12). Define ξ and η as follows:

Strategy of Player I. If Player II has not fired before, fire at 〉〈a〉+c〈ε
and play optimally afterwards. If he fired, play optimally the resulting duel.

Strategy of Player II. Fire before 〈a〉+ c and play optimally after-
wards.

We now have
1
va
13 = −P (a) + Q(a)

2
va
12 = −1 + 2Q(a)− 2Q2(a) + Q4(a)

if Q(a) ≤ Q(ǎ12).
Player II always assures this value.
On the other hand, suppose that Player II fires before or at 〈a〉+ c. For

such a strategy η̂ we obtain

K(ξ, η̂) ≥ −P (a) + Q(a)
2
va
12 − k(ε̂) =

1
va
13 − k(ε̂).

Finally, suppose that Player II has not fired before 〈a〉 + c + α(ε). For
such a strategy η̂ we obtain

K(ξ, η̂) ≥ P (a)−Q(a)(1−Q3(a))− k(ε̂)

= 1− 2Q(a) + Q4(a)− k(ε̂)

≥ −1 + 2Q(a)− 2Q2(a) + Q4(a)− k(ε̂),

which is always satisfied. Thus if Q(a) ≤ Q(ǎ13) ∼= 0.780539, then the
strategies ξ and η are optimal in limit.

The duel (1, 3), 〈2, a, a ∧ c〉
C a s e 1: Q(a) ≥ Q(â13) ∼= 0.834554.
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Strategy of Player I. Escape if Player II has not fired. If he fired a
shot, play optimally the resulting duel.

Strategy of Player II. If Player I has not fired before, fire a shot at
〈a〉+ c and play optimally afterwards.

In [15] it is proved that the above strategies are optimal in limit for the
corresponding a and that

2
va
13 =

{
−1 + Q(a) if Q(a) ≥ Q(a12),
−1 + (1 + v11)Q2(a) if Q(a12) ≥ Q(a) ≥ Q(â13) ∼= 0.834554.

C a s e 2: Q(a) ≤ Q(â13). Define ξ and η as follows:

Strategy of Player I. Fire before 〈a〉+ c.

Strategy of Player II. If Player I has not fired before, fire a shot
at 〉〈a〉 + c〈ε and play optimally afterwards. If he fired, play optimally the
resulting duel.

We now have
2
va
13 = P (a)−Q(a)(1−Q3(a)) = 1− 2Q(a) + Q4(a).

Suppose that Player I does not fire before 〈a〉+c+α(ε). Then we obtain

K(ξ̂, η) ≤ − P (a) + Q(a)
2
va
12 + k(ε̂)

=

−1 + (1 + v11)Q2(a) + k(ε̂)
if 0.853553 ∼= Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539,

−1 + 2Q(a)− 2Q2(a) + Q4(a) + k(ε̂) if Q(a) ≤ Q(ǎ12).

If Q(a12) ≥ Q(a) ≥ Q(ǎ12) we should have

−1 + (1 + v11)Q2(a) ≤ 1− 2Q(a) + Q4(a)

or

S(Q) = Q4(a)− (1 + v11)Q2(a)− 2Q(a) + 2 ≥ 0.

This function is decreasing in Q and S(Q(â13)) = 0. Thus S(Q) > 0 for
Q(ǎ12) ≤ Q(a) < Q(â13) ∼= 0.834554.

If Q(a) ≤ Q(ǎ12) we obtain

−1 + 2Q(a)− 2Q2(a) + Q4(a) ≤ 1− 2Q(a) + Q4(a).

This inequality is always satisfied.
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5. Results for the duel (1, 3). We have

1
va
13 =

−1 + Q(a) if Q(a) ≥ Q(a12) ∼= 0.853553,
−1 + (1 + v11)Q2(a) if Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539,
−1 + 2Q(a)− 2Q2(a) + Q4(a) if Q(a) ≤ Q(ǎ12);

va
13 =

−1 + Q(a) if Q(a) ≥ Q(a12),
−1 + (1 + v11)Q2(a) if Q(a12) ≥ Q(a) ≥ Q(a13) ∼= 0.814115,
−Q2(a) + Q4(a) if Q(a) ≤ Q(a13);

2
va
13 =

−1 + Q(a) if Q(a) ≥ Q(a12) ∼= 0.853553,
−1 + (1 + v11)Q2(a) if Q(a12) ≥ Q(a) ≥ Q(â13) ∼= 0.834554,
1− 2Q(a) + Q4(a) if Q(a) ≤ Q(â13).

6. The duel (2, 3)

The duel (2, 3), 〈a〉

C a s e 1: Q(a) ≥ Q(a23) ∼= 0.882709. Define ξ and η as follows:

Strategy of Player I. If Player II has not fired before, fire a shot
at aε

23 and play optimally the resulting duel. If he fired, play optimally the
resulting duel (2, 2).

Strategy of Player II. If Player I has not fired before, fire at 〈a23〉
and play optimally afterwards. If he fired (say at a′), play optimally the
resulting duel (1, 3), 〈1, a′ ∧ ε̂, a′〉. If Player I has not reached the point a23,
do not fire.

We now have

va
23

df= v23 = −P (a23) + Q(a23)v22
∼= 0.013757,

where

Q2(a23)− (3 + v23)Q(a23) + 2 = 0, Q(a23) ∼= 0.882709.

The proof that ξ and η are optimal in limit is given in [15].

C a s e 2: Q(a23) ≥ Q(a) ≥ Q(â23) ∼= 0.870730. Define ξ and η as follows:

Strategy of Player I. If Player II has not fired before, fire at aε and
play optimally the resulting duel. If he fired, play optimally afterwards.

Strategy of Player II. Fire at 〈a〉 and play optimally the resulting
duel.

Also in [15] it is proved that in this case the strategies ξ and η are optimal
in limit and

va
23 = −1 + (1 + v22)Q(a)

is the limit value of the game.
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C a s e 3: Q(a) ≤ Q(â23). Define ξ and η as follows:

Strategy of Player I. Fire at 〈a〉 and if Player II has not fired, play
optimally the resulting duel (1, 3), 〈1, a ∧ ε̂, a〉. If he fired, play optimally
the resulting duel (1, 2), 〈a1〉.
Strategy of Player II. Fire at 〈a〉 and play optimally the resulting

duel.

We now have
va
23 = va

12Q
2(a)

=


0 if Q(â23) ≥ Q(a) ≥ Q(a12) ∼= 0.853553,
−Q2(a) + (1 + v11)Q3(a)

if Q(a12) ≥ Q(a) ≥ Q(â12) ∼= 0.730812,
Q5(a)−Q2(a) if Q(a) ≤ Q(â12).

Suppose that Player II does not fire at 〈a〉. For such a strategy η̂ we
have

K(ξ, η̂) ≥ P (a) + Q(a)
1
va
13 − k(ε̂)

=


1− 2Q(a) + Q2(a)− k(ε̂) if Q(a) ≥ Q(a12) ∼= 0.853553,
1− 2Q(a) + (1 + v11)Q3(a)− k(ε̂)

if Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539,
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q5(a)− k(ε̂)

if Q(a) ≤ Q(ǎ12).
Consider the following cases:

(a) 0.870730 ∼= Q(â23) ≥ Q(a) ≥ Q(a12) ∼= 0.853553. In this case the
condition K(ξ, η̂) ≥ va

23 − k(ε̂) leads to the inequality

1− 2Q(a) + Q2(a) ≥ 0,

which is always satisfied.
(b) 0.780539 ∼= Q(ǎ12) ≤ Q(a) ≤ Q(a12). In this case we obtain

1− 2Q(a) + (1 + v11)Q3(a) ≥ −Q2(a) + (1 + v11)Q3(a),

which is also always satisfied.
(c) 0.730812 ∼= Q(â12) ≤ Q(a) ≤ Q(ǎ12). In this case we should prove

that

1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q5(a) ≥ −Q2(a) + (1 + v11)Q3(a).

Let S(Q) be the difference of the left and right sides of the above in-
equality:

S(Q) = Q5(a)− (3 + v11)Q3(a) + 3Q2(a)− 2Q(a) + 1.

To prove that S(Q) ≥ 0, notice that S′(Q) < 0 for the considered numbers
Q and S(Q(ǎ12)) ∼= S(0.780539) > 0. Thus the inequality holds.
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(d) Q(a) ≤ Q(â12). In this case we obtain

1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q5(a) ≥ Q5(a)−Q2(a).

This inequality can be rewritten in the form

(1−Q(a))2 + 2Q2(a)(1−Q(a)) ≥ 0,

which always holds.

The duel (2, 3), 〈1, a ∧ c, a〉

C a s e 1: Q(a) ≥ Q(a23). From the results given at the beginning of this
section, it follows that the strategies ξ and η optimal in limit are the same
as in the duel (2, 3), 〈a〉, Case 1.

C a s e 2: Q(a) ≤ Q(a23).

Strategy of Player I. If Player II has not fired before, fire at a
random time aε

1, a1 = 〉〈a〉+ c〈, and play optimally the resulting duel.

Strategy of Player II. Fire before 〈a〉 + c and play optimally the
resulting duel.

We now have
1
va
23 = −P (a) + Q(a)

2
va
22.

The proof is omitted.

The duel (2, 3), 〈2, a, a ∧ c〉

C a s e 1: Q(a) ≥ Q(a23). Also here the strategies optimal in limit for
Players I and II are the same as in the duel (2, 3), 〈a〉, Case 1.

C a s e 2: Q(a) ≤ Q(a23). Define ξ and η as follows:

Strategy of Player I. Fire before 〈a〉 + c and play optimally the
resulting duel.

Strategy of Player II. If Player I has not fired before, fire at random
at time a1, a1 = 〉〈a〉+ c〈, and play optimally the resulting duel.

Now we have
2
va
23 = P (a) + Q(a)

1
va
13.

The proof that in the case considered the strategies ξ and η are optimal
in limit is omitted.
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7. Results for the duel (2, 3). We have

1
va
23 =



v23 = 0.013757 if Q(a) ≥ Q(a23) ∼= 0.882709,
−1 + (1 + v22)Q(a) if Q(a23) ≥ Q(a) ≥ Q(a22) ∼= 0.812085,
−1 + 2Q(a)− 2Q2(a) + (1 + v11)Q3(a)

if Q(a22) ≥ Q(a) ≥ Q(a11),
−1 + 2Q(a)− 2Q2(a) + 2Q3(a)− 2Q4(a) + Q5(a)

if Q(a) ≤ Q(a11);

va
23 =



v23 if Q(a) ≥ Q(a23),
−1 + (1 + v22)Q(a) if Q(a23) ≥ Q(a) ≥ Q(â23) ∼= 0.870730,
0 if Q(â23) ≥ Q(a) ≥ Q(a12) ∼= 0.853553,
−Q2(a) + (1 + v11)Q3(a)

if Q(a12) ≥ Q(a) ≥ Q(â12) ∼= 0.730812,
Q5(a)−Q2(a) if Q(a) ≤ Q(â12);

2
va
23 =


v23 if Q(a) ≥ Q(a23),
P 2(a) if Q(a23) ≥ Q(a) ≥ Q(a12),
1− 2Q(a) + (1 + v11)Q3(a)

if Q(a12) ≥ Q(a) ≥ Q(ǎ12) ∼= 0.780539,
1− 2Q(a) + 2Q2(a)− 2Q3(a) + Q5(a) if Q(a) ≤ Q(ǎ12).

For other noisy duels see [3], [8], [11], [14]–[22].
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