
APPLICATIONES MATHEMATICAE
22,4 (1995), pp. 515–529

W. NIEMIRO (Warszawa)

ESTIMATION OF NUISANCE PARAMETERS
FOR INFERENCE BASED

ON LEAST ABSOLUTE DEVIATIONS

Abstract. Statistical inference procedures based on least absolute devi-
ations involve estimates of a matrix which plays the role of a multivariate
nuisance parameter. To estimate this matrix, we use kernel smoothing. We
show consistency and obtain bounds on the rate of convergence.

1. Introduction. Statistical inference procedures considered in this
paper are related to M-functionals and M-estimators of least absolute devi-
ations (LAD) type. Let (Y,X) be a random vector in R×Rd. Fix α ∈ [0, 1]
and define functions %, ψ : R → R by

(1) %(s) = 1
2 |s|+

(
α− 1

2

)
s, ψ(s) = 1

2 sign(s) + α− 1
2 .

Of course, ψ is the derivative (more precisely, a subderivative) of %. Let
Q : Rd → R and G : Rd → Rd be given by

(2) Q(t) = E%(Y − tTX), G(t) = Eψ(Y − tTX)X.

Under mild assumptions, these functions are well-defined, G = ∇Q and
there exists a unique t0 ∈ Rd such that G(t0) = 0 and Q(t0) = mintQ(t).
Thus, t0 is the value of an M-functional on the joint distribution of (Y,X).
If (Y1, X1), . . . , (Yn, Xn) is an i.i.d. sample from this distribution, put

(3) Qn(t) =
1
n

n∑
i=1

%(Yi − tTXi), Gn(t) =
1
n

n∑
i=1

ψ(Yi − tTXi)Xi.

A random point tn such that Qn(tn) = mintQn(t) can be considered as
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an M-estimate. Note, in passing, that Gn(tn) 6= 0 in general, because Qn is
not differentiable at tn.

M-estimators corresponding to the %-function given by (1) appear in re-
gression analysis and discriminant analysis. For linear models, they are es-
timators of regression quantiles, introduced by Koenker and Basset (1978).
For α=1/2 we obtain just LAD estimator. Two-class discrimination can be
treated in much the same way as regression. For instance, we can assign
by convention Yi =1 to observations Xi from the first class and Yi =−1 to
Xi from the second class. If we adopt a slightly different convention and
set α=1 in (1), we obtain the function Qn known in discriminant analysis
as perceptron criterion (Hand 1981, Niemiro 1987, 1989; see also Section 3.2
for details). Asymptotic properties of LAD-type M-estimators and inference
procedures related to them were investigated by many authors. Let us men-
tion the monograph of Bloomfield and Steiger (1983), Rao (1988), Pollard
(1991) and Niemiro (1992, 1993). Jurečková in a series of papers considered
M-statistics in linear models with various choices of %- (or ψ)-function, in-
cluding LAD as a particular case (e.g. 1989, Jurečková and Sen, 1987, 1989).
The best references for recent advances in this field are the proceedings of
the two “L1-Norm” conferences in Neuchâtel, edited by Dodge (1987, 1992).

Niemiro (1993) developed statistical inference procedures based on M-
estimators with a general convex %-function. The object of inference is the
M-functional t0. Suppose we are to build an approximate confidence region
for t0 or to test a hypothesis of the form Ht0 = c, where H is a p × d
matrix and c ∈ Rp. The following asymptotic results help here. Under some
regularity conditions,

(4) n1/2(tn − t0) →d N(0, D−1V D−1),

where

(5) D = ∇2Q(t0) = ∇G(t0), V = Eψ2(Y − t0X)XXT .

Therefore

(6) n(tn − t0)TDV −1D(tn − t0) →d χ
2(d).

Quite similarly, under the null hypothesis Ht0 = c,

(7) n(Htn − c)T (HD−1V D−1HT )−1(Htn − c) →d χ
2(p),

if H is of full rank p. If ṫn is the constrained M-estimate, that is, Hṫn = c
and Qn(ṫn) = minHt=cQn(t), then

(8) nGn(ṫn)TD−1HT (HD−1V D−1HT )−1HD−1Gn(ṫn) →d χ
2(p).

These results are simple consequences of asymptotic representations of
Bahadur–Ghosh type for the underlying M-estimators (Niemiro 1992). Of
course, the matrices D and V are usually unknown. We need estimates of



Estimation of nuisance parameters 517

these matrices to construct an approximate confidence ellipsoid or to con-
struct tests of approximately prescribed size. If D̂n and V̂n are consistent es-
timates, they can be substituted into (6)–(8) to obtain statistics with asymp-
totic χ2 distribution. The obvious estimator V̂n = n−1

∑
ψ(Yi−tTnXi)XiX

T
i

is consistent. Estimation of D is much harder, due to the fact that % is not
differentiable. The function Qn is piecewise linear and we cannot use its
second derivative to estimate the second derivative of Q. Some smooth-
ing technique resembling non-parametric density or regression estimation is
necessary. The objective of this paper is to propose an estimator of D and
to examine its properties.

Note that the classical assumptions imposed on regression models sim-
plify the asymptotic theory, because they force matrices D and V to be
proportional. Suppose

(9) Y = tT0 X + U,

where U is independent of X and P(U ≤ 0) = α. Then it is not hard
to see that V = EXXT and D = f(0)α−1(1 − α)−1V , where f is the
density of U (assumed to be continuous at 0). Formulae (6)–(8) assume
simpler form and estimation ofD reduces to estimation of the scalar quantity
f(0). Usual kernel estimators can do the job. Methods of this kind were
proposed by Koenker (1987), McKean and Schrader (1987), Schrader and
McKean (1987), who developed LAD-type tests. Welsh (1987), Babu (1986)
and many others considered estimation of f(0) or f(0)−1 in this context.
Unfortunately, this approach breaks down if the model assumptions are
violated. Condition (9) is often not realistic. For instance, imagine that
Y = r(X) +U , where r is a “slightly non-linear” function. Although model
(9) fails, the M-functional t0 suggested by the wrong model still makes sense
and may be quite informative. Another example where (9) clearly fails is
the two-class discrimination model mentioned above. Therefore, we should
be interested in deriving inference procedures independent of the simplifying
assumption (9). To this end, we must cope with estimation of the matrix
D.

2. Consistency. Let us make the following assumptions.

C1. The function Q is well defined by (2), it is twice differentiable at t0.
C2. The matrix D = ∇2Q(t0) is positive definite.

We will also need a mild assumption about continuity of the joint distri-
bution of (Y,X) and a strong moment condition on X:

C3. P(Y − tTX = s) = 0 for t in a neighbourhood of t0 and all s.
C4. E|X|4 <∞.

Conditions C1, C2 and E|X|2 < ∞ are sufficient for asymptotic nor-
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mality (4); see Niemiro (1993). For our purposes, it is enough to remember
that

tn →p t0, tn = t0 +Op(n−1/2).
Assumption C1 is in fact redundant and it was introduced merely for clarity.
To avoid problems with infinite E|Y |, we could have used a simple trick and
replaced (2) by Q(t) = E%(Y − tTX) − %(Y ). Two-fold differentiability of
Q will always follow from other assumptions of our theorems. However, let
us retain C1 just to reassure ourselves that we know what we are trying
to estimate! In this section, we treat C1–C4 as standing assumptions.
Consider a kernel function K : R → R such that

K. 0 ≤ K(s),
∫
K(s) ds = 1, K(s) is increasing and right continuous for

s ≤ 0, decreasing and left continuous for s ≥ 0.

Note that the kernel is bounded, K(s) ≤ K(0). Let hn be a sequence of
positive reals, hn → 0. Put

(10) D̂n(t) =
1
nhn

n∑
i=1

K

(
Yi − tTXi

hn

)
XiX

T
i ,

for t ∈ Rd. Our estimator of D will be D̂n(tn). Write D̃n(t) for ED̂n(t), so

(11) D̃n(t) =
1
hn

EK
(
Y − tTX

hn

)
XXT .

To prove that D̂n(tn) →p D, it is enough to show that for some ε, η > 0,

I. sup|t−t0|≤ε |D̂n(t)− D̃n(t)| →p 0,
II. sup|t−t0|≤η |D̃n(t)−D(t)| → 0 for some D(t) and

III. D(t) → D as t→ t0.

Let us begin with statements II and III, that is, with the “deterministic
term” analysis.

Lemma 1. If II is true, then D(t) = ∇G(t) = ∇2Q(t) and D(t) is
continuous for |t− t0| < η. In particular , III holds.

P r o o f. Each D̃n(t) is a continuous function, by dominated convergence
in view of the C3, C4 and K. Hence D(t) is continuous as the limit of the
locally uniformly convergent sequence D̃n(t).

Let δn(s) = h−1
n K(h−1

n s), σn(s) =
∫ s

0
δn(u) du, νn(s) =

∫ s

0
σn(u) du.

Put %n(s) = νn(s) + (α − 1/2)s and ψn(s) = σn(s) + α − 1/2. Of course,
%n(s) → %(s) and ψn(s) → ψ(s), because hn → 0. By assumption,

(12) Eδn(Y − tTX)XXT = D̃n(t) → D(t)

uniformly in t, for |t− t0| ≤ η. We have Eδn(Y − tTX)XXT = ∇Eψn(Y −
tTX)X, because differentiation under the expectation sign can be justified
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in a standard way (Th. 115 in Schwartz 1967). Dominated convergence gives

(13) Eψn(Y − tTX)X → Eψ(Y − tTX)X.

Uniform convergence of derivatives (12) allows us to strengthen pointwise
convergence in (13) to almost uniform convergence. Moreover, we obtain
D(t) = ∇Eψ(Y − tTX)X (Th. 111 in Schwartz 1967). Now, we can repeat
the same reasoning once more. Notice that Eψn(Y − tTX)X = ∇E%n(Y −
tTX) and

(14) E%n(Y − tTX) → E%(Y − tTX),

and hence uniform convergence in (13) implies that Eψ(Y − tTX)X =
∇E%(Y − tTX) = ∇Q(t) = G(t). Putting things together, we get D(t) =
∇G(t) = ∇2Q(t).

Let us focus on I now. It is a statement about uniform convergence of
empirical means to expectations. The powerful modern empirical processes
theory makes verification of I easy. Specifically, we will use maximal inequal-
ities for manageable classes of functions, due to Pollard (1989). We need
not invoke the notion of manageability here, because we are going to apply
the inequalities only to subclasses of a Vapnik–Cervonenkis (VC) subgraph
class of functions. Suppose F is a class of functions f : Z → R. We say F
is a VC subgraph class if the sets {(z, u) : 0 ≤ u ≤ f(z) or f(z) ≤ u ≤ 0},
for all f ∈ F , form a VC class of subsets of Z × R. Assume |f(z)| ≤ F (z)
for all f ∈ F , that is, F is an envelope of F . Remark 1 on p. 200 in Kim
and Pollard (1990) asserts that subclasses of a VC subgraph class are uni-
formly manageable for F . Consequently, the following fact is a corollary of
Theorems 4.2 and 4.4 of Pollard (1989). Suppose Z is a measurable space
and let Z,Z1, . . . , Zn, . . . be a sequence of i.i.d. random elements of Z.

Assume F is a VC subgraph class with envelope F such that EF (Z)2

<∞ and Fn are subclasses of F containing the zero function. If

(15) sup
f∈Fn

E|f(Z)| → 0, n→∞,

then

(16) E sup
f∈Fn

n

∣∣∣∣ 1
n

n∑
i=1

f(Zi)−Ef(Z)
∣∣∣∣2 → 0, n→∞.

Moreover , if Fn are envelopes of Fn, then there is a constant C < ∞ such
that

(17) E sup
f∈Fn

n

∣∣∣∣ 1
n

n∑
i=1

f(Zi)−Ef(Z)
∣∣∣∣2 ≤ CEFn(Z)2.

To be precise, some conditions are needed to ensure measurability of
the suprema above. In our application no measurability problems arise,
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since the classes of functions to be considered will clearly be permissible,
in the sense defined by Pollard (1984, Appendix C). We are going to apply
Pollard’s theorem to

(18) F =
{
ft,h(y, x) = xjxmK

(
y − tTx

h

)
: t ∈ Rd, h > 0

}
∪ {0}.

Here (y, x) ∈ R× Rd plays the role of z, and xj and xm denote two (fixed)
components of x.

Lemma 2. The class F defined by (18) has the VC subgraph property.

P r o o f. We are to show that subsets of Rd+1 × R of the form

{(y, x, u) : 0 ≤ u ≤ xjxmK(h−1(y−tTx)) or xjxmK(h−1(y−tTx)) ≤ u ≤ 0}
with t ∈ Rd and h > 0 belong to a VC class of sets. It is enough to check that
the intersections of these sets with the three constant sets {(y, x, u) : xjxm >
0, u > 0}, {xjxm > 0, u > 0} and {u = 0} form VC classes. Consider only
the first class of intersections, since the second one is quite similar and the
third one is trivial. For 0 < u ≤ K(0) write K+(u) = sup{s ≥ 0 : K(s) ≥ u}
and K−(u) = inf{s ≤ 0 : K(s) ≥ u}. Put K+(u) = −1 and K−(u) = 1 for
u > K(0). We have 0 < u ≤ K(s) iff K−(u) ≤ s ≤ K+(u). Now, we can
write the intersections under consideration as

{(y, x, u) : xjxm > 0, u > 0}
∩{(y, x, u) : hK−(u(xjxm)−1) ≤ y − tTx ≤ hK+(u(xjxm)−1)}.

Each such set is the result of union and intersection operations applied to two
sets of the form {g(y, x, u) ≥ 0}, where g runs through a finite-dimensional
vector space of functions and a third, constant set. Consequently, the class
of such sets is VC.

Theorem 1. Under assumptions C1, C2, C3, C4 and K, if hn = o(1)
and h−1

n = O(n1/2) then D̂n(tn) →p D, provided that II holds.

P r o o f. In view of C4, we can use F (y, x) = K(0)|xjxm| as a square
integrable envelope of F . It is easy to see that our condition II implies,
for ε < η,

(19) sup
|t−t0|≤ε

E|XjXm|K
(
Y − tTX

hn

)
→ 0.

In fact, |XjXm| ≤ |Xj |2 + |Xm|2, while E|Xj |2K(h−1
n (Y − tTX)) is equal

to hn times a diagonal element of D̃n(t). Thus, formula (19) is tantamount
to (15) for subclasses Fn = {ft,hn : |t− t0| ≤ ε}∪{0}. Therefore, (16) holds
for these classes Fn, that is,

(20) E sup
|t−t0|≤ε

nh2
n|D̂n(t)− D̃n(t)|2 → 0.
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Since n−1h−2
n = O(1), we get I. Lemma 1 ensures III. Of course, we have

applied Pollard’s theorem componentwise and for the matrix norm in (20)
we can take the usual norm in d2-dimensional euclidean space.

The condition h−1
n = O(n1/2) is certainly not necessary for consistency,

but we think it is quite satisfactory for reasonable applications. Let us recall
that our objective is to estimate D = D(t0); for hn = o(n−1/2) we would try
to reduce the bias of an estimate of D(tn), where tn − t0 is of order n−1/2.
Note that we used assumption C3 only in the proof of Lemma 1 to justify
continuity of D̃n(t). If the kernel K is continuous, this condition becomes
unnecessary.

Convergence in probability can be strengthened to L2 convergence, if we
know that

IV. supn supt∈Rd |D̃n(t)| <∞.

Corollary. Under the assumptions of Theorem 1, D̂n(tn) →L2 D,
provided that II and IV hold.

P r o o f. Application of (17) to Fn = F yields

E sup
t∈Rd

nh2
n|D̂n(t)− D̃n(t)|2 ≤ CE|X|4.

If we combine this with IV, we obtain an integrable random variable which
dominates supt∈Rd |D̂n(t)|2.

Finally, we are left with the task of verifying II and IV. Explicit as-
sumptions which imply these statements will be given in the forthcoming
section.

3. Regularity conditions and rates of convergence. To ensure con-
sistency of our estimator D̃n(tn) and to obtain bounds on the rate of conver-
gence, we have to assume some regularity properties of the joint probability
distribution of (Y, Z). The form of plausible regularity conditions depends
on the way we look at this random vector: we may prefer either to consider
the conditional distributions of Y given X, or the other way round. Thus,
we have to examine separately two cases.

3.1. Regression model. If we regard Y as a function of X plus some
random error (not necessarily independent of X), it is natural to assume
the following.

R1. For every x, the conditional distribution of Y given X = x has
density f(y|x), which is bounded and uniformly continuous as a
function of y, uniformly in x.
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In other words, we assume that f(x|y) ≤M for all x, y and to each ε there
corresponds δ such that |y1−y2| < δ implies |f(y1|x)−f(y2|x)| < ε for all x.

R2. The matrix D = Ef(tT0 X|X)XXT is positive definite.

Theorem 2. Under assumptions R1, R2, C4 and K, if hn = o(1) and
h−1

n = O(n1/2) then D̂n(tn) →p D.

P r o o f. In view of Theorem 1 and Lemma 1, it is enough to check that
II holds, with

D(t) = Ef(tTX|X)XXT .

We have

|D̃n(t)−D(t)|

≤ E
∫ 1

hn
K

(
y − tTX

hn

)
|f(y|X)− f(tTX|X)| dy XXT

≤ E
[
ε
∫

|y−tT X|<δ

K

(
y − tTX

hn

)
dy +M

∫
|y−tT X|>δ

K

(
y − tTX

hn

)
dy

]
|X|2

≤ 2εE|X|2,

for large n, if |f(y|x)| ≤ M and δ corresponds to ε in the definition of
uniform continuity of f(y|x).

Corollary. Under the assumptions of Theorem 2, we have D̂n(tn)
→L2 D.

To see this, note that D(t) ≤ ME|X|2 and D̃n(t) → D(t) uniformly.
Apply the Corollary to Theorem 1.

Now, consider a stronger set of assumptions:

R3. For every x, the conditional distribution of Y given X = x has
density f(y|x) with two uniformly bounded derivatives d

dyf(y|x)

and d2

dy2 f(y|x).
C5. E|X|5 <∞.
KS. The kernel is symmetric: K(−s) = K(s).

Theorem 3. Under assumptions R2, R3, C5, K and KS, if hn = o(1)
and h−1

n = O(n1/2) then D̂n(tn) = D +Op(n−1/2h
−1/2
n ∨ h2

n).

P r o o f. The two entries inOp(·) correspond to bounds on “variance” and
“bias” terms, respectively. Let us begin with the bound on |D̂n(t)− D̃n(t)|.
Since our present assumptions imply C1 and C2, asymptotic normality (4)
obtains, |tn − t0| = Op(n−1/2) and so we need a bound which is uniform in
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t for |t− t0| = O(n−1/2). The maximal inequality (17) gives

(21) E sup
|t−t0|≤Ln−1/2

nh2
n|D̂n(t)− D̃n(t)|2

≤ CE sup
|t−t0|≤Ln−1/2

K2

(
Y − tTX

hn

)
|X|4.

The right hand side of (21) can be bounded by

CE
∫

sup
|t−t0|≤Ln−1/2

MK2

(
y − tTX

hn

)
dy |X|4.

Now, |y − tTX| ≥ ||y − tT0 X| − |t − t0||X||. If |y − tT0 X| ≥ 1
2Ln

−1/2|X|,
then we have K(h−1

n |y− tTX|) ≤ K(h−1
n |y− tT0 X|/2). Using the inequality

K(h−1
n (y − tTX)) ≤ K(0) for |y − tT0 X| ≤ 1

2Ln
−1/2|X|, we obtain∫

sup
|t−t0|≤Ln−1/2

K2

(
y − tTX

hn

)
dy

=
∫

|y−tT
0 X|≥ 1

2 Ln−1/2|X|

+
∫

|y−tT
0 X|≤ 1

2 Ln−1/2|X|

≤
∫
K2

(
y − tT0 X

2hn

)
dy + LK(0)n−1/2|X|

= hn

∫
K2(s) ds+ LK(0)n−1/2|X|.

Since C5 is assumed, we can multiply the above inequality by |X|4 and take
expectation. It follows that the right hand side of (21) is at most

CME
[
hn

∫
K2(s) ds+ LK(0)n−1/2|X|

]
|X|4 = O(hn) +O(n−1/2).

Therefore, (21) yields

Enh2
n sup
|t−t0|≤Ln−1/2

|D̂n(t)− D̃n(t)|2 = O(hn).

Consequently,

(22) sup
|t−t0|≤Ln−1/2

|D̂n(t)− D̃n(t)| = Op(n−1/2h−1/2
n ).

Now, let us turn to the bias term. Use the Taylor expansion of f(y|x)
around y = tTX with the second order remainder written in the Lagrange
form. We have

(23) sup
t
|D̃n(t)−D(t)| = O(h2

n),

because |D̃n(t)−D(t)| is equal to
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hn
K

(
y − tTX

hn

)[
f(tTX|X) +

d

dy
f(tTX|X)(y − tTX)

+
1
2
d2

dy2
f(y∗|X)(y − tTX)2 − f(tTX|X)

]
dy XXT

∣∣∣∣
≤ E
∫ 1

hn
K

(
y − tTX

hn

)
N(y − tTX)2 dy |X|2

≤ Nh2
n

∫
u2K(u) duE|X|2.

In the above formula, y∗ is some point between y and tTX, and the constant
N bounds d2f/dy2. Of course, the integral of the first order term cancels
out due to KS.

We have yet to bound |D(tn)−D(t0)| in probability. Note that

(24) sup
|t−t0|≤Ln−1/2

|D(t)−D(t0)| = O(n−1/2),

because

|D(t)−D(t0)| =
∣∣∣∣E[

f(tT0 X|X) +
d

dy
f(y∗|X)(t− t0)TX

]
XXT

∣∣∣∣
≤ N |t− t0|E|X|3,

by Lagrange’s formula (here N bounds df/dy). Formulae (22)–(24) imply
the conclusion.

Corollary. Under the assumptions of Theorem 3, the best bound on
the rate of convergence obtains for hn = hn−1/5. For such hn,

D̂n(tn) = D +Op(n−2/5).

It is interesting to compare the rate of convergence asserted above with
the magnitude of the remainder term in Bahadur’s representation of
n1/2(tn−t0). Kiefer (1967) proved this remainder is of precise order O(n−1/4)
in probability in the univariate case, when X = 1 and t0 is an α-quantile of
Y . For linear models, the analogous result was obtained by Jurečková and
Sen (1987; see also 1989). In our setting, results of Niemiro (1992) show
the remainder is O(n−1/4(log n)1/2(log log n)1/4) almost surely. Let us take
the O(n−1/4) rate in probability as a very plausible conjecture. Since the
representation of tn as a sum of independent random vectors is used to de-
rive (4)–(6), we can expect the left hand side of (6) is χ2(d)-distributed up
to an O(n−1/4) error. The additional error, introduced when we substitute
D̂n(tn) in place of D, is of order O(n−2/5). The same remark applies to (7)
and (8). Needless to say, the whole above discussion is rather crude.

3.2. Discrimination model. Let us explain how the function Q, defined
by (2) in the Introduction, can be used in two-class discriminant analysis.
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Consider a random vector (J, Z) with values in {−1, 1} × Rd. The binary
random variable J is interpreted as the indicator of the class to which an
object belongs. Components of Z describe some measurable or observable
features of the object. For various reasons, it is often desirable to look for a
linear discriminant function g(Z) = s + tTZ, s ∈ R, t ∈ Rd. The goal is to
select g such that, roughly speaking, the conditional distributions of g(Z)
given J = 1 and J = −1 are well separated from each other. The separa-
bility can be quantified in many ways, of course. The following criterion is
suggested by analogy with linear regression. Let

(25) Q(s, t) = E%(1− J(s+ tTZ)).

This criterion function is of the form considered in the Introduction. To see
this, put Y = 1 and XT = J(1, ZT ); note that we included explicitly the
“interception term” s, thus X is now of dimension d+ 1 and Q : Rd+1 → R.
Assume % appearing in (25) is given by (1). For %(u) = |u|/2, Q(s, t) is
small if sign(s+ tTZ) is close to J . Some thought shows that the intuitive
meaning of Q remains clear also for, say, %(u) = u ∨ 0 = (u + |u|)/2. This
is why (25) is more judicious than the (perhaps more familiarly looking)
criterion E%(J − (s+ tTZ)).

To state regularity conditions taylored for the model of discrimination,
we will need the following quantities:

f+(s, t) =
d

ds
P(tTZ ≤ s | J = 1),

m+(s, t) = E(Z | tTZ = s, J = 1),

V+(s, t) = E(ZZT | tTZ = s, J = 1).

Note that m+ is vector-valued, and V+ is a matrix-valued function. Define
f−, m− and V− in the same way, replacing J = 1 by J = −1. Write also

π+ = P(J = 1), π− = 1− π+.

Put

D+(s, t) =
(

1 m+(1− s)T

m+(1− s) V+(1− s)

)
f+(1− s),

D−(s, t) =
(

1 −m−(−1− s)T

−m−(−1− s) V−(−1− s)

)
f−(−1− s).

Assume

D1. The matrices D+(s, t) and D−(s, t) are well-defined, bounded and
uniformly continuous as functions of s, uniformly in t in a neigh-
bourhood of t0.

D2. The matrix D = π+D+(s0, t0) + π−D−(s0, t0) is positive definite.
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The function D̃n, given by (11), now becomes

D̃n(s, t) = E
1
hn
K

(
1− J(s+ tTZ)

hn

) (
1 JZT

JZ ZZT

)
(26)

= π+

∫ 1
hn
K

(
u− s

hn

)
D+(u, t) du

+ π−
∫ 1

hn
K

(
−u+ s

hn

)
D−(u, t) du.

Theorem 4. Under assumptions D1, D2, C4 and K, if hn = o(1) and
h−1

n = O(n1/2) then D̂n(tn) →p D.

P r o o f. In view of (26), assumption D1 implies that D̃n(s, t) →
π+D+(s, t) + π−D−(s, t) uniformly in a neighbourhood of (s0, t0). Thus
II holds. The result follows from Theorem 1. Let us omit the details, be-
cause the argument is standard and quite similar to that in the proof of
Theorem 2.

Condition D2 clearly forces (s0, t0) to be the unique minimizer of Q(s, t),
because D = ∇2Q(s0, t0) by Lemma 1.

Since the matrix functions appearing in D1 look rather forbidding, let
us give an example of a model in which f±, m± and V± can be written
explicitly and their regularity properties are easily seen. This will be the
model with elliptically contoured class-conditional distributions.

A random vector Z is said to have elliptically contoured (e.c.) distribu-
tion if it has density of the form

(detΣ)−1/2(2π)−d/2fd

(
1
2 (z − µ)TΣ−1(z − µ)

)
,

where d is the dimension of Z, µ ∈ Rd and Σ is a symmetric, positive definite
d×d matrix; we consider only absolutely continuous e.c. distributions. It is
easily seen that the standardized random variable W = Σ−1/2(Z − µ) has
density fd(|w|2/2), which is spherically symmetric. Each component of W ,
say W1, has one-dimensional density (d/du)P(W1 ≤ u) = (2π)−1/2f1(u2/2),
where

f1(v) =
1

Γ
(

d−1
2

) ∞∫
v

(s− v)d/2−3/2fd(s) ds

(see Szab lowski 1990). It will be convenient to consider µ, Σ and f1 (but
not fd) as parameters of an e.c. distribution; thus write Z ∼ EC(µ,Σ, f1).
Consider the following assumption:

EC. The conditional distributions of Z given J = 1 and J = −1 are
EC(µ+, Σ, f1+) and EC(µ−, Σ, f1−), respectively, with µ+ 6= µ−.
The second moments of Z exist. The functions f1+(u) and f1−(u)
are continuous and decreasing.
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Note, in passing, that for d ≥ 3 the last part of the assumption is spuri-
ous, because the d−2-dimensional marginal densities of an e.c. distribution
are necessarily continuous and decreasing functions of a quadratic form.

Proposition. Condition EC implies D1.

P r o o f. Straightforward computation will lead to explicit formulae for
f±, m± and V±. To avoid awkward repetitions, fix J , suppress condition-
ing on J in our notation and omit the subscripts ± for a moment. Begin
with simple expressions for conditional moments of the standardized variable
W = Σ−1/2(Z − µ):

E(W |W1 = u) = (u, 0, . . . , 0),

Var(W |W1 = u) = diag(0, σ2(u2/2), . . . , σ2(u2/2)),

where W1 is the first component of W , Var denotes the variance-covariance
matrix and the function σ2(v) is given by

σ2(v) =
1

f1(v)

∞∫
v

f1(s) ds

(see Szab lowski 1990 or Niemiro 1989). A simple change of variables yields

E(Z | tTZ = u) = µ+
Σt

tTΣt
(u− tTµ),

Var(Z | tTZ = u) =
(
Σ − ΣttTΣ

tTΣt

)
σ2

(
(u− tTµ)2

2tTΣt

)
,

f(u, t) =
d

du
P(tTZ ≤ u) =

1√
2πtTΣt

f1

(
(u− tTµ)2

2tTΣt

)
.

It is easily seen that µ+ 6= µ− implies t0 6= 0. Condition D1 follows from
the above formulae, applied to the class-conditional distributions of Z.

Thus, EC implies D1 easily, with plenty to spare. In fact, the regularity
properties of e.c. distributions ensure good behaviour of higher conditional
moments (provided that the higher moments exist, of course). We again
refer to Szab lowski (1990). Therefore, under EC and C4, it is not hard
to verify sufficient conditions for the Op(n−2/5)-rate of convergence of our
estimator D̂n(tn). We will not pursue this point.

To conclude, let us mention that under EC, the linear discriminant
function tT0 Z, where (s0, t0) is the minimizer of Q(s, t), has the following
optimality property. There exists some s1 ∈ R such that P(sign(s1 +
tT0 Z) 6= J) = infs,t P(sign(s + tTZ) 6= J). In other words, the decision
rule sign(g(Z)) predicts J with minimum probability of error among linear
g, if g(Z) = s1 + tT0 Z. This fact follows from simple considerations based
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on equivariance of (Q(s, t), J) with respect to affine transformations of Z
(see Bobrowski 1986 or Niemiro 1987, 1989). Unfortunately, in general the
optimal “threshold” or “intercept” term s1 is not equal to s0.

References

G. J. Babu (1986), Efficient estimation of the reciprocal of the density quantile function
at a point , Statist. Probab. Letters 4, 133–139.

P. Bloomf ie ld and W. L. Ste iger (1983), Least Absolute Deviations, Theory , Applica-
tions, Algorithms, Birkhäuser, Boston.

L. Bobrowsk i (1986), Linear discrimination with symmetrical models, Pattern Recogni-
tion 19, 101–109.

Y. Dodge (ed.) (1987), Statistical Data Analysis Based on L1-norm and Related Methods,
North-Holland.

— (ed.) (1992), L1-Statistical Analysis and Related Methods, North-Holland.
D. J. Hand (1981), Discrimination and Classification, Wiley, New York.
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