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NUMERICAL INTEGRATION OF DIFFERENTIAL

EQUATIONS IN THE PRESENCE OF FIRST INTEGRALS:

OBSERVER METHOD

Abstract. We introduce a simple and powerful procedure—the observer
method—in order to obtain a reliable method of numerical integration over
an arbitrary long interval of time for systems of ordinary differential equa-
tions having first integrals. This aim is achieved by a modification of the
original system such that the level manifold of the first integrals becomes
a local attractor. We provide a theoretical justification of this procedure.
We report many tests and examples dealing with a large spectrum of sys-
tems with different dynamical behaviour. The comparison with standard
and symplectic methods of integration is also provided.

1. Introduction. Frequently we need to integrate numerically a system
of ordinary differential equations (ODE’s) having some first integrals or an
evolutionary partial differential equation admitting some conservation laws.
In what follows we will consider exclusively the ODE case, but undoubtedly,
our method can also be applied to the case of partial differential equations.

Many examples of systems of ODE’s having first integrals can be found
in classical mechanics, where Hamiltonian equations are of this type, always
having the Hamiltonian as a first integral. The Newtonian many body
problem with at least three bodies is an example of a non-integrable system
having many first integrals.

Another class of systems of ODE’s that always have first integrals is
the class of the so called Euler equations on a Lie algebra ([32], [33], [63],
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[65]–[70]). The prototype of equations of this class is the system of the
standard Euler equations of motion of a rigid body with a fixed point in the
absence of gravity. When the Lie algebra is R

2n endowed with the standard
Lie bracket, we recover the class of usual Hamiltonian systems.

The Euler equations on Lie algebras are particularly interesting, because,
as was discovered recently, many systems of ODE’s governing the motion
of rigid bodies in different circumstances, described already by L. Euler,
D. Poisson, G. R. Kirchhoff, V. A. Steklov and others, belong to this class
([65]–[70], [48]). Many physically interesting systems of Euler equations on
Lie algebras were recently described and studied by O. I. Bogoyavlensky
([11]–[20]).

When the system of ODE’s is not integrable, but admits some first in-
tegrals, its numerical study is particularly delicate. Indeed, when studying
a non-integrable system of ODE’s without any known first integrals, except
for standard precaution measures, we do not have any control on numeri-
cal errors, especially in chaotic regions. When first integrals exist, one can
demand from the numerical integration procedure to preserve, at least, the
first integrals.

It can be easily understood that this is really a very difficult problem if
one sees the huge amount of literature devoted to it (see for example [6],
[7], [10], [28], [29], [36], [38], [51], [57]–[61] and references cited in these
works). Large parts of these papers were written by astronomers, because
this problem was recognized for the first time when studying the Newtonian
many body problem and in particular the Kepler problem.

The recent paper ([44]) proves that even for an integrable system this
problem can be extremely delicate.

The main aim of this paper is to introduce a simple numerical procedure,
or rather a class of them, called by us the observer method , derived from
control theory (see for example [39]), which preserves very well the first
integrals over arbitrary long integration time. This last property will be
rigorously proven, at least for some range of parameters. The idea of this
method consists in a perturbation of the original system in such a way that
the level surface of the first integrals, where the interesting solution lies, is
an attractor for the perturbed system.

After some preliminary numerical tests on the planar Kepler problem and
the uncoupled harmonic oscillators the observer method is applied to the
numerical study of the following four examples: the elliptic orbits with big
eccentricities of the spatial Kepler problem, the Gavrilov–Shil’nikov system
([34]), the so-called non-Manakov case of the Euler equations on the Lie
algebra so(4) ([1], [11], [12], [32], [40], [41], [49], [69], [80], [82]), and finally
the geodesic flow on a compact orientable surface with constant curvature
−1 ([22]).
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These examples represent four main different types of dynamical be-
haviour: stable completely integrable systems, completely integrable unsta-
ble systems, systems with large regions of chaotic behaviour presenting the
so called “coexistence” (see e.g. [55] and [78]) and Anosov systems ([73]).

It is important to note that the results of numerical computations re-
ported in Sections 4–8 clearly indicate that the use of the observer method
increases the reliability of numerical integration of the considered system on
the level manifold of the first integrals.

As was noted by M. Balabane, one can drastically simplify the observer
method reducing it to the method called by us the penalty method . Although
the penalty method is, from the computational point of view, substantially
simpler than the observer method, its field of applications is limited and
more careful numerical investigations indicate that in contrast to the ob-
server method, it does not preserve the first integrals so well as the observer
method does. Considering the simplicity of the penalty method, we are as-
tonished by its absence in the literature. We only know of the paper [61],
where some vaguely related numerical procedure is described. See also [36].

Let us also note the evident relation between the problem studied in
this paper and the problem of physical realization of constraints in classical
mechanics (see for example [3]).

The paper is organized as follows: in Section 2 we describe the observer
and penalty methods. In this section we also briefly discuss the case of so-
called partial first integrals known also under the name of invariant relations

(see for example [54], [45], [79]), which generalize the globally defined first
integrals. In Section 3 we relate rigorously the observer method to numerical
integration of ODE’s. In Section 4 the preliminary tests on the observer
method are provided. In Section 5 we study numerically the spatial Kepler
problem, and in Section 6 the Gavrilov–Shil’nikov system. In Section 7 we
study the Euler equations on the Lie algebra so(4), and finally in Section 8
the geodesic flow on a surface of constant negative curvature.

In Sections 4–8 we report many comparisons of the observer method with
different standard Runge–Kutta methods, extrapolation method, penalty
method and different symplectic methods of integration.

2. The observer method. Consider a system of ODE’s written in
vector form

(2.1) dx/dt = F (x),

where F ∈ C1(U, Rp) and U is an open subset of R
p, together with the

initial condition

(2.2) x(t0) = x0,

for some x0 ∈ U . We will call the problem (2.1)–(2.2) the problem (P).
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Suppose that H1, . . . ,Hq ∈ C2(U), 1 ≤ q < p, are first integrals of the
system (2.1). Set

H =




H1
...

Hq


 ,

H ∈ C2(U, Rq), and denote by DH the derivative of H, i.e. its Jacobian
matrix.

Let ‖ · ‖ denote the Euclidean norm. Fix x0 ∈ U and set H0 = H(x0).
Define the level set

(2.3) Γ = {x ∈ U : H(x) = H0}.
We will suppose that the integrals H1, . . . ,Hq are functionally indepen-

dent on Γ , i.e. for x ∈ Γ , rank(DH(x)) = q. Under this assumption, Γ is a
smooth submanifold of U . In general, Γ has many connected components.

Let us underline that in concrete examples it can be difficult to verify
if the integrals H1, . . . ,Hq are functionally independent on a given level set
Γ (see for example [4], [5], [74], [75]). Concerning the practical side of the
observer method, this verification can be neglected.

To carry through successfully the theoretical considerations of this paper
we will suppose Γ compact.

Define the set Γ̃ε by

(2.4) Γ̃ε = {x ∈ U : r(x, Γ )
def
= ‖H0 − H(x)‖ ≤ ε}

Now, from the implicit function theorem one easily deduces that for
sufficiently small ε, 0 < ε ≤ ε0, the connected component Γε of Γ̃ε that
contains Γ is also a compact subset of U on which the integrals H1, . . . ,Hq

are functionally independent.

The above compactness condition occurs quite frequently, in particu-
lar, for the Kepler problem for strictly negative energies and for the Euler
equations on so(n), n ≥ 3.

It can be easily seen that if A is a q × p matrix, q ≤ p, then the q × q
symmetric matrix AAT is invertible if and only if A is of maximal rank, i.e.
of rank q, where AT denotes the transposed matrix of A. Thus for every
ξ ∈ Γ , DH(ξ)DT

H(ξ) is invertible. Note also that if AAT is invertible, then
AT (AAT )−1 is just the Moore–Penrose generalized inverse of A.

As the submanifold Γ = {x ∈ U : H(x) = H0} is compact, it is well
known (see for example [43]) that the solution x = x(t) of the problem (P)
is defined for all t ∈ R. Let us consider such a solution. For every t ∈ R one
has H(x(t)) = H(x0) = H0.

Together with the problem (P), consider the following perturbed initial
value problem (called problem (PP)):
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(2.5)

dξ

dt
= F (ξ) + DT

H(ξ)[DH(ξ)DT
H(ξ)]−1K(ξ)(H0 − H(ξ)),

ξ(t0) = ξ0,

where ξ0 ∈ U and K(ξ) is a diagonal matrix given by

(2.6) K(ξ) =




θ1 0 · · · 0

0 θ2

...
...

. . .

0 . . . 0 θq




where θ1, . . . , θq are smooth functions on Γε such that

(2.7) η = min
1≤i≤q

min
ξ∈Γε

θi(ξ) > 0.

On the submanifold Γ , where H(ξ) = H0, the ODE system (2.5) reduces
to the initial system (2.1). Consequently, the orbits of both systems coincide
on Γ .

We will now show that Γ is the global attractor of the system (2.5)
restricted to Γε with an exponential rate of convergence of orbits towards
Γ which is exactly controlled. The main point is contained in the following
very simple lemma.

Main Lemma. Let ξ0 ∈ Γε. Then the unique solution of the problem

(PP) is defined for every t ≥ 0, and for such t,

(2.8) r(ξ(t), Γ ) ≤ r(ξ0, Γ )e−ηt

where r(ξ, Γ ) is defined in (2.4). Consequently , limt→∞ H(ξ(t)) = H0.

P r o o f. If ξ0 ∈ Γ , then r(ξ(t), Γ ) = 0 and (2.8) is true. Now, let ξ0 ∈ Γε

and ξ0 6∈ Γ . We will prove both parts of the lemma simultaneously. To prove
that every solution ξ = {ξ(t)} of the problem (PP) is defined for every t > 0,
because Γε is compact, it is sufficient to prove that for every T > 0 such
that the solution {ξ(t)}0≤t≤T is defined, {ξ(t)}0≤t≤T ⊂ Γε (see Chapter II
of [43]). Thus, consider the solution {ξ(t)}0≤t≤T and let εt = H0 −H(ξ(t)).
Then, taking into account (2.5), as DHF is equal to zero because H is a
first integral of the initial non-perturbed equation (2.1), one can write

d

dt
‖εt‖2 = −2εT

t DH(ξ(t))
dξ(t)

dt

= −2εT
t [DH(ξ(t))F (ξ(t)) + K(ξ(t))(H0 − H(ξ(t)))]

= −2εT
t K(ξ(t))εt ≤ −2η‖εt‖2.

Therefore

‖εt‖2 ≤ ‖ε0‖2e−2ηt
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and thus the inequality (2.8) holds for 0 ≤ t ≤ T . Consequently, for such t,
it has been shown that ξ(t) ∈ Γε and this finishes the proof.

Suppose that instead of integrating numerically on Γ the problem (P),
we integrate numerically the perturbed problem (PP). Taking into account
the Main Lemma we can predict intuitively the behaviour of first integrals
thanks to the correction term, and hope that if the computed orbits of the
perturbed system leave Γ , then the correction term pushes them toward
Γ . Hence we can expect to bound the error of the computed first integrals.
In the next section we will establish rigorously the above qualitative fea-
ture. The method of control of the integration errors through the use of the
problem (PP), with perhaps other matrices K(ξ) than (2.6), is the observer

method.

In what follows we will use two kinds of matrix K(ξ):

• The first one when θ1, . . . , θq are constants. In this case we will say
that one applies the simple observer .

• The second one when

θi = αi‖DT
H(ξ)[DH (ξ)DT

H(ξ)]−1L(β)‖−1, 1 ≤ i ≤ q,

where αi, βi are some strictly positive numbers, and L(β) is the q×q diagonal
matrix with β1, . . . , βq on the diagonal. In this case the obtained method
will be called the normalized observer.

As will be seen in Section 5 when studying the spatial Kepler problem,
the simple observer fails for elliptic orbits with big eccentricities, while the
normalized observer works very well.

Concerning practical computations with the simple observer method,
notice that for its application it is enough to solve a system of q linear
equations for one calculation of right hand side of the equation (2.5). In
fact, define

P (ξ) = DT
H(ξ)[DH(ξ)DT

H(ξ)]−1K(ξ)(H0 − H(ξ)),

the observer perturbation term (see (2.5)). It can be written equivalently as

P (ξ) = DT
H(ξ)y(ξ),

where y(ξ) is the unique solution of

DH(ξ)DT
H(ξ)y(ξ) = K(ξ)(H0 − H(ξ)).

Let us pause now on the nature of the perturbation term in (2.5). For
x0 ∈ Γε, denote by Γ (x0) the manifold {ξ ∈ Γε : H(ξ) = H(x0)}. For
ξ ∈ Γ (x0), all vectors orthogonal to Γ (x0) at ξ are of the form DT

H(ξ)y,
where y ∈ R

q. Thus, the perturbation term in (2.5) is orthogonal to the level
manifolds Γ (x0). On the other hand, it is clear that only such perturbations
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can be used to improve the reliability of numerical integration on Γ of the
system (2.1) using the observer approach.

Now, consider the class of perturbations of the form

(2.9) DT
H(ξ)Y (ξ)(H0 − H(ξ)),

where Y is a q × q matrix function defined on Γε. It is easy to see that
the estimate (2.8) can be obtained along the lines of the proof of the Main
Lemma precisely in the case when

Y (ξ) = [DH(ξ)DT
H(ξ)]−1K(ξ),

where K(ξ) is an invertible, not necessarily diagonal, positive definite q × q
matrix depending on ξ ∈ Γε and satisfying, for some η > 0,

inf
ξ∈Γε

yT K(ξ)y ≥ η‖y‖2 for every y ∈ R
q.

Finally, consider the case when all functions under considerations are
real-analytic. In this case it is easy to see that every x0 ∈ Γ (see (2.3))
has a neighbourhood V ⊂ R

p such that for every vector-valued function
Φ : V → R

p vanishing on Γ one has

Φ(ξ) = Y (ξ)(H0 − H(ξ)),

where ξ ∈ V and Y is a real-analytic p × q matrix function defined on V .
Thus, at least, in the real-analytic case the form (2.9) of the perturbation
is unavoidable.

Now let us drastically simplify the problem (PP) by considering the
initial value problem

(2.10)

{
dξ/dt = F (ξ) + DT

H(ξ)K(ξ)(H0 − H(ξ)),

ξ(0) = ξ0.

At first glance, the qualitative features of the orbits of (2.10) are similar to
those for the problem (PP).

Now, in the same way as in the case of the Main Lemma, one can prove
for this initial value problem that for all t ≥ 0 for which the solution ξ(t) is
defined one has

(2.11)
d

dt
‖εt‖2 = −2εT

t DH(ξ(t))DT
H(ξ(t))K(ξ(t))εt,

where as before εt = H0 − H(ξ(t)). Unfortunately, in full generality, it is
not true that the right side of (2.11) is always a strictly negative number.
Indeed, the quadratic form Q(ε) = εT AK(ξ)ε on R

q, where A is a sym-
metric positive definite matrix, is not necessarily positive definite for q ≥ 2.
Consequently, for the initial value problem (2.10) with q > 1, one cannot
prove the statement of the Main Lemma.
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Consider now the particular case when K(ξ) is the identity matrix. The
symmetric matrix DH(ξ)DT

H(ξ) is strictly positive definite. Denote by λ(ξ)
its smallest eigenvalue, λ(ξ) > 0. In this case (2.11) implies that

r(ξ(t), Γ ) ≤ r(ξ0, Γ )e
−
∫

t

0
λ(ξ(s))ds

.

From the compactness of Γε, it follows that
∫∞

0
λ(ξ(s)) ds = ∞. Now,

one can deduce that the solution of the problem (2.10) is defined for all t ≥ 0
and that ξ(t) ∈ Γε for such t. Thus similarity in the qualitative behaviour
of the problems (PP) and (2.10) is formally established when K(ξ) is the
identity matrix. Clearly, the same remains true when K(ξ) is proportional
to a sufficiently small perturbation of the identity matrix. Like the problem
(PP), the problem (2.10) can also be used for numerical integration of (P)
with controlled errors on first integrals. This is the penalty method. Just as
for the observer method, we will also talk about the simple penalty method
and the normalized penalty method.

To compare the observer and penalty methods, we underline that the
latter is numerically simpler. But in the penalty method the control of error
on first integrals is not so good as in the observer method. This will be
verified on examples in Sections 5 and 6.

Finally, let us discuss briefly the case of partial first integrals. For more
details see the forthcoming paper [56].

Many examples of partial first integrals arise in the study of the Euler–
Poisson equations of motion of a heavy rigid body with fixed point (see for
example [3], [52], [54]). Many other examples can be found for example in
[11]–[18], [45] and [79].

Consider the ODE system (2.1). Let h ∈ C1(U) be a function which
is not constant on any open subset of U and such that its zero level set
Γ0 = {x ∈ U : h(x) = 0} is not empty. Then h is a partial first integral of
the system (2.1) if there exists a function l ∈ C(U) such that for all x ∈ U
one has

Dh(x)F (x) = l(x)h(x).

From our differentiability assumptions one easily deduces that the zero
level set Γ0 is an invariant subset of the ODE system (2.1). This means that
Γ0 is foliated by the orbits of (2.1), i.e. if at some instance an orbit of (2.1)
crosses Γ0 then it remains in Γ0 until its exit from U .

When l ≡ 0, we recover the usual notion of first integral.

In many examples much more intricate situations occur when the invari-
ant set is not of codimension one. To describe this, let us introduce the
notion of q-partial first integrals.

Suppose now that we have q, 1 ≤ q < p, functions H1, . . . ,Hq which
are not constant on any open subset of U and such that the zero level set
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Γ0 = {x ∈ U : Hi(x) = 0, 1 ≤ i ≤ q} is not empty. We assume that
the functions H1, . . . ,Hq are functionally independent on Γ0. Suppose that
there exists a q × q matrix-valued function L defined on U with entries in
C(U) such that

(2.12) DH(x)F (x) = L(x)H(x),

where H(x) is the column vector (H1, . . . ,Hq). In this case the vector-valued
function H is called a q-partial first integral.

Just as for partial first integrals, also here the zero level set Γ0 =
{x ∈ U : H(x) = 0} is an invariant subset for the ODE system (2.1).

Let us underline that in general the functions H1, . . . ,Hq are not nec-
essarily partial first integrals. Examples of such q-partial first integrals can
be found, for example, in the problem of the motion of a rigid body with a
fixed point (see [52]).

As in the case of first integrals, we suppose that the set Γ0 is compact.
We would like to have a reliable procedure to integrate numerically the

initial value problem (P) on the invariant set Γ0. To this end, we define the
initial value problem (PPP):

(2.13)

dξ

dt
= F (ξ) + DT

H(ξ)[DH(ξ)DT
H(ξ)]−1[K(ξ) − L(ξ)]H(ξ),

ξ(t0) = ξ0,

where ξ0 ∈ Γε which is defined by (2.4) with H0 = 0, and where the q × q
matrix K satisfies (2.6) and (2.7). In the case when H1, . . . ,Hq are first
integrals, i.e. when L(x) ≡ 0, we recover the problem (PP).

Taking into account (2.12) it is very easy to see that for the problem
(PPP), the Main Lemma and its proof remain valid word for word, if only
the matrix-valued function L is smooth. Thus also in the case of partial
first integrals one can hope to use the perturbed problem (PPP) for reliable
integration of the system (2.1) on the invariant manifold Γ0.

3. The observer method and numerical integration of ODE’s.

As the system (2.5) is autonomous, to integrate numerically the problem
(PP) we will use an explicit one-step method

(3.1) ξj+1 = ξj + hφ(ξj , h)

with increment function φ.
As usual, we will suppose that this method is at least of order one, i.e.

that for every ξ0 ∈ U and t ≥ 0 such that the solution ξ of the problem
(PP) is defined on [0, t + 1], there exists a constant C(ξ0, t) > 0 such that
for every t ≥ 0 and for every h, 0 < h ≤ 1, one has

(3.2) ‖ξ(t + h) − ξ(t) − hφ(ξ(t), h)‖ ≤ C(ξ0, t)h.
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We suppose, of course, the method to be consistent , i.e. φ(ξ, 0) = F̂ (ξ),

where F̂ is the right hand side of (2.5) (see [50] for more details).

Now, just as for all standard explicit one-step methods, like the Euler
and Runge–Kutta methods, we suppose that for any compact subset Q ⊂ U ,

(3.3) sup
ξ∈Q

sup
0≤h≤1

‖φ(ξ, h)‖ def
= φQ < ∞.

Likewise, we suppose that

(3.4) sup
ξ0∈Q

sup
0≤h≤1

|C(ξ0, h)| def
= CQ < ∞.

When the step h > 0 is fixed, instead of the orbits x(t) ≡ ξ(t) with
x(t0) = ξ(t0) = ξ0 ∈ Γ of the problem (PP) we compute numerically the

pseudo-orbit {ξj}. In general, it is a very difficult problem to understand
the relation between the true orbits and the related pseudo-orbits (see for
example [8], [45]).

The following theorem makes rigorous the main feature of the observer
method already indicated in Section 2.

Theorem 3.1. Consider the initial value problem (PP). Then for every

ε > 0, there exists h, 0 < h < 1, small enough and η defined by (2.7) large

enough such that if ξ0 ∈ Γ then ξj ∈ Γε for every j ≥ 0, i.e.

r(ξj , Γ )
def
= ‖H0 − H(ξj)‖ ≤ ε

where {ξj} is defined by (3.1).

P r o o f. First, let us fix the notations and the parameters necessary for
the proof.

For a ∈ R
p, define d(a, Γ ) = infb∈Γ ‖a − b‖. For r > 0, set

Ur(Γ ) = {ξ ∈ R
p : d(ξ, Γ ) ≤ r}.

As Γ is compact, Ur(Γ ) is also compact.

From our assumption on the functional independence of the integrals
H1, . . . ,Hq, it follows that for sufficiently small ε > 0, there exist numbers
δε and Dε, 0 < δε ≤ Dε, such that

(3.5) Uδε
(Γ ) ⊂ Γε ⊂ UDε

(Γ ) ⊂ U2Dε
(Γ ) ⊂ U.

Define (cf. (3.3) and (3.4))

(3.6)

φε = φΓε
, Lε = sup

ξ∈U2Dε
(Γ )

‖DH(ξ)‖,

Cε = CU2Dε
(Γ ), F̂ε = sup

ξ∈Γε

‖F̂ (ξ)‖,



Observer method 383

where F̂ is the right hand side of (2.5). Now choose h such that

(3.7) 0 < h ≤ min

(
δε

φε

,
δε

F̂ε

,
ε

2LεCε

, 1

)
.

For fixed h, choose η such that eηh > 1, for example,

(3.8) eηh ≥ 2.

This condition is satisfied for ηh ≥ 0.69.
Let us return to the pseudo-orbit {ξj}j≥0 defined by (3.1). Denote by ξ̃j

the value at time h of the solution of the system (2.5) satisfying the initial
condition ξ(0) = ξj−1, j ≥ 1. From the Main Lemma we know that if

ξj−1 ∈ Γε then ξ̃j is well defined and ξ̃j ∈ Γε.
The proof of the theorem is by induction. For j = 0 from (3.1) one has

ξ1 − ξ0 = hφ(ξ0, h)

and thus from (3.7) one obtains

‖ξ1 − ξ0‖ ≤ hφε ≤ δε.

As ξ0 ∈ Γ , from (3.5) one deduces then that ξ1 ∈ Γε.
Now suppose that ξk ∈ Γε for 0 ≤ k ≤ j. By (3.1), exactly in the same

way as for j = 0, we obtain ‖ξj+1 − ξj‖ ≤ δε. On the other hand, from the
mean value theorem and (3.7) one has

‖ξ̃j+1 − ξj‖ ≤ hF̂ε ≤ δε.

Thus, ξj+1, ξ̃j+1 ∈ B(ξj , δε) = {x ∈ R
p : ‖x − ξj‖ ≤ δε}.

Since, by assumption, ξj ∈ Γε, from (3.5) we have ξj ∈ UDε(Γ ) and thus

B(ξj , δε) ⊂ U2Dε(Γ ) ⊂ U . Taking into account the convexity of B(ξj , δε)
and (3.6) one has

r(ξj+1, Γ ) = ‖H(ξj+1) − H0‖ ≤ ‖H(ξ̃j+1) − H0‖ + ‖H(ξj+1) − H(ξ̃j+1)‖
≤ r(ξ̃j+1, Γ ) + Lε‖ξj+1 − ξ̃j+1‖.

Now, taking into account the Main Lemma, (3.1) and (3.2) one obtains

r(ξj+1, Γ ) ≤ e−ηhr(ξj , Γ ) + Lε‖ξ̃j+1 − ξj − hφ(ξj , h)‖
≤ e−ηhr(ξj , Γ ) + LεCεh.

This inequality remains valid with j replaced by k, 0 ≤ k ≤ j, because
ξk ∈ Γε by our inductive assumption.

Thus for every k, 0 ≤ k ≤ j, one has

r(ξk+1, Γ ) ≤ e−ηhr(ξk, Γ ) + LεCεh.

Taking into account this inequality, (3.7) and (3.8) one obtains

r(ξj+1, Γ ) ≤ e−ηh[e−ηhr(ξj−1, Γ ) + LεCεh] + LεCεh
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= e−2ηhr(ξj−1, Γ ) + e−ηhLεCεh + LεCεh ≤ . . .

≤
( j∑

s=0

e−sηh
)
LεCεh <

LεCεh

1 − e−ηh
≤ ε.

Thus ξj+1 ∈ Γε and our inductive proof is finished.

Note that as the proof of Theorem 3.1 is based only on the Main Lemma,
the theorem remains valid for the problem (PPP) given by (2.13).

Although we considered here only the explicit one-step method, there is
no doubt that similar results also hold for multi-step methods, both explicit
and implicit.

Note also that the condition (3.8) gives the first restriction on the size
of η and thus on the matrix K(ξ). In what follows, when applying the
observer method to concrete examples, we will try to choose θ1, . . . , θq in
such a way as to diminish the possible stiffness ([50]) of the problem (PP)
and to improve the quality of the numerical computations.

We will see in the examples below that even if ηh is small, the observer
method can work very well.

The explicit exact computations can be given in the case of the simple
harmonic oscillator defined by the Hamiltonian

H(p, q) =
1

2
(p2 + q2),

for the Euler method with the simple observer applied to the first integral
H and its value H0. These computations prove that for h > 0 sufficiently
small and θ > 0 such that 2h < θ, the limit

lim
t→∞

H(ξt) = R(h, θ) > H0

exists and that

lim
h→0

R(h, θ) = H0.

This means that for such h and θ, the error in H, i.e. H − H0, tends to
some small non-zero value.

Finally, note that all preceding considerations can be easily adapted
to the case of a compact connected component of a possibly non-compact
manifold Γ .

4. The preliminary tests on the observer method. In this section
we present two simple examples illuminating main features of the observer
method: the planar Kepler problem and the double harmonic oscillator.

The computations were performed on a VAX 4000 computer with double
precision of the VAX FORTRAN.
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4.1. The planar Kepler problem. It is well known that the Euler method
of numerical integration of ODE’s gives, in general, very poor results and
cannot be used for reliable integration except for a very short time interval.
This, in particular, is the case for the planar Kepler problem ([44]). But,
as will be seen below, when one uses the Euler method with the simple
observer, the results of integration are of good quality over a quite long
time interval.

In polar coordinates (r, ϕ) on the plane, the Hamiltonian H describing
the planar Kepler problem is

H(r, ϕ, pr , pϕ) =
1

2

(
p2

r +
p2

ϕ

r2

)
− µ

r
,

where µ is a real strictly positive number.

The corresponding Hamilton equations are




ṙ =
∂H

∂pr

= pr,

ϕ̇ =
∂H

∂pϕ

=
pϕ

r2
− µ

r2
,

ṗr = −∂H

∂r
=

p2
ϕ

r3
,

ṗϕ = −∂H

∂ϕ
= 0.

Thus, in particular, pϕ is a first integral of the above system.

For a fixed value of pϕ, the first and third equations of this system
constitute an independent system of two ODE’s, called the reduced system,
describing the radial component of the Keplerian motion.

For convenience we will write briefly p instead of pr. The reduced system

(4.1)





ṙ =
∂H1

∂p
= p,

ṗ = −∂H1

∂r
=

p2
ϕ

r3
− µ

r2

is a Hamiltonian system, with the Hamiltonian function

H1(r, p) =
1

2

(
p2 +

p2
ϕ

r2

)
− µ

r
.

Thus H1 is a first integral of the reduced system. We will now integrate
numerically the elliptic orbit of the reduced system corresponding to H1 =
−0.4. We will use three different methods: the adaptive Runge–Kutta–
Fehlberg method of order 4(5) with control error 10−6 (briefly RKF method),
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Fig. 1. The reference orbit for the planar Kepler problem in Cartesian (x, y) coordinates.

Fig. 2. Errors of the computed reduced Hamiltonian H̃1 of the planar Kepler problem
integrated numerically by the RKF method.

Fig. 3. Errors of the computed reduced Hamiltonian H̃1 of the planar Kepler problem
integrated numerically by the Euler method.
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the Euler method with a fixed step-size h = 10−2 and the Euler method as
above together with the simple observer method.

Denote by (r̃(ti), p̃(ti))i≥0 the computed orbit of the reduced system
(4.1). The integration by RKF method gives Figure 1. The error in the

computed Hamiltonian H̃1(ti) = H1(r̃(ti), p̃(ti)) increases linearly with time
(see Figure 2), but is smaller than 10−8 up to integration time t = 10000.
This will be the reference trajectory because it can be considered as a very
good approximation of the true orbit.

Later on, when considering a first integral, its symbol with a tilde will
denote the numerically computed value of this integral.

Applying the Euler method, one can observe that the computed Hamil-
tonian H̃1 increases very quickly, and that after the approximate value of
time t = 6000, one observes its apparent stabilization (see Figure 3). More-
over, the observed jumps of the computed Hamiltonian correspond, for small

Fig. 4. Destruction of an elliptic orbit computed by the Euler method.

Fig. 5. Errors of the computed reduced Hamiltonian H̃1 of the planar Kepler problem for
the Euler method with the simple observer method.
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time, to the passage through the pericenter—the point of the orbit nearest
to the origin.

When time increases, the computed Hamiltonian strongly increases and
our initially elliptic orbit becomes hyperbolic as r → ∞ (see Figure 4).

Thus, the numerical errors inherent in the Euler method destroy com-
pletely the phase portrait of the reduced system (4.1) and this occurs for a
very short time interval of integration. On the contrary, when one uses the
same Euler method as above with the simple observer with H = H1 and
θ = 1, one obtains quite good results. After the integration time t = 10000,
the computed orbit is always elliptic, exactly as in Figure 1, and the error
in the computed Hamiltonian is smaller than 5 · 10−6. In fact, the strong
variations of this error are related to the passage through the pericenter of
the orbit (see Figure 5). Let us emphasize that, in this example, application
of the simple observer improves preservation of the integral 106 times.

4.2. The double harmonic oscillator. Our aim is now to study how
different applications of the simple observer method improve results when
the equations of motion of the double harmonic oscillator are integrated by
the Euler method. For this purpose we will study numerically the system
of two uncoupled oscillators described by the Hamiltonian

(4.2) H2(q, p) = 1
2
(p2

1 + p2
2 + q2

1 + q2
2).

It is obvious that H1(q, p) = 1
2 (p2

1 + q2
1) is also a first integral of the Hamil-

tonian system defined by the Hamiltonian H2.
We chose the initial condition for which H = (H1,H2) = (1.5, 1.9). The

results of computation by the Euler method with step-size h = 0.001 are
shown in Figure 6(a). Integration with the same step-size when the simple

Fig. 6. Errors of the computed first integrals: (1) H̃1 and (2) H̃2 of the double harmonic
oscillator obtained by: (a) the Euler method; (b) the Euler method with the simple
observer method applied to both integrals. The step-size was h = 0.001.
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Fig. 7. The same as in Figure 6(b) for step-size h = 0.1.

Fig. 8. Errors in the computed first integrals: (a) H̃1, (b) H̃2 obtained by: (1) the Euler
method, (2) the Euler method with the simple observer method applied to H1, (3) the
Euler method with the simple observer method applied to H2.

observer method is applied for both integrals with θ1 = θ2 = 1000 gives
the results reported in Figure 6(b). For the step-size h = 0.1 the Euler
method is worthless. After 55 steps the absolute values of the errors for
both integrals are bigger than 1. For longer time span of integration these
errors grow rapidly. However, for the the same step-size when the simple
observer method is applied for the two integrals and θ1 = θ2 = 15 we obtain
quite satisfactory results (see Figure 7).

Now let us compare the behaviour of the integrals H1 and H2 when the
Hamiltonian system defined by the Hamiltonian H2 is integrated by the
Euler method as above, and by the Euler method with the simple observer
but applied only to: H = H1 on the level manifold H1(q, p) = 1.5, and
H = H2 on the level manifold H2(q, p) = 1.9, respectively. To obtain a
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reasonable size of error on the first integral H2 during integration with the
Euler method we chose the step-size h = 10−3. To satisfy the inequality (3.8)
when the simple observer is used, we chose θ = 103. The results presented in
Figures 8(a) and 8(b) indicate that the use of the observer method improves
the preservation of non-observed first integrals. This phenomenon will be
confirmed in all our further computations.

5. The spatial Kepler problem

5.1. Description of the system. Consider the classical Kepler problem
in R

3 ([2], [71]). In Cartesian coordinates (q1, q2, q3, p1, p2, p3) of its phase
space R

6, this problem is described by the Hamiltonian

H =
1

2
(p2

1 + p2
2 + p2

3) − µ

q
,

where q =
√

q2
1 + q2

2 + q2
3 and µ is a real, strictly positive number.

We will use vectorial notation below, so we put

q = (q1, q2, q3), p = (p1, p2, p3),

and for any vector v its length will be denoted by v, i.e. v2 = v · v, where
the dot denotes scalar product.

Besides the Hamiltonian, the Kepler system has other first integrals
which are the components of the angular momentum c and the components
of the so-called Laplace vector e (see [71]). They are defined as follows:

(5.1) c = q × p, µe = p× c− µ

q
q.

The vector c is perpendicular to the plane of motion. For c 6= 0, the vector
e is directed from the origin of the coordinate system to the pericenter. For
c = 0, the orbits are straight lines passing through the origin, e is always
collinear with the radius vector q and has length 1. When c 6= 0, the length
e of the vector e is equal to the eccentricity of the orbit.

All those seven first integrals of the problem are not functionally inde-
pendent. In fact, the following relations hold:

c · e = 0, Hc2 = µ2(e2 − 1),

where H is the value of the Hamiltonian (energy).
In the configuration space R

3{q}, for c 6= 0 every orbit lies on a fixed
plane passing through the origin and perpendicular to the vector c. For
H < 0 and c 6= 0 all orbits are periodic. In this case each orbit is an ellipse
with focus at the origin, semi-major axis a = −µ/(2H) and eccentricity
e. The orientation of an ellipse in R

3{q} is traditionally given by means
of the Euler angles (Ω, i, ω). More precisely: Ω—the longitude of the as-
cending node—is the angle between the first axis of R

3{q} and the line of
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intersection of the orbital plane and the (q1, q2)-plane (this line is called the
line of nodes), i—the inclination—is the angle between the vector c and the
q1-axis, ω—the argument of the pericenter—is the angle between the line of
nodes and the vector e.

The Kepler system appears, among others, in celestial mechanics as the
unperturbed problem of more complicated systems describing, e.g., models
of planetary systems. Its numerical integration shows generally what kind
of problems we can meet integrating planetary equations for long time in-
tervals. The main problem is the accumulation of energy errors because it
causes substantial changes of the angular frequency of the periodic motion
and therefore stimulates a rapid growth of the errors of position along the or-
bit which is also perturbed. This is especially true for highly eccentric orbits.

For the Kepler problem we can apply the observer method in many dif-
ferent ways choosing different subsets of integrals. However, it is reasonable
to consider only H and c because, generally, in the many body problem only
these integrals are known. It is well known that the level sets H = const < 0
and c = const > 0 are compact.

In our tests we have applied the observer and penalty methods with
integrals H1 = H and H2 = c2. Write H = (H1,H2)T . Let us verify where
these integrals are independent. It is easy to show that

(5.2) DH(q,p) =

( µ

q3
q p

2p× c 2c× q

)
.

Evidently, for c = 0, i.e. for straight line orbits, the rank of the above matrix
is one.

Assume now that c 6= 0. The rank of (5.2) will not be maximal iff

(5.3)
µ

q3
q = αp × c, p = αc× q,

where α 6= 0. Under our assumption the vectors q and p are not collinear.
Taking the scalar product of both sides of the equations (5.3) with q and p,
respectively, we obtain

µ

q
= αc2, p2 = αc2, q · p = 0.

The last condition implies that c = qp and thus, from the second one we
obtain 1 = αq2. Using this, we can rewrite the first equation of (5.3) in the
form

µ

q
q = p× c.

Comparing this with the definition (5.1) of the Laplace vector we see that
e = 0, i.e. the orbit is circular. Concluding, the integrals H and c2 are
dependent only in the cases of a circular or a straight line orbit.



392 E. Busvelle et al.

5.2. Numerical results. For all tests we chose the orbit with a = 1,
e = 0.8, Ω = ω = π/2, i = π/4, and we put µ = 4π2. For these values
of µ and a the orbit period is one. The initial point was always located
at the pericenter. After every hundred revolutions the results were stored.
The equations of motion were integrated numerically over the time span of
105 by the Runge–Kutta procedure DOPRI with adaptive step-size control.
This procedure implements the RK 5(4) algorithm of J. R. Dormand and
P. J. Prince and can be found in the appendix to the book of Hairer et al.

[42]. We translated the original FORTRAN code to Pascal. The influence
of roundoff errors was minimized because we used the nineteen significant
digit representation of floating point numbers (we used the extended type
of Turbo Pascal). Local precision of integration was chosen to be 10−6.

First tests with the simple observer and simple penalty methods applied
to the integrals H and c2 with θ1 = 1 and θ2 = 1 have shown that they
cannot be used effectively for integration of the Kepler system. The step-
size chosen by the integration procedure was very small (of order 10−10 after
several revolutions for the observer method). This shows that the terms
introduced by the simple observer and simple penalty methods are too big.
There are two ways to overcome this difficulty. One can either decrease the
values of θ1 and θ2, or take the normalized observer and penalty methods.
We chose the second possibility. We used the normalized observer method
with α1 = α2 = 1 and β1 = β2 = 1 (see the definition of the normalized
observer).

In our first test we compared the results obtained by DOPRI integration
of Hamilton’s equations for the Kepler system with those obtained by ap-
plication of the normalized observer method to DOPRI integration of this
problem. In Figure 9 the errors of the computed Hamiltonian are presented

Fig. 9. Computed energy errors for the spatial Kepler problem over 100000 revolutions
obtained by: (0) the DOPRI integrator and (1) the DOPRI integrator when the normalized
observer method is applied to the integrals (H, c2).
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as functions of time. Because the standard integration gives so bad results
in further figures we do not include them.

Next, we compare the normalized observer method with: the normalized
penalty method, the symplectic integration scheme of Yoshida (see [83],
[46]), and finally with integration of the equations of motion regularized
by the Kustaanheimo–Stiefel method which will be called briefly the K-S
method (see [77]).

For the last method the original initial value problem is transformed to
the form

(5.4)





du

ds
= v,

dv

ds
=

H

2
u,

dt

ds
= u · u,

u(0) = u0, v(0) = v0, t(0) = 0,

where u,v ∈ R
4, t is the physical time, and

H =
2v0 · v0 − µ

u0 · u0
.

The Cartesian coordinates q can be expressed in terms of u by the formula




q1

q2

q3


 =




u1 −u2 −u3 u4

u2 u1 −u4 −u3

u3 u4 u1 u2







u1

u2

u3

u4


 .

For more details see [77].
Integration of the K-S system (5.4) shows that the DOPRI procedure

chooses, for this system, a step-size too big for good preservation of integrals.
Thus, for this integration the maximal step-size was limited to 0.01 while
for other integrations it was equal to 1.

The step-size for the symplectic integrator was taken equal to 0.095
in order to have the computed energy error on the same level as in the
normalized observer method. For this integration the results were stored
after every 95 revolutions.

In Figure 10 the computed energy errors for all four methods are pre-
sented. Figures 11 and 12 show the errors in the computed first component
of the Laplace vector and the errors in the position in the orbit, respectively.
The last quantity is defined as the angle between the initial radius vector
and the radius vector after some number of full revolutions:

η(nT ) = arccos
q(0) · q(nT )

q(0)q(nT )

where T denotes the period of the orbit and n is an integer.
Although we do not report all obtained results, from our computations it

follows that the K-S method gives better results than the observer method
only in the position in the orbit and in the argument of the pericenter.
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Fig. 10. The same as in Figure 9 obtained by: (1) the DOPRI integrator when the normal-
ized observer method is applied to the integrals (H, c2), (2) the DOPRI integrator when
the normalized penalty method is applied to the integrals (H, c2), (3) Yoshida’s fourth or-
der symplectic integrator and (4) the DOPRI integrator with the K-S regularized problem.

Fig. 11. Computed errors of the first component of the Laplace vector. Labels are as in
Figure 10.

Fig. 12. Computed errors in the position in the orbit obtained by four integrators. Labels
as in Figure 10.
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However, it should be noted that in all cases the K-S method has a linear
growth of errors.

Comparison of all results obtained for the symplectic integrator and the
normalized observer shows that the latter is much more precise although
the symplectic integrator is better in preservation of the components of the
angular momentum. However, it should be noted that we used the observer
method with only two integrals H and c2. Thus, one can expect that the use
of the observer method applied to four integrals, H and the components of
the Laplace vector e, should improve the precision of the obtained results.

In our last test we checked the above hypothesis. We applied the normal-
ized observer method to the integrals H and c = (c1, c2, c3) with αi = 10,

Fig. 13. Computed energy errors for the spatial Kepler problem over 100000 revolutions
obtained by the DOPRI integrator with: (1) the normalized observer method applied to
the integrals (H, c2) and (2) the normalized observer applied to the integrals (H, c1, c2, c3).

Fig. 14. Computed errors of the first component of the angular momentum for the spatial
Kepler problem over 100000 revolutions obtained by the DOPRI integrator with: (1)
the normalized observer method applied to the integrals (H, c2) and (2) the normalized
observer applied to the integrals (H, c1, c2, c3).
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1 ≤ i ≤ 4, and β1 = β3 = 10, β2 = β4 = 1. Note that it is very important
for the observer method to choose appropriate values of the constants: θi in
the case of the simple observer and αi, βi in the case of the normalized ob-
server. Especially in this last test it was difficult to find the “optimal” ones.
Figures 13 and 14 show the errors in the energy and the first component
of the angular momentum, respectively. Improvement of preservation of
the angular momentum is not substantial and still the symplectic integrator
gives better results for these quantities.

6. Gavrilov–Shil’nikov system

6.1. Description of the system. In this section we will consider a two-
parameter family of Hamiltonian systems introduced by N. K. Gavrilov and
L. P. Shil’nikov in [34].

These systems are defined on R
4 and are given by the following Hamil-

tonian functions:

(6.1)
H = H(x, ω, ε), x = (q1, q2, p1, p2) ∈ R

4, ω, ε ∈ R,

H = ω(q1p2 − q2p1) − ε

2
(p2

1 + p2
2) +

ε

2
(q2

1 + q2
2) +

ε

4
(p2

1 + p2
2)2.

x0 = 0 is the equilibrium point for this system. The type of the equilibrium
depends on the sign of ε. For ε < 0, ω 6= 0 it is a center-center point (i.e.,
the matrix of the linearized system has four purely imaginary eigenvalues).
When ε = 0, ω 6= 0 we have non-semisimple resonance of second order in
our system (i.e., the matrix of the linearized system has two identical pairs
of purely imaginary eigenvalues and it is not diagonalizable). Finally, for
ε > 0, ω 6= 0 it is a saddle-focus point and thus unstable (i.e., the matrix of
the linearized system has four complex eigenvalues with non-zero real and
imaginary parts).

The systems (6.1) are completely integrable. A second first integral is

K = q1p2 − q2p1.

Fix now ε = 1. The obtained system will be called briefly the G-S system.
For better understanding of the nature of the phase flow of our sys-

tem let us introduce new canonical variables (with respect to the standard
symplectic structure on R

4):

(6.2)





(q1, q2, p1, p2) → (r, φ, P, I),

q1 = −P cos φ +
I sin φ

r
, p1 = r cos φ,

q2 = −P sin φ − I cos φ

r
, p2 = r sin φ.

Note that similar variables were introduced by Kovalev and Chudnenko
([47]) who studied stability conditions of an equilibrium point in a Hamil-
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tonian system with two degrees of freedom in the case of non-semisimple
resonance of second order (see also [76] and the formula (11) on p. 262
in [3]).

In the new variables the Hamiltonian (6.1) has the form

H(r, φ, P, I) = ωI − 1

2
r2 +

1

2

(
P 2 +

I2

r2

)
+

1

4
r4.

The coordinate φ is cyclic and, as a consequence, I = K is a first inte-
gral. This allows us to reduce our system to one degree of freedom. The
Hamiltonian of the reduced system is

(6.3) HR(r, P ) =
1

2

(
P 2 − r2 +

I2

r2

)
+

1

4
r4.

The level sets HR = const define phase curves of the reduced system on
the (r, P )-plane. Because

dφ

dt
=

∂H

∂I
= ω +

I

r2
,

when ω 6= 0, dφ/dt has a constant sign for sufficiently small |I|, and so these
level curves can be interpreted as the closure of the traces of the orbits of the
original system defined by the Hamiltonian (6.3) on the Poincaré surface of
section φ = 0 (mod 2π) at least when these orbits are not periodic. Figures
15(a) and 15(b) show these levels for I = 0 and I = 0.1, respectively. In
the first of these figures we can see that there exists a “figure 8” homoclinic
loop for the reduced system. This can be easily shown analytically. Thus in
the G-S system, the stable and unstable manifolds of the equilibrium have

Fig. 15. Constant value levels of the G-S reduced Hamiltonian (6.3) for: (a) I = 0 (the
contours correspond to HR = −0.3 + 0.1k, k = 1, 2, . . . ; the smallest ovals correspond to
the minimal value of HR) and (b) I = 0.1 (the contours correspond to HR = −0.35+0.2k,
k = 1, 2, . . .).
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a common point. Because ω 6= 0, the equilibrium point is of saddle-focus
type. Consequently, as the system is integrable, these manifolds coincide.

N. K. Gavrilov and L. P. Shil’nikov introduced the systems described
above in their investigations of the phenomenon of changing stability type
of an isolated equilibrium in a general one-parameter family of Hamiltonian
systems with two degrees of freedom.

We found this system challenging for testing precision of numerical inte-
gration. Every numerical procedure “disturbs” the original system in some
way. As was shown by L. M. Lerman and Ya. L. Umanskĭı in [53] small
perturbations of an integrable two-degrees-of-freedom Hamiltonian system
with a saddle-focus equilibrium point cause, typically, splitting of the asymp-
totic surfaces, appearance of a transversal homoclinic orbit, and thus non-
integrability (see [25]). Thus, one can expect that any numerical procedure
should produce “numerical chaos” for the G-S system in a neighbourhood of
the equilibrium point x0 = 0 on the H = K = 0 level. Note that this level
set is compact and that on it the integrals H and K are dependent at x0 = 0.

6.2. Numerical results. For numerical experiments we put ω = 2π.
In all cases presented below the equations of motion corresponding to the
Hamiltonian (6.1) were integrated numerically. We applied the general ex-
trapolating code for solving ODE’s from [42]. The original FORTRAN pro-
cedure ODEX was translated into Pascal. The influence of roundoff errors
on our results is minimal because we used nineteen-significant-digits rep-
resentation of floating numbers (the extended type of Turbo Pascal v.6.0
of Borland International). Local precision of integration was 10−14. The
results are presented on the Poincaré surface of section {p1 = 0, p2 > 0},
on the constant energy surface H = 0 which contains our equilibrium point.
Position of points on the section was determined with precision higher than
10−15. We always stopped integrations after obtaining 10000 points.

In every test we integrated the equations of motion with the initial condi-
tion (0, 0, 0,

√
2). This point lies on the homoclinic loop. Thus, theoretically

we should obtain a sequence of points lying on one half of the homoclinic loop
and approaching asymptotically the equilibrium point. However, in practice,
because of numerical errors, the computed orbit passes near the equilibrium
and we obtain a sequence of points that lie near the entire homoclinic loop.

First, the original Hamilton equations of motion corresponding to the
Hamiltonian (6.1) were integrated. Figure 16 shows, on the surface of sec-
tion, the obtained homoclinic loop. In Figure 17 the magnification of the
neighbourhood of the equilibrium is presented. Our suggestion that in the G-
S system numerical chaos is generated is fully confirmed. We obtained qual-
itatively similar results when Merson’s fourth order Runge–Kutta method
(see Chapter 2 of [42]) was used for integration.
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Fig. 16. The trace on the surface of section of the orbit homoclinic to the equilibrium
point x0 = 0 of the G-S system computed without the observer method.

Fig. 17. Magnification of the neighbourhood of the equilibrium point from Figure 16.

Fig. 18. The same as in Figure 16 when the simple observer method is applied to the
integrals (H,K).
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Next, we integrated the equations of motion of the G-S system with the
simple observer applied to both integrals H and K and with θ1 = θ2 = 10.
The obtained homoclinic loop is shown in Figure 18. Notice the difference
between Figures 16 and 18. During the integration with the observer per-
turbations the computed orbit goes only few times along the homoclinic
loop, and after that it oscillates very close to the equilibrium point. As a
result almost 90% points in Figure 18 lie in a very small neighbourhood of
the equilibrium point. Moreover, two different magnifications of the neigh-
bourhood presented in Figures 19(a) and 19(b) show that numerical chaos
disappeared.

We also applied the simple observer method to the integral H only with
θ = 0.2. In Figure 20 the obtained results are presented. Comparison with

Fig. 19. Two magnifications of the neighbourhood of the equilibrium point from Figure 18.

Fig. 20. The same as in Figure 17 when the simple observer method is applied only to
the integral H .
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Fig. 21. Two magnifications of the neighbourhood of the equilibrium point when the
simple penalty method is applied to the two integrals (H,K).

Figure 19(a) clearly shows that the chaotic region does not disappear. How-
ever, it is confined to the vicinity of the homoclinic loop.

Finally, the simple penalty method was applied to both integrals H and
K with θ1 = θ2 = 10. In Figures 21(a) and 21(b), as in Figures 19 and 20,
magnifications of the neighbourhood of the equilibrium point are presented.
Notice that the chaotic region also appears but it is very thin.

In our next tests, we compared the simple observer method with a sym-
plectic integrator. For symplectic integration we chose Butcher’s fourth or-
der implicit Runge–Kutta method ([21]). The fact that the Butcher method
is symplectic is discussed in [72].

First, we integrated the original equations of motion of the G-S system
with the simple observer applied to both integrals using Merson’s fourth or-
der Runge–Kutta method. The fixed step-size was chosen equal to 0.01 and
we put θ1 = θ2 = 10. The initial condition was the same as in the previous
tests. The results are presented in Figures 22(a)–(d). In Figure 22(a) we
can see that the numerically computed orbit approaches asymptotically the
equilibrium point. This is fully confirmed in Figures 22(b), (c), (d) where
magnifications of the neighbourhood of the equilibrium point are shown. In
these figures, one side of the neighbourhood is only shown because there
are no points with q2 < 0. Thus, these results coincide with the theoretical
predictions. We noticed that during numerical computation when the orbit
approaches the equilibrium, the errors of both integrals decrease rapidly.
After obtaining 100 points on the cross section, the errors of both integrals
are practically zero.

Here it should be explained why the, potentially better, integrator ODEX
gave worse results than the fixed step-size Runge–Kutta method (compare
Figures 18 and 22). It was checked that the procedure ODEX is too “liberal”
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Fig. 22. (a) The trace on the surface of section of the orbit homoclinic to the equilibrium
point x0 = 0 of the G-S system computed by Merson’s Runge–Kutta method with the
simple observer method applied to the integrals (H,K). (b)-(d) Successive magnifications
of the neighbourhood of the equilibrium point for (a).

Fig. 23. Magnifications of the neighbourhood of the equilibrium point when the homoclinic
orbit was computed by Butcher’s fourth order symplectic integrator.
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in choosing a step of integration. When the maximal allowed step-size was
limited to 0.1, integration with the ODEX procedure gave results similar to
those obtained by the Runge–Kutta method.

Next, we integrated the G-S system using Butcher’s symplectic method
with step-size 0.01. The results are presented in Figure 23. Notice that
the computed orbit goes quite far from the equilibrium point. However,
Butcher’s method has an excellent property: it does not produce “numerical
chaos” in the G-S system. We checked this choosing different initial condi-
tions on the homoclinic loop. Even if we start integration from a point lying
at a distance of order 10−17 from the equilibrium point the computed orbit
lies close to the homoclinic loop, but “numerical chaos” is undetectable. This
very good behaviour of the symplectic integrator can perhaps be explained
by the fact that the G-S system is relatively simple: one of its integrals is
quadratic and two of the equations of motion are linear (see e.g. [72]).

In order to compare the observer method and the symplectic integrator
on a more complicated system we introduced a modified G-S system with
the following Hamiltonian:

H = ω(q1p2 − q2p1) − 1
2
(p2

1 + p2
2) + 1

2
(q2

1 + q2
2)

+ 1
2 (p2

1 + p2
2){1

2 (p2
1 + p2

2) + A(q1p2 − q2p1) + B(q2
1 + q2

2)}
where ω, A, B are real parameters. Note that we add to the Hamiltonian
(6.1) of the G-S system two fourth order terms, thus the type of the equilib-
rium point in the new system is the same as in the G-S system. Moreover,
using the canonical transformation (6.2) we can easily prove that the mod-
ified G-S system is integrable with the same second integral K and that it
possesses, for B > −1, the “figure 8” homoclinic loop on the (r, P ) plane.

For tests we chose A = 0.2, B = −0.2, ω = 2π and the step-size h = 0.01.
The initial condition was (0,−P, 0, r) with r = 10−10 and

P = r

√
2 − r2

2(1 + Br2)
.

This point lies on the homoclinic loop at a distance of approximately 10−10

from the equilibrium point. The orbit with this initial condition for t → +∞
goes along the whole loop and asymptotically approaches the equilibrium
point from the positive side of the q2-axis.

Using Merson’s Runge–Kutta method we integrated the equations of
the modified G-S system with the simple observer method applied to both
integrals, and θ1 = θ2 = 10. The results are presented in Figure 24(a). The
series of magnifications of the neighbourhood of the equilibrium point (see
Figures 24(b), (c), (d)) shows that the computed orbit behaves exactly as
the theory predicts.
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Fig. 24. The same as in Figure 22 for the modified G-S system.

Fig. 25. The same as in Figure 23 for the modified G-S system.

Symplectic integration with Butcher’s method gives the results presented
in Figure 25. We can see that for the modified G-S system the symplectic
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integrator generates “numerical chaos” although it is located in a very thin
layer around the homoclinic loop.

The extremely good coincidence between the theoretically predicted and
numerically computed orbits of our system clearly indicates that here the use
of the observer method increases the reliability of numerical computations.

7. The Euler equations on the Lie algebra so(4)

7.1. Description of the system. The general theory of the Euler equa-
tions on Lie algebras can be found in [11], [32], [33], [63], [65]–[70], [80]. The
specific case of the Euler equations on the Lie algebra so(4) is studied in
more detail in [1], [40], [80] and [82]. Because these equations are used here
exclusively as an interesting and non-trivial example of application of the
observer method, we write them down directly without any explanation of
their Lie algebraic origin.

Let us fix real numbers {λi}1≤i≤6 and consider the system of six ODE’s:

(7.1)





dx1

dt
= (λ3 − λ2)x2x3 + (λ6 − λ5)x5x6,

dx2

dt
= (λ1 − λ3)x1x3 + (λ4 − λ6)x4x6,

dx3

dt
= (λ2 − λ1)x1x2 + (λ5 − λ4)x4x5,

dx4

dt
= (λ3 − λ5)x3x5 + (λ6 − λ2)x2x6,

dx5

dt
= (λ4 − λ3)x3x4 + (λ1 − λ6)x1x6,

dx6

dt
= (λ2 − λ4)x2x4 + (λ5 − λ1)x1x5.

This is the system of Euler equations on the Lie algebra so(4) corre-

sponding to the “Hamiltonian” 1
2

∑6
i=1 λix

2
i .

It always admits the following three first integrals:

(7.2)





H1 = x1x4 + x2x5 + x3x6,

H2 =
6∑

i=1

x2
i ,

H3 =

6∑

i=1

λix
2
i .

When {λi}1≤i≤6 are not all equal, these three integrals are functionally
independent.
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The integrals H1 and H2 are intimately related to the Lie algebra so(4),
they represent its “Casimir functions”.

To be integrable (see Section 28 of [2]), the system (7.1) must have a
fourth first integral H4, functionally independent of H1,H2,H3. Suppose
that λi = λj for at most two pairs {i, j}, i 6= j. Then the unique known
case when such a fourth first integral exists is the so-called Manakov case,
defined by the condition

λ1λ4(λ2+λ5−λ3−λ6)+λ2λ5(λ3+λ6−λ1−λ4)+λ3λ6(λ1+λ4−λ2−λ5) = 0.

In this case one can take

H4 = a1x
2
1 + a2x

2
2 + a3x

2
3 + a4x

2
4 + a5x

2
5 + a6x

2
6,

with appropriate constants {ai}1≤i≤6 (see [1]).

One can prove that, under our assumption concerning the {λi}1≤i≤6, ex-
cept for the Manakov case, the system (7.1) is never algebraically completely
integrable (see [1], [40], [41]).

Our main aim is to obtain a reliable graphical representation of the
behaviour of the orbits of (7.1). As usual, we will use the Poincaré surface
of section.

For {λi}1≤i≤6 fixed, define

M(h1, h2, h3) = {x ∈ R
6 : H1(x) = h1, H2(x) = h2, H3(x) = h3},

where x = (x1, . . . , x6).

Typically M(a, b, c), when non-empty, is a compact, smooth, three-
dimensional submanifold of R

6, filled with orbits of the system (7.1).

In what follows we will concentrate on a particular non-Manakov case:

(7.3) λ1 = 1, λ2 = 5, λ3 = 2, λ4 = 1, λ5 = 3, λ6 = 4,

and

(7.4) h1 = 1, h2 = 15, h3 = 25.

Let us underline that this choice of values of the parameters is largely for-
tuitous except for the fact that λ1 = λ4 = 1 and h2 < h3; indeed, the last
two conditions will play an essential role in the determination of our surface
of section.

Now, let us describe it. Consider the two-dimensional manifold

M̃(h1, h2, h3) = {x ∈ M(h1, h2, h3) : x3 = 0}.

We would like to choose M̃(h1, h2, h3) as our surface of section. Unfor-
tunately it is not clear how to choose the global coordinate system on it.
Therefore we proceed as follows.
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Consider a point X = (x1, 0, x3, x4, x5, x6) ∈ M̃(h1, h2, h3) and count

how many points of M̃(h1, h2, h3) have the same fifth and sixth coordinates
as X.

From (7.2)–(7.4) one gets

(7.5) x3 = ε
√

h3 − h2 − 2x2
5 − 3x2

6,

where ε = ±1. On the other hand, from (7.2) one obtains

(7.6) x1x4 = h1 − x3x6
def
= Pε,

and

(7.7) x2
1 + x2

4 = h2 − x2
3 − x2

5 − x2
6

def
= S,

where x3 is the same as in (7.5) and the sign of ε in (7.6) is the same as in
(7.5). Finally, from (7.6) and (7.7) one deduces that

x1 + x4 = η
√

S + 2Pε,

where η = ±1, and that

x1 − x4 = θ
√

S − 2Pε,

where θ = ±1.
Thus, when x5 and x6 are fixed, we have at most eight different points in

M̃(h1, h2, h3) with these particular x5 and x6 as fifth and sixth coordinate.

Consequently, we can cover M̃(h1, h2, h3) with eight charts defined by the
choice of ε, η and θ, i.e. by fixing the sign of x3, x1 + x4 and x1 − x4. In
any of such charts, (x5, x6) is a global coordinate system.

These charts, denoted by {Γi}1≤i≤8, are defined as follows:

Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8
ε − − − − + + + +

η − − + + − − + +

θ − + − + − + − +

7.2. Numerical results. First we will study the non-Manakov case de-
fined by (7.3). In this case the system (7.1) was integrated by the RKF
method (see Section 4.1) with the simple observer, where θ1 = θ2 = θ3 = 10.
The control error was 5 · 10−8. The integration time was approximately
400000. All computations in this section were done on the same computer
as in Section 4.

In Figure 26(a) one can find the trace of one chaotic orbit on Γ1, com-
puted by the above method. We verified that the shape of the obtained
chaotic region is independent of the chosen initial orbit, by tracing the sim-
ilar figures for many different orbits passing through the chaotic region of
Figure 26(a).
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Fig. 26. The chaotic region on the chart Γ1 obtained as the trace of one chaotic orbit
computed by: (a) the RKF method with the simple observer method applied to the first
integrals (H1,H2,H3) and (b) the Lie–Poisson integrator. There are 140858 and 146221
points in figures (a) and (b) respectively.

Fig. 27. Error in the computed first integral H̃3 obtained by: (a) the RKF method
with the simple observer method applied to the first integrals (H1,H2, H3) and (b) the
Lie–Poisson integrator.

The system (7.1) can also be integrated by the so-called Lie–Poisson
integrators ([35]) which generalize the symplectic methods to the case of
Hamiltonian equations on Lie algebras.

In [62] the Lie–Poisson integration scheme of Ge Zhong and J. E. Mars-
den ([35]) in the form given by P. J. Channell and J. C. Scovel ([22]) was ap-
plied to integrate the system (7.1) with {λi}1≤i≤6 as above. More precisely,
the integration step 1/400 and precision 10−13 were used, with integration
time 400000. Figure 26(b) (from [62]) was obtained exactly as Figure 26(a)
but with the use of this integration scheme (see [62] for more details).
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Fig. 28. The same as in Figure 27 but for the computed first integral H̃1.

Fig. 29. The same as in Figure 27 but for the computed first integral H̃2.

The resemblance between both figures is exceptionally good. This is an
argument in favour of the reliability of our computations.

Let us now see how the computed first integrals H1, H2 and H3 are
preserved.

One can see (Figures 27(a), (b)) that the Hamiltonian H3 is much better
preserved by the RKF method with the simple observer than by the Lie–
Poisson integration scheme. The errors on the remaining integrals H1 and
H2 are comparable (see Figures 28(a), (b) and Figures 29(a), (b)). Never-
theless, the error in the RKF method with the simple observer is oscillating
around a stable non-zero value (see the remark at the end of Section 3)
while the error in the Lie–Poisson integration scheme increases for H1 and
H2. Figures 27(b), 28(b) and 29(b) are taken from [62].
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Fig. 30. Errors in the computed first integrals (H̃1, H̃2, H̃3) obtained by: (a) the RKF
method with the simple observer method applied only to the Hamiltonian H3 and (b) the
RKF method without the observer method. The three curves correspond to i = 1, 2 and
3, respectively.

Finally, let us compare the behaviour of the computed first integrals H1,
H2 and H3 when the observer method is applied to some of them. More
precisely, we use the simple observer method only in order to preserve H3

(the Hamiltonian of the system) and we plot the behaviour of the error for
all first integrals. As one can see in Figure 30(a), the Hamiltonian H3 is well
preserved but moreover, H1 and H2 are quite well preserved too. Moreover,
H1 and H2 are better preserved than without the use of the observer method
on H3 (see Figure 30(b)). This confirms the fact that the use of the observer
method increases the reliability of computations.

8. An example of an Anosov flow

8.1. Description of the system. This section is inspired by Section
3.2 of [22]. It is well known that among smooth dynamical systems with
continuous time and compact phase space, the Anosov flows have the most
chaotic behaviour, enjoying the strongest possible ergodic properties ([73]).

The simplest and oldest examples of Anosov flows are provided by the
geodesic flows on compact orientable surfaces M2 having constant negative
curvature −1 (see [73], [24]).

Let M2 be a compact orientable two-dimensional Riemannian manifold
(surface) of constant negative curvature −1.

Let us consider the open unit disc

D2 = {(q1, q2) ∈ R
2 : q2

1 + q2
2 < 1}

equipped with the non-Euclidean Riemannian metric
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(8.1)
dq2

1 + dq2
2

(1 − q2
1 − q2

2)2

of constant negative curvature −1 (see Chapter 2 of [26]).

It is well known that any surface M2 as above is isometric to the quotient
space D2/Γ , where Γ is a discrete subgroup of the homographic transfor-
mations group acting on the unit disc D2 (see Chapter 4 of [27]).

The geodesics on M2 can be obtained as projections on D2/Γ of the
geodesics on D2 corresponding to the Riemannian metric (8.1).

The geodesic flow on D2 is governed by the Hamiltonian

(8.2) H(q, p) =
(1 − q2

1 − q2
2)2(p2

1 + p2
2)

4
,

where q = (q1, q2) ∈D2, p = (p1, p2) ∈ R
2.

From now on let us consider the particular case when M2 is a doughnut
with two holes, i.e. a compact orientable surface of genus 2 equipped with
the non-Euclidean metric of constant curvature −1.

In [27] one can find the explicit description of the discrete groups Γ of
homographies of the unit disc D2 such that M2 = D2/Γ , as well as of the
fundamental region Ω ⊂D2 of the subgroup Γ which was used by Channell
and Scovel ([22]) and which we will also use here.

The boundary of the fundamental region Ω is a piecewise smooth curve
L defined as follows.

Let

R0 =
sin β

cos β +
√

cos 2β
≈ 0.21684534 . . .

with β = π/8. Inside the octant Π1 = {(q1, q2) ∈ D2 : 0 ≤ |q2| ≤ q1 tan β}
the boundary curve is defined by the equation

1 + q2
1 + q2

2 − 2q1
1 + R2

0

1 − R2
0

= 0.

The boundary in the other octants is obtained by rotation by a multiple of
π/4 (see Figure 31).

For every point q ∈D2 there exists a homographic transformation γ ∈ Γ
such that γ(q) ∈ Ω. If γ(q) ∈ Ω\L, then such a γ is unique.

For q ∈ Π1\Ω, but belonging to a thin layer around L, the corresponding
homographic transformation γ, γ(q1 + iq2) = q1 + iq2, is of the form

(8.3)





q1 =
ab(q2

1 + q2
2) + q1(a2 + b2) + ab

b2(q2
1 + q2

2) + 2abq1 + a2
,

q2 =
q2(a2 − b2)

b2(q2
1 + q2

2) + 2abq1 + a2
,
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where a = 1 + 1/R2
0 and b = 1− 1/R2

0. Similar transformations in the other
octants are obtained from (8.3) by rotation by a multiple of π/4.

Any such mapping induces in a natural way a mapping of momenta by

(8.4) p = (DT
γ (q))−1p

where DT
γ (q) is the transposed of the Jacobian matrix of the mapping γ

at q.

8.2. Numerical results. The Hamiltonian (8.2) written down in Section
3.2 of [22] was used there for the numerical study of the geodesic flow on a
doughnut with two holes. This study was done with the use of the symplectic
integrator of order 4. But the final result concerning the preservation of
the computed Hamiltonian H̃ was, in the opinion of the authors of [22],
not completely satisfactory. They suggested that the very strong ergodic
properties of the system under consideration prevent really good numerical
results, independently of the method used.

We will now show, applying exactly the same geometrical machinery as
in [22], that the use of a standard Runge–Kutta integration procedure with
the simple observer method allows us to obtain results substantially better
than those reported by Channell and Scovel.

We choose at random a point q0 ∈ Ω and a vector p0 ∈ R
2. We com-

pute numerically the piece of the orbit of the phase flow governed by the
Hamiltonian (8.2) up to the first computed point (q, p) such that q 6∈ Ω.
Then, using the formulae (8.3) and (8.4), we obtain the point (q, p) where
q ∈ Ω and we continue our computations as before. Note that on M2 the
projections of q and q are almost the same.

The pieces of orbits in Ω obtained in this way represent the computed
geodesic line on M2 passing through q0 in the direction p0.

Fig. 31. A piece of a geodesic on M2. Numbers mark successive origins of smooth pieces
of the geodesic.
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Fig. 32. Errors in the computed Hamiltonian for the geodesic flow onM2 obtained by: (1)
Merson’s Runge–Kutta method, (2) Butcher’s fourth order symplectic method, (3) fourth
order generating function symplectic integrator and (4) Merson’s Runge–Kutta method
with the simple observer method.

In Figure 31 one can find a piece of such a geodesic on M2 represented
in this way inside Ω. In Figure 32 the errors of the computed Hamiltonian
for four integrations with the fixed step-size h = 0.01 are presented. We
integrated the equations of motion using Merson’s Runge–Kutta method,
Merson’s Runge–Kutta method with the simple observer, Butcher’s fourth
order symplectic Runge–Kutta method and fourth order generating function
integrator described in [22], respectively. The advantage of the application
of the observer method clearly appears.
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d’Euler sur SO(4), Rapport de stage fait à Electricité de France, 1991.
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