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ON THE CONVERGENCE OF THE BHATTACHARYYA
BOUNDS IN THE MULTIPARAMETRIC CASE

Abstract. Shanbhag (1972, 1979) showed that the diagonality of the
Bhattacharyya matrix characterizes the set of normal, Poisson, binomial,
negative binomial, gamma or Meixner hypergeometric distributions. In this
note, using Shanbhag’s techniques, we show that if a certain generalized
version of the Bhattacharyya matrix is diagonal, then the bivariate distri-
bution is either normal, Poisson, binomial, negative binomial, gamma or
Meixner hypergeometric. Bartoszewicz (1980) extended the result of Blight
and Rao (1974) to the multiparameter case. He gave an application of this
result when independent samples come from the exponential distribution,
and also evaluated the generalized Bhattacharyya bounds for the best un-
biased estimator of P (Y < X). We show that there are misprints in these
results, give corrections and obtain the generalized Bhattacharyya bounds
for the variance of the minimum variance unbiased estimator of P (Y < X)
when independent observations are taken from a normal or geometric dis-
tribution.

1. Introduction. Seth (1949) proved that the Bhattacharyya matri-
ces for certain exponential families of distributions are diagonal. Shanbhag
(1972, 1979) showed that if the 3×3 Bhattacharyya matrix is diagonal, then
the family is either normal, Poisson, binomial, negative binomial, gamma
or Meixner hypergeometric. Bartoszewicz (1980) proved that under some
assumptions the generalized Bhattacharyya matrix is diagonal. (For the def-
inition of the generalized Bhattacharyya matrix, see §2.) We show that if the
generalized Bhattacharyya matrix is diagonal, then the bivariate distribu-
tion family is either normal, Poisson, binomial, negative binomial, gamma
or Meixner hypergeometric. Blight and Rao (1974) considered the Bhat-
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tacharyya bounds corresponding to the variance of the minimum variance
unbiased estimator (MVUE) of a function τ(θ) of the parameter θ when the
sampling distribution is a member of an exponential family with density
f(t; θ), which has the property

∂

∂θ
log f(t; θ) = V −1(θ)(t− θ),

where V (θ) = c0+c1θ+c2θ2, for some constants c0, c1 and c2. Using certain
results of Seth (1949) and Shanbhag (1972), they showed that, under some
regularity conditions, the Bhattacharyya bounds converge to the variance it-
self. They also provided a table computing the Bhattacharyya function (the
(i, i)th element of the Bhattacharyya matrix) explicitly for all exponential
family distributions except the Meixner hypergeometric distribution. Alzaid
(1987) more recently showed that the Bhattacharyya function for this dis-
tribution equals [{%2(1 + θ2)}−rΓ (%+ r)r!/Γ (%)], where % is the parameter
that appears in the expression for the density of the Meixner hypergeometric
distribution which is as follows:

f(x; θ) = (cosα)% 2%−2

πΓ (%)
eαxΓ

(
%

2
+
ix

2

)
Γ

(
%

2
− ix

2

)
, x ∈ R

(cf. Shanbhag (1979)).
Using their result, Blight and Rao also gave the Bhattacharyya bounds

for the variance of the MVUE with examples from negative binomial and
exponential distributions. Apparently, the same result was rediscovered by
Khan (1984). Bartoszewicz (1980) extended the result of Blight and Rao
to the multiparameter case. He also gave an application of this result when
independent samples are taken from the exponential distribution, and eval-
uated numerically the values of the first four generalized Bhattacharyya
bounds for the best unbiased estimator of P (Y < X). In a practical situa-
tion, one views X as the strength of a component, subjected to a stress Y .
This model was first considered by Birnbaum (1956). Unfortunately, some
of Bartoszewicz’s (1980) results in this direction happen to have misprints.
Here we give corrections to these results and obtain the generalized Bhat-
tacharyya bounds for the variance of the MVUE of P (Y < X), when inde-
pendent samples are taken from a normal or geometric distribution. Ghosh
and Sathe (1987) proved that for all estimable τ and all multiparameter
exponential families, the Bhattacharyya bounds converge to the variance of
the MVUE and an example is worked out where τ is a function of interest in
reliability theory. This result is a particular case of Bartoszewicz’s results
and the example had already appeared in Bartoszewicz (1980). Here we
consider the case of the family on R2 with two parameters. Extension to
the general case is then easily seen.
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2. Diagonality of the generalized Bhattacharyya matrix. Sup-
pose the random vector X(≡ X(θ)) = (X1, . . . , Xn) has a joint probability
density function

f(x; θ) = f(x1, . . . , xn; θ1, . . . , θr),

with respect to a σ-finite measure µ. Let k > 1 be an integer, and i =
(i1, . . . , ir), 0 ≤ ij , 0 < i1 + . . . + ir ≤ k, and i∗ = (i∗1, . . . , i

∗
r) with similar

properties.
We make the following assumptions:

(i) The function f(x; θ) and an estimable function τ(θ) have all partial
derivatives with respect to θ1, . . . , θr of order up to k,

f (i) =
∂i1+...+irf(x; θ)
∂θi1

1 . . . ∂θir
r

, τ (i) =
∂i1+...+irτ(θ)
∂θi1

1 . . . ∂θir
r

.

(ii) The expectations

J(i, i∗; θ) = Eθ

{
f (i)

f(x; θ)
· f (i∗)

f(x; θ)

}
exist and are finite. The matrix with elements J(i, i∗; θ) is called the general-
ized Bhattacharyya matrix . The inverse matrix ‖J∗(i, i∗; θ)‖=‖J(i, i∗; θ)‖−1

exists.
(iii) The function τ̂ f(x; θ) is differentiable in θ1, . . . , θr under the integral

with respect to x at least k times, where τ̂ is an unbiased estimator of τ(θ).

Bhattacharyya (1947) proved that

Var(τ̂) ≥
∑

τ (i)τ (i∗)J∗(i, i∗; θ),

where the summation is running over all i, i∗. The right hand side is called
the kth generalized Bhattacharyya bound .

Assume the following regularity conditions:

(I) θ = (θ1, θ2) ∈ Ω = Ω1 × Ω2, where Ωi (i = 1, 2) are open intervals
on the real line.

(II) T = (T1, T2) is a random vector, where Ti are independent random
variables belonging to an exponential family with the property

∂

∂θi
log fi(ti; θi) = V −1

i (θi)(ti − θi),

where Vi(θi) = c
(i)
0 +c(i)1 θi +c

(i)
2 θ2i , for some constants c(i)0 , c

(i)
1 , c

(i)
2 (i = 1, 2).

(III) The density f(t; θ) can be differentiated with respect to θ1, θ2 under
the integral with respect to t any number of times.
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Under the above conditions, Bartoszewicz (1980) proved that, if f(t; θ) is
of the form f(t; θ) = f1(t1; θ1)f2(t2; θ2), then the generalized Bhattacharyya
matrix is diagonal. Shanbhag (1972, 1979) showed this family to be equiv-
alent within a linear transformation to the family composed of the normal,
Poisson, binomial, negative binomial, gamma and Meixner hypergeometric
distributions.

Theorem 1. Let X = (X1, X2) be a random vector , where Xi are
independent r.v.’s having probability density function of the form

f(xi; θi) = exp{xig(θi)}ψi(xi)/βi(θi).

If the above conditions are satisfied and the generalized Bhattacharyya ma-
trix is diagonal , then the bivariate distribution X∗ = (X∗

1 , X
∗
2 ) is either nor-

mal , or Poisson, or binomial , or negative binomial , or gamma, or Meixner
hypergeometric, for some linear transforms X∗

1 of X1 and X∗
2 of X2.

P r o o f. Since the generalized Bhattacharyya matrix is diagonal, its
(i, i∗)th element is

J(i, i∗) =
{
{J (1)

i1
}2{J (2)

i2
}2 if i1 = i∗1 and i2 = i∗2,

0 otherwise,

where

{J (j)
ij
}2 = E

{
1

f(Xj ; θ)
∂ijf(Xj ; θ)

∂θ
ij

j

}2

, j = 1, 2,

are the Bhattacharyya functions (see Bhattacharyya (1947)).
From Shanbhag (1972), it easily follows that

E[Xi] = c
(i)
0 + c

(i)
1 θi,

E[X2
i ] = c

(i)
11 + c

(i)
12 θi + c

(i)
22 θ

2
i ,

Var[X2
i ] = c

(i)
13 + c

(i)
23 θi + c

(i)
33 θ

2
i , i = 1, 2,

for some constants c(i)0 , c
(i)
1 , c

(i)
rs (r, s = 1, 2, 3) not depending on θi. Next we

identify the different cases which lead us to results of the type of Shanbhag
(1972, 1979), but in the bivariate case.

R e m a r k. From Shanbhag (1972, 1979), we may note that the Bhat-
tacharyya functions (i.e., the diagonal elements of the Bhattacharyya ma-
trices) are given by

{Ji(θ)}2 = [g′(θ)]i
di

dθi
E[(φ(X))i],

where the joint distribution of (X1, . . . , Xn) is absolutely continuous (with
respect to a measure µ) with density
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f(x; θ) = exp{φ(x)g(θ)}ψ(x)/β[g(θ)],

and the distribution is any of the distributions characterized by Shanbhag
(1979). This result yields in particular the expressions for the diagonal ele-
ments of the Bhattacharyya matrices relative to the distributions in question
given by Blight and Rao (1974) and Alzaid (1983).

3. Applications of Bhattacharyya bounds for the variance of
the MVUE of P (Y < X). The problem of estimating P (Y < X) when X
and Y are independent r.v.’s has been considered by several authors. The
variance of the MVUE of P (Y < X) in the case when samples are taken
independently from exponential distributions was derived by Bartoszewicz
(1980), among others. Corrections to these results together with further
applications on the Bhattacharyya bounds for the variance of the MVUE of
P (Y < X) are given here.

3.1. Comments on Bartoszewicz’s results with corrections. Tong (1974,
1975) and Johnson (1975) obtained the UMVUE of the probability when
X and Y are independent one-parameter exponential r.v.’s. Kelley et al .
(1976) derived the variance of UMVUE of the estimator (corresponding to
the Bhattacharyya bounds), considering the case when one of the parame-
ters is known. As mentioned earlier, Bartoszewicz (1980) found the variance
of the MVUE of P (Y < X) in the case when samples are taken indepen-
dently from exponential distributions and also evaluated the generalized
Bhattacharyya bounds for the best unbiased estimator of P (Y < X). His
formula, for the variance of the MVUE (Var(P̂ )), happens to be incorrect;
this could be due to printing errors. The following is a corrected version of
the formula in question:

Var(P̂ ) =
∞∑

k=1

k∑
j=0

(
k

j

)2

(
n+ j − 1

j

)(
m+ k − j − 1

k − j

)
×

(
j(1 + %)− k%

k

)2
%2j

(1 + %)2(k+1)
,

where % = θ1/θ2 and θ1, θ2 are the expected values of X and Y respec-
tively.

Also the correct table for the values of the first four generalized Bhat-
tacharyya bounds for the best unbiased estimator of P (Y < X) is as follows.
It can be seen from the table that the convergence is fairly fast in all the
cases.
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TABLE 1
Generalized Bhattacharyya bounds for the best unbiased estimator of
P (Y < X) in the exponential case

n = m = 5 n = m = 10

% B1 B2 B3 B4 B1 B2 B3 B4

.25 10.24 11.77 12.13 12.24 5.12 5.53 5.58 5.60

.50 19.75 21.80 22.17 22.26 9.88 10.43 10.49 10.50

.75 23.99 26.08 26.42 26.49 12.00 12.56 12.61 12.62
1.00 25.00 27.08 27.41 27.48 12.50 13.07 13.12 13.12

n = 5, m = 10 n = 20, m = 10

B1 B2 B3 B4 B1 B2 B3 B4

.25 7.68 8.23 8.30 8.32 3.84 4.19 4.24 4.25

.50 14.81 15.69 15.79 15.80 7.41 7.86 7.91 7.91

.75 17.99 19.11 19.24 19.26 9.00 9.41 9.45 9.45
1.00 18.75 20.08 20.25 20.28 9.37 9.73 9.76 9.76

Bi, i = 1, 2, 3, 4, multiplied by 10
3.

R e m a r k. One can see that the values in Bartoszewicz’s Table 1 are the
same or almost the same in the great majority of cases.

3.2. Further applications. Here we derive the variance of the MVUE of
P (Y < X) when independent samples are taken from a normal or geometric
distribution and also evaluate the generalized Bhattacharyya bounds for the
best unbiased estimator of P (Y < X).

1. Normal case. Let X and Y be independent normal variables and as-
sume that independent samples (X1, . . . , Xn) and (Y1, . . . , Ym) are at hand.
Then the probability that Y is less than X is given by

R = P (Y < X) = Φ

(
µ1 − µ2√
σ2

x + σ2
y

)
,

where Φ( ) is the standard normal d.f. The problem of estimating R has
been considered by Church and Harris (1970), Downton (1973), Owen et
al . (1964), Govindarajulu (1968) and more recently, Reiser and Guttman
(1986, 1987). We will consider the case where σ2

x, σ2
y are known and will,

without loss of generality, take σ2
x = σ2

y = 1. Thus

τ(µ) = P (Y < X) = Φ

(
µ1 − µ2√

2

)
.

Bartoszewicz (1980) showed that, under certain regularity conditions, the
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variance of R̂, the MVUE of the function τ(µ), is given by

Var(R̂) =
∞∑

k=1

k∑
j=0

{
∂kτ(µ)

∂µj
1∂µ

k−j
2

· 1

J
(1)
j (µ1)J

(2)
k−j(µ2)

}2

.

Blight and Rao (1974) derived the Bhattacharyya functions for the normal
distribution

{J (1)
i (µ1)}2 = nii!

and similarly

{J (2)
i (µ2)}2 = mii!.

It is easy to verify that

∂i1+i2

∂µi1
1 ∂µ

i2
2

τ(µ) =
(−1)i1+1

2i1+i2
√
π

exp{− 1
4 (µ1 − µ2)2}

×
∞∑

r=0

(−1)r (i1 + i2 − 1)(2r)

r!
(µ1 − µ2)i1+i2−1−2r,

where x(2r) = x(x− 1) . . . (x− 2r + 1) and x(0) = 1.
Hence

Var(R̂) =
∞∑

k=1

k∑
j=0

{
(−1)j1+1

2k
√
π

exp{− 1
4 (µ1 − µ2)2}

}2

×
{ ∞∑

r=0

(−1)r (k − 1)(2r)

r!
(µ1 − µ2)k−1−2r

}2 1
njmk−jj!(k − j)!

.

Putting δ = µ1 − µ2, we get

Var(R̂) =
1
π

exp{− 1
2δ

2}
∞∑

k=1

k∑
j=0

1
njmk−jj!(k − j)!

×
{

(−1)j1+1

2k

∞∑
r=0

(−1)r (k − 1)(2r)

r!
δk−1−2r

}2

.

The table below gives the values of the first four generalized Bhattacharyya
bounds for δ = 0.5, 1.0, 1.5, 2.0 and n = m = 5; n = m = 10; n = 5,
m = 10; n = 20, m = 10. Again, it can be seen from the table that the
series converges very quickly.
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TABLE 2
Generalized Bhattacharyya bounds for the best unbiased estimator of
P (Y < X) in the normal case

n = m = 5 n = m = 10

δ B1 B2 B3 B4 B1 B2 B3 B4

0.5 10.24 31.23 31.38 31.39 14.03 14.82 14.84 14.84
1.0 19.20 19.29 19.33 19.33 9.649 9.649 9.653 9.653
1.5 10.32 10.68 10.68 10.69 5.164 5.254 5.254 5.255
2.0 4.306 4.790 4.819 4.820 2.153 2.274 2.277 2.277

n = 5, m = 10 n = 20, m = 10

B1 B2 B3 B4 B1 B2 B3 B4

0.5 21.05 22.83 22.89 22.90 10.52 10.97 10.98 10.98
1.0 14.47 14.47 14.48 14.48 7.237 7.237 7.238 7.238
1.5 7.747 7.949 7.949 7.951 3.924 3.924 3.924 3.924
2.0 3.229 3.502 3.514 3.514 1.614 1.682 1.684 1.684

Bi, i = 1, 2, 3, 4, multiplied by 10
3.

2. Geometric case. Let X1, . . . , Xn be independent identically geometric
r.v.’s with probability function

P (X = x) = p1q
x−1
1 , x = 1, 2, . . . ,

and Y1, . . . , Ym be independent identically geometric r.v.’s with probability
function

P (Y = y) = p2q
y−1
2 , y = 1, 2, . . .

Also let (X1, . . . , Xn) and (Y1, . . . , Ym) be independent random samples.
Considering θi = p−1

i , i = 1, 2, we get

τ(θ) = P (Y < X) =
θ1 − 1

θ1 + θ2 − 1
.

We specialize now to the case of n = m = 1. Since (X,Y ) is a complete
sufficient statistic for (θ1, θ2), the Lehmann–Scheffe theorem assures that
I{Y <X} (the indicator function of the set {Y < X}) is the MVUE of P (Y <
X) = p2q1/(p1 + p2− p1p2). We have σ2(τ̂) = P (Y < X)− (P (Y < X))2 =
P (Y < X)(1 − P (Y < X)), where τ̂ is the indicator function of {Y < X};
this is the exact expression for the variance of the MVUE. Now using the
Bartoszewicz result, we can obtain the variance of τ̂ and see whether the
sequence of the generalized Bhattacharyya bounds converges to the variance
of the MVUE. It is easily verified that

∂i1+i2

∂θi1
1 ∂θ

i2
2

τ(θ) =
(−1)i1+i2(i1 + i2 − 1)!(i2θ1 − i1θ2 − i2)

(θ1 + θ2 − 1)(i1+i2+1)
.
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Blight and Rao (1974) derived the Bhattacharyya functions for the negative
binomial distribution to be

{J (1)
i (θ)}2 =

(r + i− 1)!i!
(r − 1)!{θ(θ − 1)}i

,

so the Bhattacharyya functions for the geometric distribution are

{J (1)
i (θ1)}2 =

(i!)2

{θ1(θ1 − 1)}i
,

and similarly

{J (2)
i (θ2)}2 =

(i!)2

{θ2(θ2 − 1)}i
.

Hence

Var(τ̂) =
∞∑

k=1

k∑
j=0

{
∂kτ(θ)

∂θj
1∂θ

k−j
2

}2 (θ1(θ1 − 1))j(θ2(θ2 − 1))k−j

(j!)2((k − j)!)2

=
∞∑

k=1

k∑
j=0

{(
k

j

)}2{
p2q1

(p1 + p2 − p1p2)(k+1)
− j

k(p1 + p2 − p1p2)k

}2

× (p2
1q2)

k−j(p2
2q1)

j .

Murthy (1956) derived the kth Bhattacharyya lower bounds for the vari-
ance of an unbiased estimator for the geometric r.v. He differentiated τ(θ)
with respect to p = θ−1 instead of with respect to p−1 = θ. In that case,
the determination of the Bhattacharyya bounds will be more complicated
since the Bhattacharyya matrix is not diagonal. Table 3 contains the values
of some generalized Bhattacharyya bounds for different values of p1 and p2.
It is clear that the convergence is fairly fast and as k gets larger, there is a
further improvement. We can also see some bounds are equal to the exact
variance σ2(τ̂) (to the degree of approximation that we have used).

TABLE 3
Generalized Bhattacharyya bounds for the best unbiased
estimator of P (Y < X) in the geometric case

p1 p2 σ
2(τ̂) B1 B2 B3 B10 B15 B20

.40 .50 .2448 .1299 .1665 .1851 .2266 .2338 .2338

.60 .70 .2169 .1318 .1682 .1858 .2142 .2161 .2162

.80 .90 .1499 .1147 .1338 .1456 .1499 .1499 .1499

.70 .50 .1453 .0810 .1066 .1191 .1417 .1442 .1447

.90 .70 .0670 .0462 .0587 .0633 .0668 .0670 .0670
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