ON FOURIER COEFFICIENT ESTIMATORS CONSISTENT IN THE MEAN-SQUARE SENSE

Abstract. The properties of two recursive estimators of the Fourier coefficients of a regression function $f \in L^2[a,b]$ with respect to a complete orthonormal system of bounded functions (e_k), $k = 1, 2, \ldots$, are considered in the case of the observation model $y_i = f(x_i) + \eta_i$, $i = 1, \ldots, n$, where η_i are independent random variables with zero mean and finite variance, $x_i \in [a,b] \subset \mathbb{R}$, $i = 1, \ldots, n$, form a random sample from a distribution with density $\varrho = 1/(b-a)$ (uniform distribution) and are independent of the errors η_i, $i = 1, \ldots, n$. Unbiasedness and mean-square consistency of the examined estimators are proved and their mean-square errors are compared.

1. Introduction. Let y_i, $i = 1, \ldots, n$, be observations at points $x_i \in [a,b] \subset \mathbb{R}^1$, according to the model $y_i = f(x_i) + \eta_i$, where $f : [a,b] \rightarrow \mathbb{R}^1$ is an unknown square integrable function ($f \in L^2[a,b]$) and η_i, $i = 1, \ldots, n$, are independent identically distributed random variables with zero mean and finite variance $\sigma^2 > 0$. Let furthermore the points $x_i, i = 1, \ldots, n$, form a random sample from a distribution with density $\varrho = 1/(b-a)$ (uniform distribution), independent of the observation errors η_i, $i = 1, \ldots, n$.

We assume that the functions (e_k), $k = 1, 2, \ldots$, constitute a complete orthonormal system in $L^2[a,b]$, and that they are bounded and normalized so that

$$\frac{1}{b-a} \int_a^b e_k^2(x) \, dx = 1, \quad k = 1, 2, \ldots$$

Then f has the representation

1991 Mathematics Subject Classification: 62F12, 62G07.
Key words and phrases: Fourier coefficients, consistent estimator, unbiasedness, mean-square error.
\[f = \sum_{k=1}^{\infty} c_k e_k, \quad \text{where} \quad c_k = \frac{1}{b-a} \int_{a}^{b} f(x) e_k(x) \, dx, \quad k = 1, 2, \ldots \]

The first estimator of the Fourier coefficients we shall deal with is well-known and has a simple form

\[\tilde{c}_k = \frac{1}{n} \sum_{i=1}^{n} y_i e_k(x_i), \quad k = 1, 2, \ldots, \]

so that we easily obtain the following formulae:

\[E\tilde{c}_k = E_x E_y c_k = c_k, \]

\[E(\tilde{c}_k - c_k)^2 = \frac{1}{n(b-a)} \int_{a}^{b} (f(x) e_k(x) - c_k)^2 \, dx + \frac{1}{n} \sigma_y^2. \]

The estimators \(\tilde{c}_k, k = 1, 2, \ldots, \) are thus unbiased and consistent in the mean-square sense. If we estimate the Fourier coefficients \(c_1, \ldots, c_N, \) the number \(N \) being fixed, we can write formula (1.1) in the vector form

\[\tilde{c}(n, N) = \frac{1}{n} \sum_{i=1}^{n} y_i e^N(x_i), \]

where \(\tilde{c}(n, N) = (\tilde{c}_1, \ldots, \tilde{c}_N)^T, \) \(e^N(x) = (e_1(x), \ldots, e_N(x))^T, \) which can be rewritten in the recursive form

\[\tilde{c}(n, N) = \frac{n-1}{n} \tilde{c}(n-1, N) + \frac{1}{n} y_ne^N(x_n), \quad \tilde{c}(0, N) = (0, \ldots, 0)^T. \]

In view of (1.2) we also have

\[E\tilde{c}(n, N) = (c_1, \ldots, c_N)^T = c^N, \]

\[E\|\tilde{c}(n, N) - c^N\|^2 = \frac{1}{n} \left(\frac{1}{b-a} \int_{a}^{b} f^2(x) \|e^N(x)\|^2 \, dx - \|c^N\|^2 \right) + \frac{1}{n} N \sigma_y^2. \]

The second estimator of the Fourier coefficients is constructed similarly to the estimators occurring in stochastic approximation methods [1], [2]; namely, it is defined by the recursive formula

\[\hat{c}(n, N) = \hat{c}(n-1, N) + \frac{1}{n} \delta_n e^N(x_n), \]

where \(\delta_n = y_n - \langle \hat{c}(n-1, N), e^N(x_n) \rangle, \hat{c}(0, N) = (0, \ldots, 0)^T. \)
In the sequel we shall use the notation $\Delta_n = \hat{c}(n, N) - c^N$, $\Delta_0 = -c^N$.
By (1.4) we can write
$$\Delta_n = \hat{c}(n, N) - c^N = \hat{c}(n - 1, N) - c^N + \frac{1}{n} \langle f(x_n) + \eta_n - \langle \hat{c}(n - 1, N), e^N(x_n) \rangle \rangle e^N(x_n)$$
and, since $f(x) = \sum_{k=1}^{N} c_k e_k(x) + r_N(x)$, where $r_N = \sum_{k=N+1}^{\infty} c_k e_k$, we obtain
$$\Delta_n = \Delta_{n-1} - \frac{1}{n} \langle \Delta_{n-1}, e^N(x_n) \rangle e^N(x_n) + \frac{1}{n} \langle \eta_n + r_N(x_n) \rangle e^N(x_n).$$

2. Unbiasedness and mean-square consistency of the estimators. We have already remarked that the estimator $\hat{c}(n, N)$ is unbiased and consistent in the mean-square sense (see formulae (1.3)). Now we will prove the same for $\hat{c}(n, N)$. First we prove by induction that $E\Delta_n = 0$ for $n = 1, 2, \ldots$ By (1.5) for $n = 1$, we have
$$E\Delta_1 = E_x E_0 \Delta_1 = E_0 - E_x e^N(x_1)e^N(x_1)^T \Delta_0 + E_x r_N(x_1)e^N(x_1)$$
$$= \Delta_0 - I \Delta_0 = 0,$$ since $E_0 \eta_1 = 0$, $E_x e^N(x_1)e^N(x_1)^T = I$ and $E_x r_N(x_1)e^N(x_1) = 0$.
Assume now that $E\Delta_{n-1} = 0$. Then, by (1.5),
$$E\Delta_n = E\Delta_{n-1} - \frac{1}{n} E_x e^N(x_n)e^N(x_n)^T \Delta_{n-1},$$ since $E_0 \eta_1 = 0$ and $E_x r_N(x_n)e^N(x_n) = 0$. Since Δ_{n-1} does not depend on x_n we finally obtain
$$E\Delta_n = E\Delta_{n-1} - \frac{1}{n} E_x e^N(x_n)e^N(x_n)^T E\Delta_{n-1} = \left(1 - \frac{1}{n}\right) E\Delta_{n-1} = 0.$$ The unbiasedness of $\hat{c}(n, N)$ is thus proved. To prove the mean-square consistency of this estimator we need the following two lemmas.

Lemma 2.1. The random variables $\Delta_n, n = 1, 2, \ldots$, satisfy the recursive inequality

$$E\|\Delta_n\|^2 \leq \left(1 - \frac{2}{n} + \frac{1}{n^2} N^2 M_N\right) E\|\Delta_{n-1}\|^2 + \frac{1}{n^2} \left(p_N M_N + N\sigma_y^2\right),$$

where $p_N = \sum_{k=N+1}^{\infty} c_k^2$, $M_N = \sup_{0 \leq x \leq b} \|e^N(x)\|^2$.

Proof. Taking into account (1.5) and remembering that $E\|\Delta_n\|^2$ can be computed here as $E_{x_1, \ldots, x_{n-1}, \eta_1, \ldots, \eta_{n-1}} E_{\eta_n} \|\Delta_n\|^2$, we can write
Furthermore, since Δ_{-1} does not depend on x_n and $E\Delta_{-1} = 0$ we obtain

$$E\|\Delta_n\|^2 = E\left\| \left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right) \Delta_{n-1} \right\|^2 + \frac{1}{n^2}E_x\|r_N(x_n)e^N(x_n)\|^2 + \frac{1}{n^2}\sigma_n^2 E_x\|e^N(x_n)\|^2.$$

Furthermore, $E_x\|e^N(x_n)\|^2 = E_x\sum_{k=1}^N e_k^2(x_n) = N$, since $E_xe_k^2(x_n) = 1$ for $k = 1, 2, \ldots$, and finally,

$$E\|\Delta_n\|^2 = E\left\| \left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right) \Delta_{n-1} \right\|^2 + \frac{1}{n^2}E_x\|r_N(x_n)e^N(x_n)\|^2 + \frac{1}{n^2}N\sigma_n^2.$$

For the first term on the right hand side we obtain

$$E\left\| \left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right) \Delta_{n-1} \right\|^2$$

$$= E\text{tr}\left[\left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right) \Delta_{n-1}\Delta_{n-1}^T \left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right) \right]$$

$$= E\text{tr}\left[\left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right)^2 \Delta_{n-1}\Delta_{n-1}^T \right]$$

$$= \text{tr}\left[E_x \left(I - \frac{1}{n}e^N(x_n)e^N(x_n)^T \right)^2 E\Delta_{n-1}\Delta_{n-1}^T \right]$$

$$= \text{tr}\left[\left(I - \frac{2}{n}I + \frac{1}{n^2}E_xe^N(x_n)|e^N(x_n)|^2e^N(x_n)^T \right) E\Delta_{n-1}\Delta_{n-1}^T \right]$$

$$= \left(1 - \frac{2}{n} \right) \text{tr} E\Delta_{n-1}\Delta_{n-1}^T$$

$$+ \frac{1}{n^2} \text{tr}[E_x|e^N(x_n)|^2e^N(x_n)e^N(x_n)^TE\Delta_{n-1}\Delta_{n-1}^T]$$

$$= \left(1 - \frac{2}{n} \right) E\|\Delta_{n-1}\|^2 + \frac{1}{n^2} \text{tr}[E_x|e^N(x_n)|^2e^N(x_n)e^N(x_n)^TE\Delta_{n-1}\Delta_{n-1}^T].$$
Observe that
\[|E_x| |e^N(x_n)||i^2e_i(x_n)e_j(x_n)| \]
\[\leq \sup_{a \leq x \leq b} |e^N(x)||i^2E_xe_i(x_n)e_j(x_n)| \]
\[\leq \sup_{a \leq x \leq b} |e^N(x)||i^2(E_xe_i^2(x_n))^{1/2}(E_xe_j^2(x_n))^{1/2} = M_n \]
for \(i, j = 1, \ldots, N \). On the other hand, for \(\Delta_{n-1} = (\Delta_{n-1,1}, \Delta_{n-1,2}, \ldots, \Delta_{n-1,N})^T \), we also have
\[|E(\Delta_{n-1,1}, \Delta_{n-1,2})| \leq E|\Delta_{n-1}|^2 \text{ for } i, j = 1, \ldots, N. \]
These estimates yield
\[E|\Delta_{n-1}|^2 \leq \left(1 - \frac{2}{n} \right) E|\Delta_{n-1}|^2 + \frac{1}{n^2} N^2 M_n E|\Delta_{n-1}|^2 \]
\[+ \frac{1}{n^2} E_x r_N^2(x_n)||e^N(x_n)||^2 + \frac{1}{n^2} N^2 \eta^2, \]
and since
\[E_x r_N^2(x_n)||e^N(x_n)||^2 \leq \sup_{a \leq x \leq b} ||e^N(x)||^2 E_x r_N^2(x_n) \]
\[= M_N \sum_{k=N+1}^{\infty} c_k^2 = M_N p_N, \]
we finally obtain the estimate
\[E|\Delta_n|^2 \leq \left(1 - \frac{2}{n} + \frac{d}{n^2} \right) E|\Delta_{n-1}|^2 + \frac{1}{n^2} p_N M_N + \frac{1}{n^2} N^2 \eta^2. \]

Lemma 2.2. If nonnegative real numbers \(v_n, n = 0, 1, 2, \ldots \), satisfy the recursive inequality
\[v_n \leq \left(1 - \frac{2}{n} + \frac{d}{n^2} \right) v_{n-1} + \frac{b}{n^2}, \quad b > 0, \quad d > 1, \quad n = 1, 2, \ldots, \]
then
\[v_n \leq \frac{d-1}{n^2} (v_0 + b + b \ln(n-1)) \exp(\pi^2(d-1)/6) + \frac{b}{n}, \quad n = 1, 2, \ldots. \]

Proof. From the assumptions it follows immediately that
\[v_n \leq \left(1 - \frac{2}{n} + \frac{d}{n^2} \right) \left(1 - \frac{2}{n-1} + \frac{d}{(n-1)^2} \right) \ldots \left(1 - \frac{2}{1} + \frac{d}{1^2} \right) v_0 \]
\[+ b \left(1 - \frac{2}{n} + \frac{d}{n^2} \right) \left(1 - \frac{2}{n-1} + \frac{d}{(n-1)^2} \right) \ldots \left(1 - \frac{2}{2} + \frac{d}{2^2} \right) \frac{1}{1^2} \]
\[+ \ldots + b \left(1 - \frac{2}{n} + \frac{d}{n^2} \right) \frac{1}{(n-1)^2} + b \frac{1}{n^2}. \]
Taking into account the identity
\[1 - \frac{2}{k} + \frac{d}{k^2} = \frac{k^2 - 2k + d}{k^2} = \frac{(k-1)^2 + d - 1}{k^2} \]
we obtain
\[
v_n \leq \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{(n-2)^2 + d - 1}{(n-1)^2} \cdots \frac{(1-1)^2 + d - 1}{1^2} v_0
\]
\[+ b \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{(n-2)^2 + d - 1}{(n-1)^2} \cdots \frac{(2-1)^2 + d - 1}{2^2} \cdot \frac{1}{1^2} \]
\[+ \ldots + b \frac{(n-1)^2 + d - 1}{n^2} \cdot \frac{1}{(n-1)^2} + b \frac{1}{n^2}, \]
or equivalently,
\[
v_n \leq \frac{1}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) \left(1 + \frac{d-1}{(n-2)^2} \right) \cdots \left(1 + \frac{d-1}{1^2} \right) (d-1)v_0
\]
\[+ \frac{b}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) \left(1 + \frac{d-1}{(n-2)^2} \right) \cdots \left(1 + \frac{d-1}{1^2} \right)
\]
\[+ \ldots + \frac{b}{n^2} \left(1 + \frac{d-1}{(n-1)^2} \right) + b \frac{1}{n^2}. \]

Since \(\exp(x) > 1 + x \) for \(x > 0 \), we have
\[
v_n \leq \frac{1}{n^2} (d-1)v_0 \exp \left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^2} \right)
\]
\[+ \frac{1}{n^2} b \left[\exp \left((d-1) \sum_{k=1}^{n-1} \frac{1}{k^2} \right) + \ldots + \exp \left((d-1) \frac{1}{(n-1)^2} \right) + 1 \right]. \]

Since \(\sum_{k=1}^{\infty} 1/k^2 \) is known to be equal to \(\pi^2/6 \), and clearly
\(\exp(x) \leq 1 + Mx \), \(M = \exp(\pi^2(d-1)/6) \), for \(x \in [0, \pi^2(d-1)/6] \),
we have
\[
v_n \leq \frac{1}{n^2} (d-1)v_0 M
\]
\[+ \frac{1}{n^2} b \left[1 + (d-1)M \sum_{k=1}^{n-1} \frac{1}{k^2} + 1 + (d-1)M \sum_{k=2}^{n-1} \frac{1}{k^2}
\]
\[+ \ldots + 1 + (d-1)M \frac{1}{(n-1)^2} + 1 \right]
\]
\[\leq \frac{(d-1)M}{n^2} \left(v_0 + b \left[\sum_{k=1}^{n-1} \frac{1}{k^2} + \sum_{k=2}^{n-1} \frac{1}{k^2} + \ldots + \frac{1}{(n-1)^2} \right] \right) + b \frac{1}{n}. \]
Fourier coefficient estimators

Summing the terms in square brackets we get
\[v_n \leq \frac{(d - 1)M}{n^2} \left(v_0 + b \frac{n - 1}{(n - 1)^2} + \frac{n - 2}{(n - 2)^2} + \ldots + \frac{1}{1^2} \right) + \frac{b}{n} \]
\[= \frac{(d - 1)M}{n^2} \left(v_0 + b \sum_{k=1}^{n-1} \frac{1}{k} \right) + \frac{b}{n}. \]

Since \(\ln(1 + x) \geq \frac{x}{1 + x} \) for \(x > 0 \), putting \(x = \frac{1}{k} \) we obtain
\[\ln \left(\frac{k + 1}{k} \right) \geq \frac{1}{k+1} \] for \(k = 1, 2, \ldots \),
and consequently
\[\sum_{k=1}^{n-1} \frac{1}{k} \leq 1 + \sum_{k=1}^{n-2} \ln \left(\frac{k + 1}{k} \right) = 1 + \sum_{k=1}^{n-2} (\ln(k + 1) - \ln(k)) = 1 + \ln(n - 1), \]
which completes the proof. \(\blacksquare \)

Inequality (2.1) assures that the sequence \(v_n = E\|\Delta_n\|^2, n = 0, 1, 2, \ldots \), satisfies the assumptions of Lemma 2.2 (sup \(a \leq x \leq b \|e_N^N(x)\|^2 > 1 \) for \(N > 1 \) since \(E\|e_N^N(x)\|^2 = N \)) so that we have the estimate
\[E\|\Delta_n\|^2 \leq \frac{1}{n^2} (N^2 M_N - 1) \exp(\pi^2 (N^2 M_N - 1)/6) \]
\[\times \left[E\|\Delta_0\|^2 + (p_N M_N + N \sigma_0^2)(1 + \ln(n - 1)) \right] \]
\[+ \frac{1}{n} (p_N M_N + N \sigma_0^2) \]
and putting \(C = \exp(-\pi^2/6) \) we can write
\[(2.2) \quad E\|\Delta_n\|^2 \leq \frac{1}{n^2} C N^2 M_N \exp(\pi^2 N^2 M_N/6) \]
\[\times \left[\|e_N^N\|^2 + (p_N M_N + N \sigma_0^2)(1 + \ln n) \right] \]
\[+ \frac{1}{n} (p_N M_N + N \sigma_0^2) . \]

This implies that, for fixed \(N \), the estimator \(\hat{c}(n, N) \) is consistent in the mean-square sense.

Now we shall compare the mean-square errors of \(\hat{c}(n, N) \) and \(\hat{c}(n, N) \) in the case when \(f \in L^2(0, 2\pi) \). The system
\[e_1(x) = 1, \quad e_{2m}(x) = \sqrt{2} \sin(mx), \]
\[e_{2m+1}(x) = \sqrt{2} \cos(mx), \quad m = 1, 2, \ldots, \]
is a complete orthogonal system in \(L^2(0, 2\pi) \) and \((2\pi)^{-1} \int_0^{2\pi} e_k^2(x) \, dx = 1, \)
\[k = 1, 2, \ldots \] For this system we also have
\[\|e^N(x)\|_2^2 = \sum_{k=1}^{2m+1} e_k^2(x) = 2m + 1 = N \quad \text{for } N = 2m + 1, \ m \geq 0 \]
so that the estimates for the mean-square errors considered (see (1.3) and (2.2)) take the form
\[
E\|\hat{c}(n, N) - c^N\|^2 = \frac{1}{n} N(p_N + \sigma^2_n) + \frac{1}{n} (N - 1)\|c^N\|^2,
\]
(2.3)
\[
E\|\tilde{c}(n, N) - c^N\|^2 \leq \frac{1}{n^2} C N^3 \exp(\pi^2 N^3/6)\|c^N\|^2 + N(p_N + \sigma^2_n)(1 + \ln n)
+ \frac{1}{n} N(p_N + \sigma^2_n),
\]
where \(N = 2m + 1, \ m > 0 \) and \(C = \exp(-\pi^2/6) \).

From (2.3) we see that for \(N > 1 \) and \(\|c^N\|^2 > 0 \) we have
(2.4)
\[E\|\hat{c}(n, N) - c^N\|^2 \leq E\|\tilde{c}(n, N) - c^N\|^2 \]
for sufficiently large \(n \), so that \(\tilde{c}(n, N) \), although more complicated in form, has a smaller mean-square error for large values of \(n \) than \(\hat{c}(n, N) \).

3. Conclusions. We now assume that \(f \in L^2(0, 2\pi) \). Having determined the estimators \(\tau^N = (\tau_1, \ldots, \tau_N)^T \) of Fourier coefficients we can form an estimator of the regression function \(f \), called a projection type estimator [3]:
(3.1)
\[\tilde{f}_N(x) = \sum_{k=1}^{N} \tau_k e_k(x) = \langle \tau^N, e^N(x) \rangle, \]
\[N = 2m + 1, \ m > 0, \ e^N(x) = (1, \sqrt{2}\sin(x), \sqrt{2}\cos(x), \ldots, \sqrt{2}\sin(mx), \sqrt{2}\cos(mx))^T. \]

In case \(\tau^N = \hat{c}(n, N) \) this estimator is also a kernel type estimator [3], since then formula (3.1) takes the form
\[\tilde{f}_N(x) = \frac{1}{n} \sum_{i=1}^{n} y_i \sum_{k=1}^{N} e_k(x_i)e_k(x). \]
For such an estimator the following formula for the integrated mean-square error is valid:
(3.2)
\[E\frac{1}{2\pi} \int_0^{2\pi} (f(x) - \tilde{f}_N(x))^2 \, dx = E\|c^N - \tau^N\|^2 + \sum_{k=N+1}^{\infty} c_k^2 \]
\[= E\|\tau^N - c^N\|^2 + p_N. \]
In view of the inequality
\[
\|c^N\|^2 = \sum_{k=1}^{N} c_k^2 \leq \sum_{k=1}^{\infty} c_k^2 = \frac{1}{2\pi} \|f\|^2
\]
and (2.3) we can obtain the following estimates for the mean-square errors:
\[
E\|\hat{c}(n, N) - c^N\|^2 \leq \frac{1}{n} N(p_N + \sigma_n^2) + \frac{1}{n} \frac{N}{2\pi} \|f\|^2,
\]
(3.3)
\[
E\|\hat{c}(n, N) - c^N\|^2
\leq \frac{1}{n^2} CN^3 \exp(\pi^2 N^3/6) \left[\frac{1}{2\pi} \|f\|^2 + N(p_N + \sigma_n^2)(1 + \ln n) \right]
+ \frac{1}{n} N(p_N + \sigma_n^2),
\]
where \(N = 2m + 1, m \geq 0\) and \(C = \exp(-\pi^2/6)\).

Formula (3.2) and the estimates in (3.3) imply that if we put \(N(n) = 2m(n) + 1, \pi^{N(n)} = \hat{c}(n, N(n))\) and if
\[
\lim_{n \to \infty} N(n) = \infty, \quad \limsup_{n \to \infty} N(n)/(\ln n)^{1/3} < (12/\pi^2)^{1/3},
\]
then \(\lim_{n \to \infty} E\|f - \tilde{f}_{N(n)}\|^2 = 0\). The same is true if we put \(\pi^{N(n)} = \hat{c}(n, N(n))\) with \(\lim_{n \to \infty} N(n) = \infty\) and \(\lim_{n \to \infty} N(n)/n = 0\).

In this way we have obtained sufficient conditions for convergence to zero of the integrated mean-square error of the estimator \(\tilde{f}_N\).

If the estimator \(\pi^N\) is unbiased then
\[
E(f(x) - \tilde{f}_N(x))^2 = E(c^N - \pi^N, c^N(x))^2
+ 2r_N(x)E(c^N - \pi^N, c^N(x)) + Er_N^2(x)
= E(c^N - \pi^N, c^N(x))^2 + r_N^2(x),
\]
where \(r_N = \sum_{k=N+1}^{\infty} c_k e_k\). From the Cauchy–Schwarz inequality it follows that
\[
E(f(x) - \tilde{f}_N(x))^2 \leq E\|\pi^N - c^N\|^2 E\|c^N(x)\|^2 + r_N^2(x)
\]
and since \(\|c^N(x)\|^2 = N\) for \(N = 2m + 1, m \geq 0\), we finally have
\[
E(f(x) - \tilde{f}_N(x))^2 \leq NE\|\pi^N - c^N\|^2 + r_N^2(x).
\]
(3.4)

If the Fourier series of \(f\) converges at a point \(x \in [0, 2\pi]\) to \(f(x)\) then, of course, \(\lim_{n \to \infty} r_{N(n)}(x) = 0\) if \(\lim_{n \to \infty} N(n) = \infty\). The estimates in (3.3) and (3.4) imply that if we put \(N(n) = 2m(n) + 1, \pi^{N(n)} = \hat{c}(n, N(n))\) and if
\[
\lim_{n \to \infty} N(n) = \infty, \quad \limsup_{n \to \infty} N(n)/(\ln n)^{1/3} < (12/\pi^2)^{1/3},
\]
then \(\lim_{n \to \infty} E(f(x) - \tilde{f}_{N(n)}(x))^2 = 0\). The same is true if we put \(\pi^{N(n)} = \hat{c}(n, N(n))\) and if
\(\tilde{c}(n, N(n)) \) and
\[
\lim_{n \to \infty} N(n) = \infty, \quad \lim_{n \to \infty} N(n)^2/n = 0.
\]

Sufficient conditions for the point convergence of the Fourier series are described in [4], [5] and together with the conditions for the sequence \(N(n) \) given above they are sufficient for the point convergence in the mean-square sense of the regression function estimator \(\tilde{f}_N \).

The theory presented above can be extended to the case of functions \(f \in L^2(A, \mu) \) defined on subsets \(A \subset \mathbb{R}^m, m > 1 \), satisfying the conditions \(0 < \mu(A) < \infty \), and inequality (2.4) is then also true for certain orthogonal systems of functions (for example, spherical harmonics), if \(n \) is large enough.

References

WaldeMar Popiński
Research and Development Center of Statistics
Al. Niepodległości 208
00-925 Warszawa, Poland

Received on 4.3.1993