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ON ORDERINGS INDUCED BY THE LOEWNER
PARTIAL ORDERING

Abstract. The partial ordering induced by the Loewner partial order-
ing on the convex cone comprising all matrices which multiplied by a given
positive definite matrix become nonnegative definite is considered. Its rela-
tion to orderings which are induced by the Loewner partial ordering of the
squares of matrices is presented. Some extensions of the latter orderings
and their comparison to star orderings are given.

1. Introduction and preliminaries. Let Mm,n, Mn, M≥
n , and M>

n

stand for the set of m×n complex matrices, the set Mn,n, the subset of
Mn consisting of Hermitian nonnegative definite matrices, and the subset
of M≥

n consisting of positive definite matrices, respectively. Given A ∈
Mm,n the symbols A∗, R(A), tr(A), %(A), ‖A‖, and r(A) will denote the
conjugate transpose, range, trace, spectral radius, spectral norm, and rank
of A, respectively. Further, for N ∈ M>

n let ‖A‖N = ‖N1/2AN−1/2‖.
The symbols PA and QA will stand for the orthogonal projectors onto the
orthocomplements of R(A) and R(A∗) under the standard inner product,
respectively. For M ∈ M>

m and N ∈ M>
n consider the following conditions:

AGA = A ,(1.1)
GAG = G ,(1.2)

(AG)∗M = MAG ,(1.3)
(GA)∗N = NGA ,(1.4)

where G ∈ Mn,m. The following terminology and notation is used for every
G which satisfies the specified set of conditions:

(1.1): a generalized inverse (g-inverse) of A, denoted by A−;
(1.1) and (1.3): an M-least squares g-inverse of A, denoted by A−

l(M);
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(1.1) and (1.4): a minimum N-norm g-inverse of A, denoted by A−
m(N);

(1.1), (1.2), and (1.3): an M-least squares reflexive g-inverse of A, de-
noted by A−

l(M)r;
(1.1), (1.2), and (1.4): a minimum N-norm reflexive g-inverse of A,

denoted by A−
m(N)r;

(1.1), (1.2), (1.3), and (1.4): a minimum N-norm M-least squares g-
inverse of A (it is unique), denoted by A+

MN.

The sets of all g-inverses in each case will be denoted by {A−
l(M)} etc.

When M or N are identity matrices, we drop the subscripts.
For A,B ∈ M≥

n we say that A is below B with respect to the Loewner
partial ordering, and we write A ≤L B, if B − A ∈ M≥

n . This ordering
can be characterized in different ways. One of them, which follows [1], is
presented in Lemma 1.

Lemma 1. For any A,B ∈ M≥
n the following statements are equivalent :

(a) A ≤L B,
(b) %(B+A) ≤ 1 and R(A) ⊆ R(B),
(c) %(B−A) ≤ 1 and R(A) ⊆ R(B), the first condition being independent

of the choice of B−.

As is well known (see e.g. Horn and Johnson [7, p. 470]) a partial order-
ing on the set of matrices can be defined by specifying a convex cone and
declaring that A is below B if B−A lies in the cone. In the present paper
we consider the convex cone M≥

n (S), with fixed S ∈ M>
n , defined as follows:

M≥
n (S) = {A : A ∈ Mn, SA ∈ M≥

n } .

The matrices in this cone have the following properties. They represent self-
adjoint and nonnegative definite transformations with respect to the scalar
product defined by S (see e.g. [5, p. 311]). In statistical applications such
matrices appear in the problem of estimation in the linear model (see e.g. [1],
[9]). In the model with the dispersion matrix of the vector of observations
proportional to a positive definite matrix V the linear transformations from
the cone M≥

n (V−1) form the complete class of linear estimators of the vector
of expectations. The dispersion matrices of the estimators can be compared
via the ordering described in Section 3.

In the second section we characterize the partial ordering on M≥
n (S) in

a similar way to Lemma 1.
Stȩpniak [11] considered the equivalence of the Loewner partial ordering

of nonnegative definite matrices to the Loewner partial ordering of their
squares. In Section 3 we define and characterize new orderings, similar to
the latter, and we compare these orderings with the ones from Section 2.
The main result of the paper is given in the Theorem stated there.
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Several orderings in Mm,n are considered in the literature. In Section 4
we are interested in the star ordering introduced in [6], especially, in the
results of Mitra [8] and Baksalary and Mitra [2]. We compare their results
with extensions of the results presented in Section 3.

2. Orderings induced by the Loewner partial order. The partial
ordering on the convex cone M≥

n (S) is specified in the following

Definition 1. iFor A,B∈M≥
n (S) we say that A is below B with respect

to the SL-partial ordering , and we write A≤SLB, if B−A∈M≥
n (S).

N o t e 1. A ≤SL B if and only if SA ≤L SB.

The next lemma is useful for proving the results of the paper.

Lemma 2. For any A,B ∈ Mm,n the following statements are equivalent :

(a) %(B−A) = %(B+A) for every B−,
(b) there exists d > 0 such that %(B−A) ≤ d for every B−,
(c) R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗).

P r o o f. The implication (a)⇒(b) is obvious. The general formula for
B− is

(2.1) B− = B+ + WPB + QBU ,

with W and U arbitrary in Mn,m (cf. [10, p. 20]). Observing that for
C,D ∈ Mn,

(2.2) %(C + D) ≥ 1
n
|tr(C + D)| ≥ 1

n
| |tr(C)| − |tr(D)| | ,

and putting in (2.1), W = αA∗ and U = 0, and next W = 0 and U = αA∗,
it follows that (b) implies (c). Because of the form (2.1) of B−, and since
%(B−A) = %(AB−), it is clear that (c) implies (a).

Similarly to [1] we characterize this new ordering in the following

Proposition 1. Let M, N, and S ∈ M>
n be fixed. For any A,B ∈

M≥
n (S) the following statements are equivalent :

(a) A ≤SL B,
(b) %(B−A) ≤ 1 for every B−,
(c) %(B−

l(M)A) ≤ 1 for every B−
l(M),

(d) %(B−
m(N)A) ≤ 1 for every B−

m(N),
(e) %(B−A) ≤ 1 for some B− and R(A) ⊆ R(B),
(f) %(B+

MNA) ≤ 1 and R(A) ⊆ R(B).

P r o o f. By Definition 1, Note 1, Lemma 1, and the observation that
B+

MNS−1 is a generalized inverse of SB, the following statements are equiv-
alent:
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• A ≤SL B,
• %[(B+

MNS−1)SA] ≤ 1 and R(SA) ⊆ R(SB),
• %(B+

MNA) ≤ 1 and R(A) ⊆ R(B).

Further, it is clear that for A,B ∈ M≥
n (S), R(A) ⊆ R(B) if and only if

R(A∗) ⊆ R(B∗) and hence, the equivalence of (b), (e) and (f) follows from
Lemma 2.

Now assume that (d) holds. Then, using the following general represen-
tation of B−

m(N) [10, p. 45]:

(2.3) B−
m(N) = N−1B∗(BN−1B∗)+ + UPB ,

with arbitrary U ∈ Mn, and putting U = αA∗, where α is an arbitrary real
number, we observe that, by (2.2), the inequalities

1 ≥ %(B−
m(N)A) ≥ 1

n
| |tr[N−1B∗(BN−1B)+A]| − |α tr(A∗PBA)| |

cannot hold for all real numbers α unless PBA = 0.
Assuming (c) and using the general representation of B−

l(M) [10, p. 49]:

(2.4) B−
l(M) = (B∗MB)+B∗M + QBW ,

with arbitrary W ∈ Mn, we obtain QBA∗ = 0. Thus, the implications
(c)⇒(e) and (d)⇒(e) hold; since (b)⇒(c) and (b)⇒(d) are obvious, the
proof is complete.

Note that the characterization given in Proposition 1 for matrices from
M≥

n (S) does not depend on the matrix S, and that conditions (c) and (d)
involve the narrower classes of g-inverses of B.

Theorem 3 of Bekker [4] gives equivalent conditions for two nonnega-
tive definite matrices to be Loewner ordered. We present a counterpart of
Bekker’s result for matrices from M≥

n (S). This result is used in the next
section.

N o t e 2. For any A,B ∈ M≥
n (S),

A ≤SL B if and only if R(A) ⊆ R(B) and AB−A ≤SL A

for some B−.

P r o o f. The equivalence follows from Proposition 1 observing that under
the condition R(A) ⊆ R(B),

AB−A = A(SB)−SA = A(SB)+SA ∈ M≥
n (S) .

3. Orderings induced by the Loewner partial ordering of the
squares of matrices. Extending results given in [11], we consider a family
of partial orderings defined on the cone M≥

n (S).
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Definition 2. For A,B ∈ M≥
n (S) and a given matrix M ∈ M>

n we say
that A is below B with respect to the left star ML-partial ordering , and we
write A ∗≤ML B, if A∗MA ≤L B∗MB; for a given matrix N ∈ M>

n we say
that A is below B with respect to the right star NL-partial ordering , and
we write A≤∗NL B, if AN−1A∗ ≤L BN−1B∗.

For A,B ∈ M≥
n Stȩpniak [11] considered the equivalence of the orderings

A ≤L B and A ∗≤IL B (or A≤∗IL B) and gave some necessary and sufficient
conditions for it. In this paper we consider the equivalence of the ordering
A ≤SL B and the family of orderings specified in Definition 2.

The following propositions providing some characterizations of these or-
derings are counterparts of Proposition 1.

Proposition 2. Let M, N, and S ∈ M>
n be fixed. For any A,B ∈

M≥
n (S) the following statements are equivalent :

(a) A ∗≤ML B,
(b) ‖AB−

l(M)‖M ≤ 1 for every B−
l(M),

(c) ‖AB−
l(M)r‖M ≤ 1 for every B−

l(M)r, and if B = 0 then A = 0,

(d) ‖AB−
l(M)‖M ≤ 1 for some B−

l(M) and R(A∗) ⊆ R(B∗),

(e) ‖AB+
MN‖M ≤ 1 and R(A∗) ⊆ R(B∗).

P r o o f. By Definition 2 and Lemma 1, A ∗≤ML B if and only if

(3.1) %[(B∗MB)+A∗MA] ≤ 1 and R(A∗) ⊆ R(B∗) .

Since B+
MI = (B∗MB)+B∗M, it follows that

%[(B∗MB)+A∗MA] = ‖AB+
MI‖

2
M ,

and (3.1) is equivalent to

(3.2) ‖AB+
MI‖M ≤ 1 and R(A∗) ⊆ R(B∗) .

But, under the assumption R(A∗) ⊆ R(B∗) and using the general formula
(2.4) for B−

l(M), we have

AB−
l(M) = AB+

MI for every B−
l(M) .

Combination of this equation with (3.2) yields (a)⇔(d)⇔(e) and (a)⇒(b)
⇒(c).

Now assume that (c) holds. Then applying the following general form of
B−

l(M)r presented in [10, p. 49]:

B−
l(M)r = (B∗MB)+B∗M + QBWB∗M ,

with arbitrary W ∈ Mn, and the inequalities

1 ≥ ‖AB+
MI + AQBWB∗M‖M ≥ | ‖AB+

MI‖M − ‖AQBWB∗M‖M | ,
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for every W ∈ Mn, it follows that B = 0 or AQB = 0, which shows that
(c)⇒(d).

Proposition 3. Let M, N, and S ∈ M>
n be fixed. For any A,B ∈

M≥
n (S) the following statements are equivalent :

(a) A≤∗NL B,
(b) ‖B−

m(N)A‖N ≤ 1 for every B−
m(N),

(c) ‖B−
m(N)rA‖N ≤ 1 for every B−

m(N)r, and if B = 0 then A = 0,
(d) ‖B−

m(N)A‖N ≤ 1 for some B−
m(N) and R(A) ⊆ R(B),

(e) ‖B+
MNA‖N ≤ 1 and R(A) ⊆ R(B).

P r o o f. The proof follows, similarly to Proposition 2, by observing that

B+
IN = N−1B∗(BN−1B∗)+ ,

and using the general representation of B−
m(N)r [10, p. 46]:

B−
m(N)r = N−1B∗(BN−1B∗)+ + N−1B∗UPB ,

with arbitrary U ∈ Mn.

The orderings characterized in Propositions 2 and 3 are related, as shown
in the following.

N o t e 3. Let N and S ∈ M>
n be fixed. For any A,B ∈ M≥

n (S),

A≤∗NL B if and only if A ∗≤ML B with M = SN−1S .

P r o o f. This is a consequence of the equivalence of the following state-
ments:

• AN−1A∗ ≤L BN−1B∗,
• SAN−1A∗S ≤L SBN−1B∗S,
• A∗SN−1SA ≤L B∗SN−1SB,
• A ∗≤ML B with M = SN−1S.

Because of the above note, the Theorem below is only formulated for the
right star NL-partial ordering.

Theorem. Let S ∈ M>
n be fixed. For any A,B ∈ M≥

n (S),

A ≤SL B if and only if there exists N ∈ M>
n such that A≤∗NL B .

P r o o f. To prove the necessity observe that since B−S−1 = (SB)− and
R(A) ⊆ R(B) by assumption, we have

AB−A = AB−S−1SA = A(SB)+A∗S .

Then, by Note 2, A ≤SL B implies that A(SB)+A∗ ≤L BS−1, leading to
A≤∗NL B with N = QB + SB.
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The sufficiency follows from Proposition 1(d), Proposition 3(b) and from
the following inequality which holds for all matrix norms:

%(C) ≤ ‖C‖ ;

cf. [7, p. 297].

For S = I, the result of the Theorem was proved independently in [3].

4. Results for the set of rectangular matrices. Propositions 1,
2, and 3, excluding parts 1(a), 2(a), and 3(a), remain valid outside the
cones M≥

n (S)—in the set Mn or even in Mm,n. It is interesting to verify
whether they still characterize an ordering or a preordering. In the case of
Proposition 1, taking for example the nonsingular matrices

A =
(

1 1
0 1

)
, B =

(
1 0
0 1

)
, and C =

(
2 −1

−1 2

)
we have %(B−1A) = 1 and %(C−1B) = 1, but %(C−1A) > 1, and hence we
have neither an ordering nor a preordering. In the case of Proposition 2, tak-
ing for example B = −A, we see that the relation (b) is not antisymmetric,
but its reflexivity and transitivity gives a preordering. The same conclusion
is valid for Proposition 3. Remembering that the symbols in parts (a) of
Propositions 2 and 3 define preorderings in the set Mm,n we will compare
these relations with star orderings.

The star ordering A
∗
≤B, the left star ordering A ∗≤B, and the right

star ordering A≤∗B are defined in Mm,n, respectively, by

A∗A = A∗B and AA∗ = BA∗ ,

A∗A = A∗B and R(A) ⊆ R(B) ,

and

AA∗ = BA∗ and R(A∗) ⊆ R(B∗) .

The first ordering was introduced by Drazin [6], and Mitra [8] characterized
it by

{B−
l } ⊆ {A−

l } and {B−
m} ⊆ {A−

m} .

The last two orderings were defined and characterized in [2], respectively,
by

{B−
l } ⊆ {A−

l }
and

{B−
m} ⊆ {A−

m} .

To compare these orderings with the preorderings defined in Proposi-
tions 2 and 3 in the set Mm,n we need, in fact, more general forms of the
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latter, namely, the star MN-ordering A
∗
≤MN B, the left star M-ordering

A ∗≤M B, and the right star N-ordering A≤∗N B defined, respectively, by

A∗MA = A∗MB and AN−1A∗ = BN−1A∗ ,

A∗MA = A∗MB and R(A) ⊆ R(B) ,(4.1)

and
AN−1A∗ = BN−1A∗ and R(A∗) ⊆ R(B∗) .

They can also be characterized, respectively, by

{B−
l(M)} ⊆ {A−

l(M)} and {B−
m(N)} ⊆ {A−

m(N)} ,

{B−
l(M)} ⊆ {A−

l(M)} ,

and
{B−

m(N)} ⊆ {A−
m(N)} .

We will characterize the above orderings in the way similar to the ones
proposed in [8] and [2], and in Proposition 1.

Proposition 4. Let M ∈ M>
m and N ∈ M>

n be fixed. For any A,B ∈
Mm,n, the following statements are equivalent :

(a) A ∗≤M B,
(b) AB−

l(M) = AA+
MN for every B−

l(M),
(c) AB−

l(M)r = AA+
MN for every B−

l(M)r,
(d) AB−

l(M) = AA+
MN for some B−

l(M) and R(A∗) ⊆ R(B∗),
(e) AB+

MN = AA+
MN and R(A∗) ⊆ R(B∗),

(f) {B−
l(M)r} ⊆ {A−

l(M)}.

Proposition 5. Let M ∈ M>
m and N ∈ M>

n be fixed. For any A,B ∈
Mm,n, the following statements are equivalent :

(a) A≤∗N B,
(b) B−

m(N)A = A+
MNA for every B−

m(N),
(c) B−

m(N)rA = A+
MNA for every B−

m(N)r,
(d) B−

m(N)A = A+
MNA for some B−

m(N) and R(A) ⊆ R(B),
(e) B+

MNA = A+
MNA and R(A) ⊆ R(B),

(f) {B−
m(N)r} ⊆ {A−

m(N)}.

Conditions (f) in Propositions 4 and 5 follow from a result of [2], while
the remaining conditions can be obtained from the results of [2] and [8].

The results of Propositions 2 and 3 and Propositions 4 and 5 are com-
pared in the following.

N o t e 4. Let M ∈ M>
m and N ∈ M>

n be fixed. For any A,B ∈ Mm,n,
the following implications hold :
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(a) A ∗≤M B ⇒ A ∗≤ML B,
(b) A≤∗N B ⇒ A≤∗NL B,

(c) A
∗
≤MN B ⇒ A ∗≤ML B and A≤∗NL B.

It would be interesting to find a partial ordering ≤∗? defined in Mm,n

for which

A≤∗N B ⇒ A≤∗? B ⇒ A≤∗NL B .

This is possible, for example, by modification of the left star M-partial
ordering by using, instead of (4.1), the relations

A∗MA = λA∗MB and R(A) ⊆ R(B) ,

with λ ∈ [0, 1]. A similar extension can be done for the right star N-partial
ordering.

In the special case of the set Mm,1, the ordering a≤∗N b means that
a = b while its modification described above is equivalent to the relation
a = λb, where λ ∈ [0, 1].

In the general case a better modification might be possible.
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