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LEAST EMPIRICAL RISK PROCEDURES
IN STATISTICAL INFERENCE

Abstract. We consider the empirical risk function

Qn(α) =
1
n

n∑
i=1

·f(α, Zi)

(for iid Zi’s) under the assumption that f(α, z) is convex with respect to
α. Asymptotics of the minimum of Qn(α) is investigated. Tests for linear
hypotheses are derived. Our results generalize some of those concerning
LAD estimators and related tests.

0. Introduction. There is a general scheme, comprising such statis-
tical procedures as: least absolute deviations (LAD), least squares (LS),
least distances (LD), maximum likelihood (ML), discrimination based on
perceptron-like criteria—to name but a few best known examples. This
general scheme will be referred to as least empirical risk (LER) method.

Haberman (1989) and Niemiro (1992) examined asymptotic behavior
of LER estimators, assuming that the underlying loss function is convex.
(Here and throughout we slightly abuse the terminology of statistical de-
cision theory. Speaking of “criterion function” would perhaps be pedantic,
but certainly more correct.) Pollard (1991) pointed out that the convexity
argument is an idea whose time has come and gave an excellent example of
its application to LAD estimators. In this paper, we derive tests of signifi-
cance for linear hypotheses, under the same basic assumption of convexity.
We therefore provide a framework for obtaining, in a more general setting,
results such as those described by Rao (1988), Bai, Rao and Yin (1990) or
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Bai, Rao and Wu (1992). Although our conditions are fulfilled by a large
class of LER procedures, we focus our attention on LAD- or LD-type ones.
In particular, we discuss applications of LAD-related methods to discrim-
inant analysis. This topic certainly deserves more attention than it has
received in the literature so far (Niemiro, 1989).

1. Definitions and assumptions. Let Z be a random variable with
values in a measurable space Z and f : Rd×Z → R. We will regard f(α, Z)
as a loss depending on the random quantity Z and on α ∈ Rd chosen by the
statistician. Accordingly, define Q : Rd → R by

(1) Q(α) = Ef(α, Z) ,

and call Q(α) the risk. Suppose the goal is to minimize the risk. Let α∗ ∈ Rd

be such that

(2) Q(α∗) = inf
α

Q(α) .

If the probability distribution of Z is unknown but an iid sample Z1, . . . , Zn

is available, then we can consider the empirical risk function Qn, defined as

(3) Qn(α) =
1
n

n∑
i=1

f(α, Zi) ,

and minimize Qn instead of Q. Denote by αn a point, depending on the
sample, such that

(4) Qn(αn) = inf
α

Qn(α) .

We will regard αn as an estimate of α∗. Our basic assumptions are the
following:

(A) f(·, z) : Rd → R is convex for each fixed z ∈ Z.
(B) Q is twice differentiable at α∗, with positive definite second derivative

∇2Q(α∗).
(C) ∂f(·, z) is a subgradient of f(·, z) such that E|∂f(α, Z)|2 < ∞ for

each α.

Calling ∂f(·, z) a subgradient we mean that the inequality

(5) f(α, z)− f(α0, z) ≥ (α− α0)T ∂f(α0, z)

holds for all α, α0 ∈ Rd and z ∈ Z. Here and in the sequel, | · | stands for
the euclidean norm, |α| = (αT α)1/2.

To conclude this section, let us briefly comment on existence and unique-
ness problems. Conditions implicit in (1–4) (needed in order that these for-
mulae make sense) can be justified using (A–C). Let us only list basic facts,
referring to Niemiro (1992) for a more comprehensive discussion of those
details, which are not really important here. To begin with, assume Q(α)
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is well defined. (In fact, (C) implies E|f(α, Z) − f(α0, Z)| < ∞ for all α
and α0. To show this, note that (α−α0)T ∂f(α0, Z) ≤ f(α, Z)−f(α0, Z) ≤
(α − α0)T ∂f(α, Z), by definition of subgradient. Replacing, if necessary,
f(·, z) by f(·, z)−f(α0, z) with fixed α0, we can assume that the expectation
in (1) exists.) Convexity of Q follows from (A). If α∗ satisfying (B) exists,
it must be the unique minimizer of Q. Under our assumptions, αn satisfying
(4) can be shown to exist (at least for large n, with probability one). On the
other hand, αn may not be unique; in the case of ambiguity, αn can be chosen
arbitrarily, subject to (4). The same remark applies to ∂f . A subgradient
exists, because f(·, z) is convex, but it is not uniquely determined at points
of nondifferentiability of f(·, z). Assume ∂f is selected, subject to (5), in an
arbitrary but fixed way. (In fact, we need measurable selections of ∂f(α, ·)
and αn; see Niemiro (1992) for a way of handling measurability problems.)

2. Asymptotic representations. In this section we give the basic
approximation theorems. Most of the proofs are omitted or only sketched,
because they can be found in Niemiro (1992). The proof of Theorem 1(b),
which is new, will be relegated to the Appendix. Let (A–C) be standing
assumptions.

Write ∂Qn(α) = 1
n

∑n
i=1 ∂f(α, Zi), to fix a subgradient of Qn. Let

γn = ∂Qn(α∗) ,

D = ∇2Q(α∗) ,(6)
V = E∂f(α∗, Z)∂f(α∗, Z)T .

The last definition is correct in view of (C) (in fact, V = Var ∂f(α∗, Z), the
covariance matrix, because E∂f(α∗, Z) = ∇Q(α∗) = 0; see Niemiro, 1992).

Our assumptions allow us to approximate Qn uniformly by a quadratic
function and ∂Qn by a linear function, near α∗ (despite the fact that ∂Qn

may well be discontinuous!).

Theorem 1. For every M ,

(a) sup
|α−α∗|≤Mn−1/2

|Qn(α)−Qn(α∗)− (α− α∗)T ∂Qn(α∗)

− 1
2 (α− α∗)T D(α− α∗)| = op(n−1) ,

(b) sup
|α−α∗|≤Mn−1/2

|∂Qn(α)− ∂Qn(α∗)−D(α− α∗)| = op(n−1/2) .

The proof is given in the Appendix. In fact, only part (b) has to be
proved, since part (a) was established in the course of the proof of Theo-
rem 4 in Niemiro (1992).

As a consequence of Theorem 1 we obtain the following analog of Ghosh’s
(1970) classical representation:
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Theorem 2. αn = α∗ −D−1γn + op(n−1/2).

P r o o f. From Theorem 1 we can deduce that αn = µn + op(n−1/2),
where µn is the minimum point of the quadratic function γT

n (α − α∗) +
1
2 (α − α∗)T D(α − α∗). Of course, µn = α∗ − D−1γn. For details, see
Niemiro (1992).

Asymptotic normality of γn follows from the central limit theorem:

Proposition 1. n1/2γn →d N(0, V ).

As an immediate consequence, we get asymptotic normality of αn:

Proposition 2. n1/2(αn − α∗) →d N(0, D−1V D−1).

3. Linear hypotheses. Now let us turn to the slightly more general
case of minimization with linear constraints. Suppose H is a p × d matrix
of full rank p and c ∈ Rp is such that

(H) Hα∗ = c.

Denote by α̇n a point such that

(7) Hα̇n = c, Qn(α̇n) = inf
Hα=c

Qn(α) .

Under (H), we have the following representation of α̇n, similar to that of αn:

Theorem 3. α̇n = α∗ + (D−1HT (HD−1HT )−1HD−1 − D−1)γn +
op(n−1/2).

P r o o f. The argument given in the proof of Theorem 2 also applies
to the affine subspace {α : Hα = c}, instead of the whole Rd. In conse-
quence, αn = νn + op(n−1/2), where νn minimizes the quadratic function
γT

n (α − α∗) + 1
2 (α − α∗)T D(α − α∗), subject to Hα = c. To find νn, it is

enough to solve for α the following equations:{
γn + D(α− α∗) = HT λ ,
Hα = c .

Taking (H) into account, write these equations in the form−D
... HT

· · · · · ·
H

... 0


 α− α∗

· · ·
λ

 =

 γn

· · ·
0

 .

The solution is νn = α∗ + (D−1HT (HD−1HT )−1HD−1 −D−1)γn.

Assume V is nonsingular. Let us adopt the following notation:

(8)
A = D−1HT (HD−1V D−1HT )−1HD−1 ,

B = D−1HT (HD−1HT )−1HD−1 .



Least empirical risk procedures 59

Theorem 4. Under (H) we have

∂Qn(α̇n)T A∂Qn(α̇n) = γT
n Aγn + op(n−1) ,(a)

(αn − α̇n)T DAD(αn − α̇n) = γT
n Aγn + op(n−1) ,(b)

2(Qn(α̇n)−Qn(αn)) = γT
n Bγn + op(n−1) .(c)

P r o o f. To begin with, αn = Op(n−1/2) and α̇n = Op(n−1/2).
To show (a), combine the representations given in Theorems 1(b) and 3.

From ∂Qn(α̇n) = γn+D(α̇n−α∗)+op(n−1/2) and α̇n−α∗ = (B−D−1)γn+
op(n−1/2) we get ∂Qn(α̇n) = DBγn + op(n−1/2). Check that BDADB = A
to complete the proof.

Part (b) follows immediately from Theorem 2.
To show (c), substitute the representations given in Theorems 2 and 3

into that of Theorem 1(a): the left-hand side of (c) is (α̇n − αn)T D(α̇n −
αn)+op(n−1) = γT

n BDBγn +op(n−1). Of course, BDB = B and the result
follows.

For completeness, let us mention another representation, similar to those
in Theorem 4, but with different interpretation. The quantity Q(αn)−Q(α̇n)
can be regarded as an amount we lose, in terms of risk, when using the un-
constrained estimate, αn, instead of the constrained one, α̇n. Assume, as
before, that (H) is true.

Proposition 3. 2(Q(αn)−Q(α̇n)) = γT
n Bγn + op(n−1).

P r o o f. Use Theorems 2, 3 and the obvious fact that

sup
|α−α∗|≤Mn−1/2

|Q(α)−Q(α∗)− 1
2 (α− α∗)T D(α− α∗)| = o(n−1) .

Let us regard (H) as a statistical hypothesis. Suppose we have consis-
tent estimators for the matrices D and V . Then we can use the following
statistics to test (H):

Rn = n∂Qn(α̇n)T D̂−1HT (HD̂−1V̂ D̂−1HT )−1HD̂−1∂Qn(α̇n) ,(LM)

Wn = n(Hαn − c)T (HD̂−1V̂ D̂−1HT )−1(Hαn − c) ,(W )
Λn = n(Qn(α̇n)−Qn(αn)) .(LR)

Of course, they are analogs of the classical Lagrange multipliers (LM), Wald
(W ) and likelihood ratio (LR) tests for maximum likelihood (ML). It is
straightforward to derive the asymptotic distributions for Rn and Wn from
Theorem 4. Just take into account the fact that AVA = A and use the
Cochran theorem. Asymptotic distribution ofΛn is not, in general, so simple.
We have 2Λn→d χ2(p) iff BVB = B. However, there are situations, which
are interesting from the viewpoint of practice (e.g. examples in the next sec-
tion), when λV =D for some λ∈R. In the last part of the following theorem
we assume that this is the case and we have a consistent estimator for λ.
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Theorem 5. Under the null hypothesis (H ) we have

Rn →d χ2(p) ,(a)
Wn →d χ2(p) ,(b)

provided that V̂ →p V and D̂ →p D. Moreover ,

(c) 2λ̂Λn →d χ2(p) ,

provided that λV = D and λ̂ →p λ.

Of course, when using the tests, it is crucial to have good estimates V̂
and D̂ or λ̂. Some consistent estimates of these “nuisance parameters” can
be shown to exist in a quite general setting. Nevertheless, it is much more
reasonable to look for better estimates, which take into account specific fea-
tures of particular models. For instance, much work has been devoted to
estimation of λ (or its reciprocal) in linear regression models with LAD-type
loss function (Rao, 1988, Welsh, 1987 and many others). These important,
interesting and difficult problems go beyond the scope of this paper.

To conclude this section, let us comment on the classical asymptotic the-
ory of ML from the viewpoint of our Theorem 5. Consider a parametric
family {p(α, ·) : α ∈ Rd} of probability densities. Let Z1, . . . , Zn be a sample
from a density p(·). Setting

f(α, z) = − log p(α, z) ,

we get ML estimators as special cases of the LER method. The usual
assumption is that

(L) p(·) = p(α∗, ·) for some α∗.

If (L) holds, then necessarily (2) is true. However, the hypothesis (H)
makes sense also without assumption (L). The density p(α∗, ·) can be in-
terpreted as the member of the parametric family {p(α, ·)} which is closest
to p(·) in the sense of minimum Kullback–Leibler information. Assume the
log-likelihood is concave and (A–C) hold or (which is more frequently the
case) other regularity properties imply the representations of Theorem 1.
The conclusions of Theorem 5 are then also in force, no matter whether (L)
holds or not. On the other hand, condition (L) does simplify the three tests,
because it implies that D = V = I(α∗) (the Fisher information matrix). In
this case the tests LM, W and LR assume their usual, simpler form and 2Λn

is asymptotically distributed as χ2(p).

4.Examples. First three of the examples to be given are well known and
were discussed e.g. by Rao (1988), McKean and Schrader (1987). Our aim is
to show that our theorems provide a general framework for obtaining such
kind of results. In the last example we will be concerned with applications of
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the general theory to discriminant analysis. Many discrimination procedures
are based on minimization of some convex criteria. Although this technique
is widely used (cf. Devijver and Kittler, 1982, Hand, 1981), the asymptotic
theory has not been sufficiently developed yet. In particular, this remark
applies to the case of nonsmooth criteria of LAD type.

Example 1 (One-way classification). Let us consider objects, belonging
to d distinct classes, with values of some measurement assigned to all of
them. If the objects are drawn at random, we can assume that a single
observation consists of a pair Z = (X, Y ) of random variables, where X
takes values 1, . . . , d (it is an indicator of class), Y is real. Let us make the
standard assumption:

Y = αk
∗ + U if X = k; U is independent of X .

We will use the following loss function:

(9) f(α, k, y) = |αk − y| − |y| ,

where z = (k, y), α = (α1, . . . , αd)T ∈ Rd (components of vectors will be
indexed by superscripts throughout this section). Assume medU = 0, so
that α∗ minimizes the risk, corresponding to (9). A sample Z1, . . . , Zn can
be regarded as an array:

Y 1
1 . . . Y 1

n1
, class 1,

. . . . . . . . . . . .
Y d

1 . . . Y d
nd

, class d .

Consider the null hypothesis: α1
∗ = . . . = αd

∗, which can be written as
Hα = 0, with (d− 1)× d matrix H defined as

H =

 1 −1 . . . 0
...

...
. . .

...
1 0 . . . −1

 .

The unconstrained minimum of the empirical risk is at the vector of sample
medians within classes, i.e. αn = (m1, . . . ,md)T , where

mk = med(Y k
1 , . . . , Y k

nk
) .

The constrained minimum is at the median of the pooled sample, α̇n =
(m, . . . ,m)T , where

m = med(Y 1
1 , . . . , Y 1

n1
, . . . , Y d

1 , . . . , Y d
nd

) .

Of course, ∂f(α, k, y) = ek sign(αk − y), where ek = (0, . . . , 1, . . . , 0)T is the
kth versor (as usual, we set sign 0 = 0 and so we choose a fixed version of
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subgradient). Consequently,

∂Qn(α) =
1
n

d∑
k=1

ek(#{i : Y k
i < αk} −#{i : Y k

i > αk}) ,

the symbol # standing for cardinality. In the case under consideration,

V = diag(π1, . . . , πd) ,

where πk = P(X = k). If U has a density p(·), continuous at 0, the median,
then

D = 2p(0)V .

To see this, compute the kth partial derivative of Q:

∇kQ(α) = πk(1− 2P(U > αk − αk
∗)) .

To derive the formulae for Rn and Wn, we need the matrix A given by
(8), an estimate of which appears in (LM) and (W ). The computation is
standard and leads to a familiar result:

A = diag(π)−1 − 11T ,

where π = (π1, . . . , πd)T , 1 = (1, . . . , 1)T . Let us use the obvious estimate
for V : V̂ = diag(n1/n, . . . , nd/n)T . Assume we have a consistent estimate
p̂ for p(0) (a kernel estimate, perhaps) and let D̂ = 2p̂ V̂ . The three tests
statistics, derived in Section 3, now become:

(LM) Rn =
d∑

k=1

(n+
k − n−k )2

nk
,

where n+
k = #{i : Y k

i > m}, n−k = #{i : Y k
i < m};

(W ) Wn = 4p̂2
d∑

k=1

nk(mk −m)2 ,

where m = n−1
∑d

k=1 nkmk;

(LR) 4p̂Λn = 4p̂
( d∑

k=1

nk∑
i=1

|Y k
i −m| −

d∑
k=1

nk∑
i=1

|Y k
i −mk|

)
.

Under (H), in view of Theorem 5, all the three statistics are asymptotically
distributed as χ2(d− 1).

Adamczyk (1993) discusses one-way classification of multivariate obser-
vations along similar lines.
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Example 2 (Location).

• Marginal medians. Let α, z ∈ Rd. Components of these and other
vectors will be indexed by superscripts, as in the previous example. Set

f(α, z) =
d∑

j=1

|αj − zj | − |zj | .

Now, αj
∗ is a median of marginal distribution of the random variable Zj ,

while αj
n is a sample median of Zj

1 , . . . , Zj
n, j = 1, . . . , d. Assume that each

component Zj has a density pj(·), continuous and nonzero at αj
∗. Clearly

∂f j(α, z) = sign(αj − zj) ,

cov(sign(αj
∗ − Zj), sign(αk

∗ − Zk)) = 4P(αj
∗ < Zj , αk

∗ < Zk)− 1 ,

∇jQ(α) = 1− 2P(Zj > αj) ,

∇2
jjQ(α) = 2pj(αj), ∇2

jkQ(α) = 0, j 6= k

(∇j and ∇2
jk standing for partial derivatives). One can verify that condi-

tions (A–C) hold. The (j, k)th entry of the matrix D−1V D−1, appearing in
Proposition 2, becomes

P(αj
∗ < Zj , αk

∗ < Zk)− 1/4
pj(α

j
∗)pk(αk

∗)
.

• Spatial median of Haldane (1948). Let α, z ∈ Rd and set

f(α, z) = |α− z| − |z| ,
where |z| = (zT z)1/2, as usual. If the probability distribution of Z is not
concentrated on any affine subspace of Rd, then the risk function Q has a
unique minimum α∗ (Milasevic and Ducharme, 1987). This is, by defini-
tion, the spatial median. Let us consider the asymptotic behavior of αn, its
sample analogue. Assume that Z has a density, bounded in a neighborhood
of α∗. Clearly

∂f(α, z) =
α− z

|α− z|
, α 6= z .

Setting additionally ∂f(α, α) = 0 we define a subgradient. Conditions (A–
C) hold, with

D = ∇2Q(α∗) = E|α∗ − Z|−1(I − |α∗ − Z|−2(α∗ − Z)(α∗ − Z)T )

being a positive definite matrix (see Niemiro (1992) for a proof). Of course,

V = E|α∗ − Z|−2(α∗ − Z)(α∗ − Z)T

and the conclusion of Proposition 2 holds with D and V as above.

Example 3 (Regression). Our results are directly applicable only to
regression models with random design. Let us consider an iid sequence of
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random vectors in Rd × R:

Zi = (Xi, Yi)

and set

(10) f(α, x, y) = |y − αT x| − |y| .

The LAD estimate of linear regression coefficients is αn, which minimizes the
empirical risk (3), corresponding to (10). Let α∗ be the minimum point of
the risk function (1). Assume the probability distribution of (X, Y ) satisfies
the following regularity conditions. Let E|X|2 < ∞, and suppose that the
density p(α, ·) of the random variable T = Y −αT X and the matrix-valued
function

V (α, t) = E(XXT | Y − αT X = t)

are continuous in a neighborhood of (α∗, 0). Moreover, let p(α∗, 0) > 0 and
V (α∗, 0) be positive definite. Then conditions (A–C) hold and the conclu-
sion of Proposition 2 is in force, with

D = 2p(α∗, 0)V (α∗, 0), V = EXXT .

The standard assumption is that Y = αT
∗ X + U , where the error U is inde-

pendent of X and has a density p(·), continuous at 0, the unique median.
In this case the matrix D−1V D−1 becomes equal to V −1(2p(0))−2, so we
get the classical result of Basset and Koenker (1978) (in the random-design
version proved by Bloomfield and Steiger, 1983).

Example 4 (Discrimination). Let us look at the previous example in
another way. Suppose Y is a binary random variable with values, say, y = 1
and y = −1, indicating from which of two subpopulations the random vector
X comes (note that the parts played by X and Y have been reversed, as com-
pared to Example 1). Instead of regression, we can speak of discrimination.
The risk function Q(α) becomes a criterion evaluating the quality of a linear
discriminant function αT x. Incidentally, although the loss (10) remains a
reasonable choice, another loss function is more natural for discrimination,
namely

(11) f(α, x, y) =
{

(1− αT x)+ if y = 1 ,
(1 + αT x)+ if y = −1 .

The empirical risk corresponding to this loss function is called the percep-
tron criterion. Let us refer to Hand (1981) for general information on this.
A nice example of application can be found in Bobrowski et al. (1987).
The asymptotic behavior of the discriminant function αT

nx which minimizes
the perceptron criterion was investigated in Niemiro (1989), under strong
assumptions on the underlying probability distributions. Now we are in a
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position to obtain these results as simple corollaries of the results of Sec-
tion 2. Considerations from the previous example are still in force, with
slight modifications in case we use (11) instead of (10). Let us denote a
priori probabilities of the two subpopulations by π± = P(Y = ±1), write
p±(·) for the conditional densities of T = αT

∗ X given Y = ±1 and let

V±(t) = E(XXT | αT
∗ X = t, Y = ±1) .

Now the asymptotic normality, asserted in Proposition 2, holds with

D = π+p+(1)V+(1) + π−p−(−1)V−(−1) ,

V = π+

1∫
−∞

p+(t)V+(t) dt + π−

∞∫
−1

p−(t)V−(t) dt .

Explicit formulae for D and V were derived by Niemiro (1989) in the case
when the conditional distributions of X given Y are elliptically contoured.

Let us conclude this example with the following remark. Several convex
criteria can be used to design linear discriminant functions in the case of
more than two subpopulations as well. Devijver and Kittler (1982) review
some of them, including the well-known MSE (mean squared error) criterion.
The results of this paper can also be applied in this more general situation.

Appendix. To prove Theorem 1(b) we will need the following lemma,
which is a strengthened version of Theorem 25.7 of Rockafellar (1970).

Lemma 1. Let qn : Rd → R be convex functions and q : Rd → R be a
differentiable function. If for every α ∈ Rd,

qn(α) → q(α) ,

then for every M ,

sup
|α|≤M

|∂qn(α)−∇q(α)| → 0 ,

where ∂qn stands for an arbitrary selection of subgradient.

P r o o f. It is enough to check that the proof given by Rockafellar still
goes when we drop the assumption that the qn are differentiable.

Of course, differentiability of q is essential.

P r o o f o f T h e o r e m 1. Let us simplify notation, assuming without
loss of generality that α∗ = 0 (to achieve this, it is enough to replace f(α, z)
by f(α∗ + α, z)). Set

qn(α) = n(Qn(n−1/2α)−Qn(0)− n−1/2αT ∂Qn(0)) ,

q(α) = 1
2αT Dα .
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Now, we can rewrite part (a) of the theorem in the following, equivalent way:

(a′) sup
|α|≤M

|qn(α)− q(α)| →p 0 .

To prove (a), it is enough to notice that inequality (4.13) in Niemiro (1992)
is tantamount to (a′). It remains to deduce part (b) of the theorem from
part (a).

By Lemma 1, if sup|α|≤M |qn(α)−q(α)| → 0 a.s., then sup|α|≤M ′ |∂qn(α)
− ∇q(α)| → 0 a.s. for M ′ < M . The standard technique of subsequences
allows us to replace almost sure convergence by convergence in probability.
Consequently, (a′) implies

(b′) sup
|α|≤M ′

|∂qn(α)−∇q(α)| →p 0 ,

which is equivalent to part (b) of the theorem.
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