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BESSEL MATRIX DIFFERENTIAL EQUATIONS:
EXPLICIT SOLUTIONS OF INITIAL
AND TWO-POINT BOUNDARY VALUE PROBLEMS

Abstract. In this paper we consider Bessel equations of the type t2 X (2) (t)
+tX MW (t) + (2T — A%)X (t) = 0, where A is an n x n complex matrix and
X(t) is an n x m matrix for ¢ > 0. Following the ideas of the scalar case
we introduce the concept of a fundamental set of solutions for the above
equation expressed in terms of the data dimension. This concept allows us
to give an explicit closed form solution of initial and two-point boundary
value problems related to the Bessel equation.

1. Introduction. Numerous problems from chemistry, physics and me-
chanics, both linear and nonlinear, are related to matrix differential equa-
tions of the type t2X 3 (¢) + tA(t) XM (t) + B(t) X (t) = 0, where A(t), B(t)
are matrix-valued functions [8], [10]. This paper is concerned with the Bessel
matrix equation

(1.1) XD @)+t XD () + (2T - AHX () =0, t>0,

where A is a matrix in C,,»,,, and X () is a matrix in C,,x,, for ¢ > 0. Note
that the matrix problem (1.1) may be regarded as a system of coupled Bessel
type equations that cannot be transformed into a set of independent equa-
tions if the matrix A is not diagonalizable. Standard techniques to study
problems related to (1.1) are based on the consideration of the extended
first order system

tZ'(t) = M(t)Z(t)
where
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(12) M(r) = [—t210+ A2 é} 2= [;{(58)] '

Then series solutions for (1.2) may be obtained, and the relationship between
the solutions X (¢) of (1.1) and Z(t) of (1.2) is given by X (t) = [I,0]Z(t)
(see [4], [13] for details). This technique has two basic drawbacks, first of all
it involves an increase of the problem dimension and a lack of explicitness
derived from the relationship X (t) = [I,0]Z(t). Secondly, unlike the scalar
case it does not provide a pair of solutions of (1.1) which would allow us
to give a closed form of the general solution of (1.1) involving a pair of
parameters.

This paper is organized as follows. Section 2 is concerned with some
preliminaries that will be used in the following sections. In Section 3 we
construct series solutions of problem (1.1) and we propose a closed form of
the general solution of (1.1) for the case where the matrix A satisfies the
spectral condition

(1.3)  For every eigenvalue z € o(A), 2z is not an integer, and if z, w
belong to o(A) and z # w, then z £+ w is not an integer.

Here 0(A) denotes the set of all eigenvalues of A. Finally, in Section 4 we
study the boundary value problem

X)) +tXV () + (2T - ADX () =0, 0<a<t<b,
(1.4) M1 X(a) 4+ N1 X (b) + Mis XY (a) + Nip XD () =0,
M1 X (a) + Noy X (b) + Moy X (a) + Ny XH(b) =0,

where M;;, N;j, for 1 <4, j < 2, are matrices in C,, .

If S is a matrix in C,,«,, we denote by ST its Moore—Penrose pseudoin-
verse and we recall that an account of uses and properties of this concept
may be found in [1].

2. Preliminaries. We begin this section with an algebraic result that
provides a finite expression for the solution of a generalized algebraic Lya-
punov matrix equation

(2.1) A +Bi1 X —-XD; =0
where Ay, By, D1 and the unknown X are matrices in C,, .
LEMMA 1. Suppose that matrices By and D1 satisfy the spectral condition
(2.2) o(B1)Nao(Dy) =0
and let p(z) = > p_, axz" be such that p(B1) = 0. Then the only solution
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X of equation (2.1) is given by

(2.3) X = (Zn: Zj:ajBf_lAlD{_h) (zn:ajp{)l.
5=0

j=1 h=1

Proof. Under the hypothesis (2.2), equation (2.1) has only one solution
[2], [12], and from Corollary 2 of [2], if X is the only solution of (2.1), it

follows that
V= |:Bl A1:| :W[Bl 0 :|W1’

(2.4) 0 Dy 0 D

vl 2] v )
From (2.4), it follows that
(25 p<V>:Wp([% gl])wl

[ 8 e [y

and taking into account the polynomial calculus there exists a matrix M
such that

eo = ([5 5 ]) =[5 o] =10 wipa]

From (2.5) and (2.6) one sees that Xp(D;) = M and from the spectral
mapping theorem [3, p. 569] and (2.2), the matrix p(D;) is invertible. Thus
we have X = M(p(D1))~!. On the other hand, considering the powers
Vi, j=0,1,...,n, one finds that the (i,2) block entry of the operator V7,
denoted by V/, for j =1,...,n, i = 1,2, satisfies

Vi, =BV + AViyt, Vi, =D, V=0, V,=1I.

By multiplying the matrix Vlj o by the coefficient a; for j = 0,1,...,n and
by addition it follows that the block entry (1, 2) of the block matrix p(V)
is given by the expression

M = zn: Zj: a;BF 1A, D"

j=1 h=1
Hence the result is established.
In accordance with the definition given in [6] for a time invariant regular

second order matrix differential equation, we introduce the concept of a
fundamental set of solutions for equations of the type

(2.7) YO @)+ Pe)YD(t) + Q)Y (t) = 0.
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DEFINITION 1. Consider equation (2.7) where P(t), Q(t) are continuous
Cpxn-valued functions on an interval J of the real line, and Y (t) € C,,xp.
We say that a pair of solutions {Y7, Y2} is a fundamental set of solutions of
(2.7) in the interval J if for any solution Z of (2.7) defined in J, there exist
matrices C, D € C,,«,, uniquely determined by Z, such that

(2.8) Z(t) =Yi()C + Ya()D, teJ.

The following result provides a useful characterization of a fundamental
set of solutions of (2.7) and it may be regarded as an analogue of Liouville’s
formula for the scalar case.

LEMMA 2. Let {Y1,Y2} be a pair of solutions of (2.7) defined on the
interval J and let W (t) be the block matriz function
_ [ @) Yat)
= 1 1 :
i) v ()
Then {Y1,Y2} is a fundamental set solutions of (2.7) on J if there exists a

point t1 € J such that W (t1) is nonsingular in Copxon. In this case W (t)
is monsingular for allt € J.

Proof. Since Y;(t) and Y5(¢) are solutions of (2.7), it follows that W (t)
defined by (2.9) satisfies

(2.9) W (t)

0 I
-Q(t) —P
Thus if G(t,s) is the transition state matrix of (2.10) such that G(¢,t) = I

[7, p. 598], it follows that W (t) = G(t,t1)W (t1) for all t € J. Hence the
result is established because G(t, s) is invertible for all ¢, s in J.

(2.10) W) = [ (t)} W), telJ.

Note that in the interval 0 < ¢ < 0o, equation (1.1) takes the form (2.7)
with P(t) = I/t and Q(t) = I — (A/t)%

We conclude this section with some recalls concerned with the reciprocal
gamma function that may be found in [4, p. 253]. The reciprocal gamma
function, denoted by I'"1(z) = 1/I'(2), is an entire function of the complex
variable z, and thus for any matrix C' € C,,xn, the Riesz—Dunford functional
calculus shows that I'"1(C) is a well defined matrix (see Chapter 7 of [3]).
If C is a matrix in C,,y«,, such that

(2.11) C + nl is invertible for all integer n > 0
then from [4, p. 253], it follows that
(2.12)  C(C+D)(CH+2D)...(C+n)["HC+ (n+1)])=T"1C).

Under the condition (2.11), I'(C) is well defined and it is the inverse matrix
of I'"}(C). From the properties of the functional calculus I'"*(C) com-
mutes with C' and from [3, p. 557], I'(C) and I'~!(C) are polynomials in C.
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In particular, if C' is a matrix satisfying (2.11), and Re(z) > 0 for every
eigenvalue z € o(C), then we have

oo

(2.13) (€)= [ exp(—t)exp((C —I)Int)dt
0

and this representation of I'(C') coincides with the power series expansion,
the Riesz—Dunford formula for I'(C) [3, p. 555] and others (see [4, p. 253)]).
Note that if C satisfies (2.11), from the previous comments and (2.12) we
have

(2.14) 'C+mn+I)=CcC+IH(C+2I)...(C+nl)I'(C).

Note that from (2.13) and (2.14), for matrices C satisfying (2.11) the com-
putation of I'(C') may be performed in an analogous way to the scalar case.

3. Bessel matrix differential equations. Suppose that we are look-
ing for solutions of equation (1.1) of the form

(3.1) X(t) = (cht’“)tz
k>0

where Cy is a matrix in Cp,xp, Z € Cpxy and tZ = exp(Z1Int), for t > 0.
By taking formal derivatives in (3.1), it follows that

X)) =>" Cr(kI+ Z)t” =0T,
k>0

X®(t) = Z C(kI + 2)(kI + Z — I)t# k=21
k>0

(3.2)

Assuming the convergence of the series (3.1), (3.2), and substituting into
equation (1.1), it follows that

(3.3) { N (Cu(kI + Z) (kI + Z = I) + C(kI + Z) — A2CyJt*

k>0
+y Ck,th}tZ —0.

k>2

By equating to the zero matrix the coefficient of each power t* appearing in
(3.3), it follows that the matrices Cj must satisfy

(3.4) CoZ(Z — 1)+ CoZ — A%Cy = CyZ% — A%Cy =0,
(3.5) Cl(Z+DZ+C(Z+1)—A%C,=C1(Z+1)? - A%C, =0,
(3.6) Cr(kI + 2)? — A’Cp = —Ch_n, k>2.

Let Z be a matrix in C,,«,, and let Cy be an invertible matrix in C,,«,, such
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that
(3.7) 7Z = Cy AC,.
Then
(3.8) o(A)=0(2), Z*=Cy'A%Cy, CoZ?— A*Cy=0.
Given the matrix Z defined by (3.7), from (1.3) and Lemma 1, the only
solution for C; of the matrix equation
Cl(Z+1)> - A%C, =0
is the zero matrix C; = 0. From (3.6) it follows that Co,,41 = 0 for m > 0.

In order to determine the matrix coefficients Ca,,, let p(z) be an annihilating
polynomial of the matrix A2,

(3.9) p(z) = Zajzj, p(A2) =
§=0

Under the hypothesis (1.3) it follows that o((kI + Z)?) N a(A?) = 0 for
k > 1, and from Lemma 1, the only solution Cy,, of the equation

(3.10) A%Cop — Cop(CmI+ Z)? = Oy o, m>1,
is given by
(3.11)  Cop =
n J n _
- ( 3> ;A2 o (2mI + Z)2<f*h>> (Z a;(2ml + Z)Qj)
j=1 h=1 Jj=1

Note that once we choose the matrices Cy and Z, all the matrix coefficients
Capm for m > 1 are determined by (3.11).
Now we are concerned with the proof of the convergence of the series

(3.12) X(t,Z,Cy) = (Z Cy t2m>tz

m>0
The generalized power series (3.12) is convergent for ¢t > 0 if the power series
(3.13) U(t,Z,Co) = Y Comt™,

m>0

is convergent for t > 0.

If B is a matrix in C,,«,, and B denotes the conjugate transpose of B,
we denote by || B|| its spectral norm, defined to be the maximum of the set
{|2|'/? : 2 € o(B"H)}. Taking norms in (3.10), for large values of m it
follows that

(3.14) 1Com—2]l = |C2m (2m + Z)* — A*Copi
> [ [Cam(2mlI + Z)?|| = || A*Conl |
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> ||Cam | (4m? — 4m|| Z]| — | 22| — [|A%])) -
Hence
[ Coml[[£[™ s
[Com—oll[t[>™=2 — 4m? —4m||Z|| — || 22| — [[A%]|
and this proves the absolute convergence of the series (3.13) for ¢ > 0.
Now we are going to find a second solution of (1.1) of the form

(3.15) X(t,~Z,C) = (Z c;;tk)t—z = U(t,—Z,Co)t%
k>0

where Cj is the matrix satisfying (3.7). In an analogous way to the con-
struction of X (t, Z, Cy), it is straightforward to show that the matrices C}
appearing in (3.15), for k£ > 0, with C§ = Cj, must satisfy the equations

CyZ* — A*C; =0, Cy(I—-2)*-A%Cr =0,
Ci(kl — 2)* — A%C; = —Ci_y, k>2.

From the hyphothesis (1.3), (3.16) and Lemma 1, it follows that C} =
C3i1 =0, and, for m > 1,

(3.17) 5,

_ (Zn: ZJ: a; A22C5, o (ml — Z)2<f—h>) (Z a;(2ml — Z)Qj)il .

j=1 h=1 =0

(3.16)

The proof of the absolute convergence of the series
(3.18) Ut,~Z,Co) = Y _ Cs,t*"
m>0
for t > 0 is analogous to the previous proof for U(t, Z, Cy).

Now we are going to prove that for any invertible matrices Cy and Z
satisfying (3.7), the pair defined by X (¢, Z,Cy) and X (t,—Z,C)) is a fun-
damental set of solutions of (1.1) in 0 < ¢ < co. The Wronski block matrix
function associated with this pair and defined by (2.9) takes the form
(3.19)  W(t)

o [](t7 Z7 CO)tZ U(ta_Z7 Co)t_Z
- [U(l)(t,Z, Co? + U, Z,Co)zt?~1 UM (t,—z,Co)t=% —U(t, -2, Co)Zt*Z*I}

- [é toll]T(t) {tg tE)Z

where
(3.20) T(t)
_ [ Ul(t, Z,Co) U(t,—Z,Cy) ] .

UMD, Z,Co)t +U(t,2,Co)Z UMD (t,—Z,Co)t — U(t,—Z,Co)Z
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From (3.19) it is clear that W (¢) is invertible if and only if T'(¢) is invertible.
Note that T'(¢) is a continuous Cy,, x 2,,-valued function defined in the interval
[0,00). Since T'(0) is the matrix

[ G
T = [COZ —COZ}’

it is invertible because of the invertibility of Cy, Lemma 1 of [5] and the fact
that

—CoZ — (COZ)Calco = —2CyZ is invertible.

From the invertibility of T'(0) and the Perturbation Lemma [9, p. 32], there
exists a positive number ¢; such that T'(¢) is invertible in [0,¢1]. This
proves the invertibility of W (¢1) and from Lemma 2 the pair {X (-, Z, Cp),
X(-,—Z,Cy)} is a fundamental set of solutions of equation (1.1) in 0 < ¢t <
oo. From the previous comments the following result has been proved:

THEOREM 1. Let Cy and Z be invertible matrices in C,,«,, and let A be a
matriz in Cy,xy, satisfying (1.3). Then the pair {X (-, Z,Cy), X(-,—Z,Ch)}
defined by (3.11), (3.12), (3.15), (3.17), (3.18) is a fundamental set of so-
lutions of the Bessel equation (1.1) in 0 < t < co. The general solution of
(1.1) in 0 < t < o0 is given by

(321) X(t) :X(t, Z, Co)P—i-X(t, -7, Co)Q, P,Q e Cphun-

The unique solution of (1.1) satisfying the initial conditions X(a) = F,
XM (a) = F, with 0 < a < oo, is given by (3.21) where

and W (a) is defined by (3.19).

Remark 1. If we consider the Bessel equation (1.1) with vector-valued
unknown X (¢), then considering the fundamental set of solutions construc-
ted in Theorem 1, the general solution of the vector problem (1.1) is given
by (3.21) upon replacing the matrices P, @, by arbitrary vectors P, @ in
(Cnxl'

Now we are interested in showing that for the case where the matrix A
is diagonalizable and satisfies (1.3), the fundamental set of solutions con-
structed in Theorem 1 coincides with the well known one for the scalar case
when n = 1, given in terms of the Bessel functions of the first kind.

Let A be a diagonalizable matrix satisfying (1.3) and let Cy be a basis
of C,,x1 composed of eigenvectors of A. If 0(A) = {A1,..., .}, and Z =
diag(As : 1 < s < n), then we have

7 =Cy ACy.
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On the other hand, if we denote by B() the ith column of the matrix
B € C,xn, taking the ith column in both members of equation (3.6), it
follows that

(3.22) (k+A\)T—A%CY =—Cc¥, 1<s<n, k>2.
Note that we may write the matrix (m + £A;)?I — A? in the form

(3.23) (m+ 3X)°T — A% = ((m+ 2X) + A)((m+ 3A)I — A
= (mI + L\ + A))(mI + (NI - A))
= (mlI + B,)(mI + D),
=1AI+A), D,=1i(\I-A).

Considering (3.22) for even integers k = 2m, we have

C(s) ( nm H((j_‘_l)‘ )QI_AQ)—lc(gS)

22m
=1

(3.24)

m

I+ B,)'CY, 1<s<n.

Now consider the new basis of eigenvectors of A defined by the matrix
Ky whose sth column is given by
(3.25) cl =2, + NIr(B,+ DK, 1<s<n.

Note that from (1.3) and (3.23), the matrices I'(Ds + I) and I'(Bs + I) are
invertible and commute with A. This proves that the columns of K define
a basis of eigenvectors of A satisfying

(3.26) 7 =K;'AK,.

The corresponding equations (3.24) for Kéfr)b satisfy

K§) = e [TGI+D) ™ GI+By) ™ I (By+ )T~ (D +1)C§V 27

22m
Jj=1

Taking into account (2.14) and the fact that jI + Bs and jI + Ds commute
shows that

o _ (=)™ - $)o—As
K$) = sa T (Dt (m1) DT Y Byt (m+1))CP272 1< s<n.

In matrix form the above expression may be written as
1™

(3.27) 2em

LE) = YDy + (m+ 1))~ (Bs + (m + )I)CS

Lom2~ %
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and X (t, Z, Ky) takes the form

(3.28)  X(t,Z,Ko) = (Z K th)tZ

m>0

— ( > (;212”1 Lme?m) t/2)%, t>0.

m>0

In an analogous way, if we denote by B} and D} the matrices

B =1(A-\I
s 2( 8)7 <s<n,

(3.29) N <s<
D} =3(-A—-\]I),

and

(=)™ z
K, =-~—*—L5 2
(330) 2m = 922m 2m

L} = r=Y(D* + (m+ 1)) (B + (m + 1)I)C{?

then
(3.31)  X(t,—Z,Ko) = < 3 Kthm)
m>0
=)™ . -
— (Z o L 2™ ) (t/2)7 %, t>0.
m>0

Thus for the case where A is diagonalizable and o(A) = {A\; : 1 < s < n},
Theorem 1 provides the fundamental set of solutions in 0 < ¢t < oo, defined
by X(a Z, KO) and X(v —Z, KO)

Now we show that for the scalar case, when A = v is a complex number
such that 2v is not an integer, which is the condition (1.3) for the case n = 1,
the fundamental set of solutions of (1.1) given by (3.28) and (3.31) coincides
with the Bessel functions of the first kind J, (z) and J_,(z), respectively.
Note that for the scalar case we have

Dlz_%(u—u): , Dj=
I'''(Bi+(m+0))=T"'v+m+1),
I YDi+m+DI) =" m+1)=1/m!,

I _ 1
T Il (v +m+ 1)
. 1

L2m:

m!lN(—v+m+1)’
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Ko=K\" =272r-Y(B, + NI ""(Dy + 1)
=27 wv+1)0 =27 v+1),
K =KW =27r-Y(B; + NI Y(D? + 1)
=2’ I ') (-v+1)=2"I""(-v+1).
Hence for the scalar case with A = v such that 2v is not an integer, taking

Ky and K defined by (3.32), it follows that the fundamental set of solutions
of (1.1) given by (3.28), (3.31) is

X(tv, Ko) =J,(t), X(t,-v,Ko)=J_,(t), t>0,

where J,(t) and J_,(t) denote the Bessel functions of the first kind of or-
der v.

(3.32)

4. Boundary value problems. Under the hypotheses and notation
of Section 3, let X (¢, Z,Cy), X(t,—Z,Cy) be a fundamental set of solutions
of (1.1), constructed for matrices Z and Cj satisfying (3.7). Taking into
account the expression (3.21) for the general solution of (1.1) in ¢t > 0, its
derivative is

XWt)=xW(t,2,Co)P+ XV (t,—-Z,Co)Q
(4.1) = (UW(t, Z,Co)t” + U(t, Z,Co) Zt7 )P
+ (U, -2,Co)t ™7 —U(t,—2,Co) 2t 771)Q,
where U(t, Z,Cy), U(t,—Z,Cy) are defined by (3.13) and (3.18), respec-

tively, and P, @ are arbitrary matrices in C, .

If we impose on the general solution X (¢) of (1.1), described by (3.21),
the boundary value conditions of (1.4), then from (3.21) and (4.1), it follows
that problem (1.4) is solvable if and only if the algebraic system

(4.2) S[S} ~0

is compatible, where S = (.5;;)1<i, j<2 is the block matrix whose entries are
(4.3) Syt = MuU(a, Z,Co)a? + Ny U(b, —Z,Co)b?

+ My (UW(a, Z,Co)a? + Ula, Z,Co) Za?~1)

+ No(UD (b, Z,Co)o? + U (b, 2,Co)Zb% 1), i=1,2,
(4.4) Sip = MjUl(a,—Z,Co)a™? + NyU(b,—Z,Co)b= %

+ Mi2(U(1)(G, —Z, CO)G_Z —U(a,—Z, CO)Za_Z_I)

+ Nip(UD (b, —Z,Co)b % —U(b,—Z,Co)Zb~%71), i=1,2.

Thus the boundary value problem (4.1) is solvable if and only if the matrix S
defined by (4.3)—(4.4) is singular. Under this condition, from Theorem 2.3.2
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of [11, p. 24], the general solution of the algebraic system (4.2) is given by

(4.5) [g] —SYSG, G € Coprn.
Hence the general solution of problem (1.3), under the hypothesis of singu-
larity for the matrix S, is given by (3.21) where the matrices P, @) are given
by (4.5) for an arbitrary matrix G in Cay, .

Hence the following result has been established:

THEOREM 2. Under the hypotheses and notation of Theorem 1, let S be
the block matriz defined by (4.3)—(4.4) and associated with the fundamen-
tal set {X(-,2,Cy),X(-,—Z,Cy)}. Then the boundary value problem (1.3)
is solvable if and only if S is singular. Under this condition the general

solution of (1.3) is given by (3.21), where P, Q are matrices in Cyxyp given
by (4.5).
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