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A. BORATYŃSKA and R. ZIELIŃSKI (Warszawa)

BAYES ROBUSTNESS VIA THE KOLMOGOROV METRIC

Abstract. An upper bound for the Kolmogorov distance between the
posterior distributions in terms of that between the prior distributions is
given. For some likelihood functions the inequality is sharp. Applications
to assessing Bayes robustness are presented.

1. Introduction and notations. Given a sample space X and a pa-
rameter space Θ, let l : X ×Θ → R1 be a given function such that (∀θ)l(·, θ)
is a density of a probability distribution function on X and (∀x) lx(·) = l(x, ·)
is the likelihood function on Θ. Throughout the paper we assume that Θ
is an interval (θL, θU ) in R1, −∞ ≤ θL < θU ≤ +∞, and that for every
x ∈ X the likelihood function lx(·) is of finite variation; also, we define
s(x) = supθ∈Θ lx(θ).

All integrals are Lebesgue–Stieltjes integrals over (θL, θU ) unless stated
otherwise. To avoid some technical difficulties we assume that the distri-
bution functions F and G appearing below are continuous. Actually, it is
enough to assume that points of discontinuity of F and G do not coincide
with those of lx(·).

Let lx(·) = l+x (·) − l−x (·) be the Jordan decomposition of lx(·) and let
l∗x(·) = l+x (·) + l−x (·). We assume that for every x ∈ X ,

u(x) =
∫

dl∗x(θ) < ∞ .

Observe that if lx(·) is differentiable and
∫
|∂lx(θ)/∂θ| dθ < ∞, then u(x) =∫

|∂lx(θ)/∂θ| dθ.
If F and G are any cdf’s then

%(F,G) = sup
θ∈Θ

|F (θ)−G(θ)|

1991 Mathematics Subject Classification: Primary 62F15; Secondary 62C10, 62F35.
Key words and phrases: Bayes robustness, Kolmogorov metric, stability of Bayes

procedures.
Supported by KBN Grant 2-1168-91-01 Gr-101.
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denotes the Kolmogorov distance between F and G. For cdf’s F and G of
prior distributions on Θ and for a given x ∈ X , let Fx and Gx be cdf’s of
the corresponding posterior distributions.

2. The main result. The following theorem gives us an estimate for
the Kolmogorov distance between posterior distributions Fx and Gx in terms
of the Kolmogorov distance between the appropriate prior cdf’s F and G.
Given a cdf H, let mx(H) =

∫
lx(θ) dH(θ).

Theorem. Let F be a given prior distribution and let x ∈ X be a fixed
point in the sample space. For every likelihood function lx(·),

(1) %(Fx, Gx) ≤ %(F,G)
max{mx(F ),mx(G)}

(s(x) + u(x)) .

There exists a likelihood function for which the inequality is sharp.

P r o o f. Since

Fx(θ)−Gx(θ) =

∫ θ

θL
lx(t) dF (t)

mx(F )
−

∫ θ

θL
lx(t) dG(t)

mx(G)
,

adding and subtracting
∫ θ

θL
lx(t) dF (t)/mx(G), we obtain

Fx(θ)−Gx(θ) =
1

mx(G)

( θ∫
θL

lx(t) d(F (t)−G(t))

−Fx(θ)
∫

lx(t) d(F (t)−G(t))
)

.

Integrating by parts gives

Fx(θ)−Gx(θ) =
1

mx(G)

(
lx(θ)(F (θ)−G(θ))

+
∫

(Fx(θ)− 1(−∞,θ)(t))(F (t)−G(t)) dlx(t)
)

.

Hence

Fx(θ)−Gx(θ) ≤ 1
mx(G)

%(F,G)(s(x) + u(x)) .

Similarly,

Gx(θ)− Fx(θ) ≤ 1
mx(F )

%(F,G)(s(x) + u(x)) ,

which gives (1).
For the second statement, see Example 3 below.

3. How sharp is inequality (1)? The following three examples an-
swer that question. In each of them ε is a fixed positive number, lx(·) is
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a fixed likelihood function, and F is a fixed prior distribution. The prior
distribution G is chosen in such a way that %(F,G) = ε.

Let RHS and LHS denote the right and left hand sides of (1), respec-
tively.

Example 1. Suppose that lx(·) is the likelihood function of the normal
distribution N(θ, σ2) and that F is normal N(0, τ2). Define

G(θ) =


0 if θ < F−1(ε),
F (θ)− ε if F−1(ε) ≤ θ < 0,
F (θ) + ε if 0 ≤ θ < F−1(1− ε),
1 if θ ≤ F−1(1− ε).

Then F (θ)−G(θ) ≡ ε on the support of G and

RHS ≤ 3ε

σ√
σ2 + τ2

exp
[
−1

2
x2

σ2 + τ2

] ,

LHS ≥ Φ


√

1
σ2

+
1
τ2

τΦ−1(ε)−

x

σ2

1
σ2

+
1
τ2


 .

Both RHS and LHS , as well as their difference of course, tend to zero as
ε → 0. For large σ2 and small τ2 the right hand side is approximately 3ε
and the left hand side equals ε, and hence RHS/LHS ≈ 3.

Example 2. Let lx(θ) =
(
n
x

)
θx(1 − θ)n−x and let F (θ) = θα, α > 0.

Constructing G as in Example 1 we obtain RHS/LHS ≈ 2 for small ε.

Example 3. To see that the inequality is sharp take 1(θ−1/2,θ+1/2)(x),
θ ∈ Θ = (0, 1) as a family of densities on the sample space X = R1. Then
lx(θ) = 1(x−1/2,x+1/2)(θ) and for x = 1/2 one obtains u(x) ≡ 0 and, for
every cdf F on Θ, mx(F ) = 1. Now Fx = F and Gx = G, s(x) = 1 and
hence LHS = RHS .

4. Bayes robustness. For a given prior distribution F consider the
class of prior distributions Gε = {G : %(G, F ) ≤ ε} (see, for example, the
class Γ1 in Berger (1985)) and the class of the corresponding posterior dis-
tributions.

As consequences of inequality (1) we can estimate the oscillation of poste-
rior distributions under (small) violations of the assumed prior distribution
and we can conclude that the posterior distribution is infinitesimally ro-
bust (in the sense of, e.g., Mȩczarski and Zieliński (1991) and of the papers
quoted therein) under misspecification of the prior distribution.
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Corollary 1 (oscillation of the posterior distribution). For any given
prior distribution F and any sample point x ∈ X ,

(2) sup
G∈Gε

%(Fx, Gx) ≤ ε

max{mx(F ), minG∈Gεmx(G)}
(s(x) + u(x))

where s(x) and u(x) depend on the likelihood function lx(·) only , and mx(F )
depends on the likelihood function and the prior distribution F .

Corollary 2 (infinitesimal robustness). For a fixed x ∈ X , for every
prior distribution F and for each ε > 0 there exists δ > 0 such that for every
distribution G on Θ,

%(G, F ) < δ ⇒ %(Gx, Fx) < ε .

Corollary 3 (uniform infinitesimal robustness). If there exist positive
α, M1, and M2 such that

mx(F ) > α, s(x) < M1, and u(x) < M2

for all x ∈ X , then for each ε > 0 there exists δ > 0 such that for all x ∈ X
and for all distributions G on Θ,

%(G, F ) < δ ⇒ %(Gx, Fx) < ε .

Berger and Berliner (1986), Sivaganesan (1988), Sivaganesan and Berger
(1989), Gelfand and Dey (1991), to quote but a few, considered the class
Γε = {(1−ε)F +εQ : Q ∈ Q} of distributions, with a given prior distribution
F and some specifiedQ, and discussed the oscillations of some functionals on
the appropriate class of posterior distributions. Since Γε ⊂ Gε we conclude
that if the prior distributions belong to a given ε-contamination class Γε then
the posterior distributions do not differ substantially in the Kolmogorov
metric. A similar conclusion holds if the prior distributions do not differ
too much in the total variation metric. On the other hand, if the prior
distributions do not differ much in the Kolmogorov metric the appropriate
posterior distributions do not differ substantially in the Lévy or Prohorov
metric (see, e.g., Zolotarev (1986) or Rachev (1991)). Taking all this into
account one can say that under rather general conditions the Bayes inference
is infinitesimally robust to small misspecifications of the prior distribution.

Acknowledgments. The authors are greatly indebted to Professor
Les law Gajek for his fruitful comments which enabled us to improve in-
equality (1).
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