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AN APPROXIMATE NECESSARY CONDITION

FOR THE OPTIMAL BANDWIDTH SELECTOR

IN KERNEL DENSITY ESTIMATION

Abstract. An approximate necessary condition for the optimal band-
width choice is derived. This condition is used to construct an iterative
bandwidth selector. The algorithm is based on resampling and step-wise
fitting the bandwidth to the density estimator from the previous iteration.
Examples show fast convergence of the algorithm to the bandwidth value
which is surprisingly close to the optimal one no matter what is the initial
knowledge on the unknown density.

1. Introduction. Let X1, . . . ,Xn be i.i.d. observations from an un-
known density f . To describe the quality of a given estimator f̂ of f one
can use the integrated square error (ISE) of f̂ :

ISE(f̂) =
∫

[f̂(x)− f(x)]2 dx ,

and the mean integrated square error (MISE) of f̂ :

MISE(f̂) = E[ISE(f̂)] .

Having k samples from f , one can evaluate MISE of f̂ by the average inte-

grated square error (AISE) defined as follows:

AISE(f̂) =
1

k

k∑

i=1

ISE(f̂i) ,

where f̂i denotes the estimate f̂ of f obtained from the ith sample.
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Throughout the paper we shall consider the kernel estimator

(1) f(x;h) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
,

where K is a kernel function and h > 0 is the bandwidth (see Rosenblatt
(1956) and Parzen (1962)). A proper choice of h is crucial for the precision
of estimation (see e.g. Silverman (1986) for a discussion of the problem).
A survey of existing selection methods for h can be found in Silverman
(1986) and Härdle, Hall and Marron (1988).

If the MISE of the kernel estimator (1) is of main interest, the optimal

bandwidth ĥ can be obtained by solving the following minimization problem:
Find ĥ > 0 such that

(2) E
∫

[f(x; ĥ)− f(x)]2 dx = min
h>0

{
E
∫

[f(x;h)− f(x)]2 dx
}
.

To solve the above problem one needs to know f which is unknown. However,
f(x; ĥ) itself is by (2) the best possible approximation of f , so assuming for

the moment that f(x; ĥ) is known, one might instead find a solution of

(3) E∗

∫
[f∗(x;h) − f(x; ĥ)]2 dx → min

h
!,

where f∗(x;h) is the kernel estimator (1) based on samples X∗

1 , . . . ,X
∗

n from

the density f(x; ĥ) and E∗ is taken with respect toX∗

1 , . . . ,X
∗

n. Since f(x; ĥ)

approximates f , the solution of (3) should be close to ĥ. Thus we arrive at
the following approximate necessary condition for the optimal bandwidth
selector ĥ:

(4) E∗

∫
[f∗(x; ĥ)− f(x; ĥ)]2 dx ≈ min

h>0

{
E∗

∫
[f∗(x;h)− f(x; ĥ)]2 dx

}
.

Let h∗ = h∗(X1, . . . ,Xn) be a value of ĥ for which (4) holds with the exact
equality sign = being put in place of ≈, i.e.

E∗

∫
[f∗(x;h∗)− f(x;h∗)]2 dx = min

h>0

{
E∗

∫
[f∗(x;h) − f(x;h∗)]2 dx

}
.

In the paper we investigate a self-learning algorithm which detects h∗.
In Section 2 we describe the algorithm and discuss some of its properties.

In Section 3 we present how the algorithm works for the data from nor-
mal, beta(3, 5), Cauchy, and a bimodal mixture of normal distributions. It
turns out that the choice of the initial point of the algorithm is of minor
importance influencing only the number of iterations. The resulting band-
width selector is usually very close to the minimizer ĥ of (2) which is optimal
provided the density f is known. Finally, we have applied the algorithm to
the eruption lengths of 107 eruptions of the Old Faithful geyser. The re-
sulting bandwidth h = 0.21 is surprisingly close to Silverman’s subjective
choice h = 0.25 (comp. Silverman (1986)).
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2. The self-learning algorithm. Let X1, . . . ,Xn be an i.i.d. sample
from an unknown density f . Let f0 be some initial density, depending on
the sample X1, . . . ,Xn or not. Let ε be a positive real.

1o Put i := 0, h0 := 0.
2o Generate m samples X∗

1j , . . . ,X
∗

nj , j = 1, . . . ,m, of size n from fi.
3o Find hi+1 > 0 such that

1

m

m∑

j=1

∫

R

[fi(x)− f∗

j (x;hi+1)]
2 dx

= min
h>0

{
1

m

m∑

j=1

∫
[fi(x)− f∗

j (x;h)]
2 dx

}
,

where

f∗

j (x;h) :=
1

nh

n∑

k=1

K

(
x−X∗

kj

h

)
.

4o Put i := i+ 1 and

fi(x) :=
1

nhi

n∑

k=1

K

(
x−Xk

hi

)
.

5o If |hi − hi−1| < ε, then stop; otherwise go to 2o.

It is easy to see that when m is large and ε small, the algorithm stops
near the point

h∗ = h∗(X1, . . . ,Xn)
such that

(5) E∗

∫
[f(x;h∗)− f∗(x;h∗)]2 dx ≤ E∗

∫
[f(x;h∗)− f∗(x;h)]2 dx ,

where f∗(x;h) is the estimator (1) based on the sample X∗

1 , . . . ,X
∗

n from the
density f(x;h∗) and the expectation operator E∗ is taken with respect to
this sample. Let us notice that h∗ differs from the bandwidth hT proposed
by Taylor (1989), which was to minimize

E∗

∫
[f(x;h)− f∗(x;h)]2 dx .

A related bootstrap method of selecting the bandwidth was considered by
Faraway and Jhun (1990). However, instead of finding h∗ defined by (5),
they have proposed a one- or two-step bootstrap procedure which, in fact,
strongly depends on the initial choice of the bandwidth.

A survey of existing bootstrap methods and their applications can be
found in Léger, Politis and Romano (1992).

3. Simulation results. Samples of size n = 50 are taken from nor-
mal N(0, 1), bimodal mixture of normals 0.5N(−1.5; 0.25)+0.5N(1.5; 0.25),
beta(3, 5) and standard Cauchy distributions, respectively. We have applied
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the random number generator ULTRA combined with standard procedures.
The bootstrap samples from kernel estimators were generated following Sil-
verman (1986, p. 143). The Epanechnikov kernel is used in all examples
except for the last one where the Gaussian kernel is applied.

In Table 1 the successive iterations of the bandwidth and the correspond-
ing values of ISE for the self-learning algorithm are shown for the normal
N(0, 1) distribution when the initial value of bandwidth h0 = 1 is chosen.
For h0 = 0.2 the results are given in Table 2. The corresponding kernel
density estimators are shown in Figures 1–10. Here and further on, the
number of bootstrap samples is m = 20. The iterations were proceeded as
long as the sequence hi was monotone. As can be seen, the final values of
the bandwidth are for both cases quite close to each other.

TABLE 1

hi ISE(hi)

1 222657 · 10−7

0.71 675786 · 10−8

0.57 338645 · 10−8

0.54 309890 · 10−8

0.51 296933 · 10−8

0.50 295942 · 10−8

TABLE 2

hi ISE(hi)

0.2 197113 · 10−7

0.29 793087 · 10−8

0.42 339964 · 10−8

0.48 298620 · 10−8

Fig 1. Estimation of the normal N(0, 1) density f . The initial density f0 is the kernel
estimator with h0 = 1
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Fig 2. Estimation of the normal N(0, 1) density f : the first iteration f1 of the
algorithm (h1 = 0.71)

Fig 3. Estimation of the normal N(0, 1) density f : the second iteration f2 of the
algorithm (h2 = 0.57)

Fig 4. Estimation of the normal N(0, 1) density f : the third iteration f3 of the
algorithm (h3 = 0.54)
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Fig 5. Estimation of the normal N(0, 1) density f : the fourth iteration f4 of the
algorithm (h4 = 0.51)

Fig 6. Estimation of the normal N(0, 1) density f : the final iteration f5 of the
algorithm (h5 = 0.50)

Fig 7. Estimation of the normal N(0, 1) density f . The initial density f0 is the kernel
estimator with h0 = 2.
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Fig 8. Estimation of the normal N(0, 1) density f : the first iteration f1 of the
algorithm (h1 = 0.29)

Fig 9. Estimation of the normal N(0, 1) density f : the second iteration f2 of the
algorithm (h2 = 0.42)

Fig 10. Estimation of the normal N(0, 1) density f : the final iteration f3 of the
algorithm (h3 = 0.48)
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An analogous comparison is provided for the bimodal mixture of normal
distributions when the initial value h0 = 1 (Table 3, Figures 11–17), and
when h0 = 0.1 (Table 4, Figures 18–20). As in the case of normal distribu-
tion, the algorithm leads to a relatively stable choice of bandwidth in a few
iterations.

TABLE 3

hi ISE(hi)

1 111201 · 10−6

0.76 732165 · 10−7

0.65 537741 · 10−7

0.50 301820 · 10−7

0.43 217184 · 10−7

0.39 179538 · 10−7

0.36 157337 · 10−7

TABLE 4

hi ISE(hi)

1 111201 · 10−6

0.1 323469 · 10−7

0.25 128924 · 10−7

0.33 140739 · 10−7

Fig 11. Estimation of the bimodal mixture f of normal distributions. The initial
density f0 is the kernel estimator with h0 = 1.

Fig 12. Estimation of the bimodal mixture f of normal distributions: the first iteration
f1 of the algorithm (h1 = 0.76)
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Fig 13. Estimation of the bimodal mixture f of normal distributions: the second
iteration f2 of the algorithm (h2 = 0.65)

Fig 14. Estimation of the bimodal mixture f of normal distributions: the third
iteration f3 of the algorithm (h3 = 0.50)

Fig 15. Estimation of the bimodal mixture f of normal distributions: the fourth
iteration f4 of the algorithm (h4 = 0.43)
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Fig 16. Estimation of the bimodal mixture f of normal distributions: the fifth iteration
f5 of the algorithm (h5 = 0.39)

Fig 17. Estimation of the bimodal mixture f of normal distributions: the sixth
iteration f6 of the algorithm (h6 = 0.36)

Fig 18. Estimation of the bimodal mixture f of normal distributions. The initial
density f0 is the kernel estimator with h0 = 0.1.
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Fig 19. Estimation of the bimodal mixture f of normal distributions: the first iteration
f1 of the algorithm (h1 = 0.25)

Fig 20. Estimation of the bimodal mixture f of normal distributions: the final itera-
tion f2 of the algorithm (h2 = 0.33)

For the beta(3, 5) distribution we have started the algorithm with the
initial density f0 which is chosen to be uniform, according to some “prior”
knowledge (which is purposely very far from the truth). Though the data
are not taken into account at the first step at all, the algorithm leads in a few
steps (see Table 5) to a very precise kernel estimator (Figures 21 and 22).

TABLE 5

hi ISE(hi)

1 131453 · 10−5

0.99 131058 · 10−5

0.53 979875 · 10−6

0.29 493590 · 10−6

0.17 137402 · 10−6

0.11 492820 · 10−7

0.08 518094 · 10−7
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Fig 21. Estimation of the beta(3, 5) distribution f when the initial density f0 is
uniform: the first iteration f1 of the algorithm (h1 = 1)

Fig 22. Estimation of the beta(3, 5) distribution f : the final iteration f6 of the
algorithm (h6 = 0.08)

Whether the moment assumptions are important for the convergence of
the algorithm was investigated in the case of the Cauchy distribution. As in
the previous cases, the algorithm needs only a few iterations to find a stable
bandwidth value both for h0 = 1 (Table 6 and Figures 23 and 24) and for
h0 = 0.1 (Table 7 and Figures 25 and 26).
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TABLE 6

hi ISE(hi)

1 133317 · 10−7

0.88 115277 · 10−7

0.76 108783 · 10−7

0.67 114030 · 10−7

0.63 119358 · 10−7

TABLE 7

hi ISE(hi)

0.1 822912 · 10−7

0.15 515694 · 10−7

0.21 344089 · 10−7

0.35 208800 · 10−7

0.50 148847 · 10−7

0.58 128417 · 10−7

0.59 126408 · 10−7

0.61 122654 · 10−7

0.63 119358 · 10−7

0.66 115205 · 10−7

Fig 23. Estimation of the Cauchy density f . The initial density f0 is the kernel
estimator with h0 = 1.

Fig 24. Estimation of the Cauchy density f : the final iteration f4 of the algorithm
(h4 = 0.63)
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Fig 25. Estimation of the Cauchy density f . The initial density f0 is the kernel
estimator with h0 = 0.1.

Fig 26. Estimation of the Cauchy density f : the final iteration f9 of the algorithm
(h9 = 0.66)

In Table 8 we have compared the bandwidth values resulting from the
self-learning algorithm with the optimal ones which were found from one
hundred bootstrap samples, taken from the underlying densities. It shows
that in each case the algorithm stops very close to the optimal bandwidth
value ĥ.

TABLE 8

Self-learning Optimal
Distribution

algorithm bandwidth
Standard normal 0.48–0.50 0.49
bimodal normal 0.36 0.29
Beta(3, 5) 0.08 0.10
Cauchy 0.63–0.66 0.59
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Repeating the above experiments we have observed that the selected
bandwidth h∗(X1, . . . ,Xn) differs from sample to sample by a small per-
centage. For larger sample sizes one should increase the size m of the boot-
strap samples because the random fluctuation of the bootstrap AISE can
influence the stability of the algorithm too much.

Finally, we have applied the self-learning algorithm to the eruption
lengths of 107 eruptions of the Old Faithful geyser (Silverman (1986)). Fol-
lowing Silverman (1986), we have used the Gaussian kernel here. Surpris-
ingly enough, the resulting bandwidth was h = 0.21 which is quite close to
Silverman’s subjective choice h = 0.25. Figure 27 shows the kernel estimator
for h0 = 1. The kernel estimator resulting from the self-learning algorithm
is shown in Figure 28 while the one corresponding to h = 0.25 is given in
Figure 29.

Fig 27. Estimation of the density of the eruption length of 107 eruptions of the Old
Faithful geyser. The initial density f0 is the kernel estimator with h0 = 1.

Fig 28. Estimation of the density of the eruption length of 107 eruptions of the Old
Faithful geyser: the estimator f7 resulting from the algorithm has bandwidth h7 = 0.25.
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Fig 29. Estimation of the density of the eruption length of 107 eruptions of the Old
Faithful geyser: f̂ is the kernel estimator with h = 0.25.
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