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STABILITY AND CONDITIONAL Γ -MINIMAXITY
IN BAYESIAN INFERENCE

Abstract. Two concepts of optimality corresponding to Bayesian robust
analysis are considered: conditional Γ -minimaxity and stability. Conditions
for coincidence of optimal decisions of both kinds are stated.

1. In Bayesian statistical inference arbitrariness of a unique prior distri-
bution is a permanent question. Robust Bayesian inference deals with the
problem of expressing uncertainty of the prior information and of quantita-
tive consequences of this uncertainty. A natural measure is width (oscilla-
tion, diameter) of the range of a posterior quantity while the prior distribu-
tion π runs over a class Γ of probability distributions. If the oscillation of
the posterior quantity is small, then the presence of robustness with respect
to the prior inexactness can be assured.

A natural goal of research are optimal decisions under a specified loss
function and a class Γ of prior distributions, with an idea of optimality
related to the robustness problem. The concept of conditional Γ -minimax
actions was considered in DasGupta and Studden [3] and Betrò and Ruggeri
[1] and it was exhaustively substantiated therein. The idea of stability in
Bayesian robust analysis was developed in Mȩczarski and Zieliński [5], with
some additional results in Mȩczarski [4] and in Boratyńska and Mȩczarski [2].
The more formal description of the problem is given below.

Let (X ,F , {Pθ}θ∈(Θ,B)) be a statistical space, Θ ⊂ R. Let Γ be a class
of probability distributions on (Θ,B), i.e. of prior distributions. It reflects
the uncertainty of the prior. Let x ∈ R be a given observation and a ∈ A
a decision (an action) about θ based on x, with the action space A ⊂ R
being a compact interval. We consider a loss function L(θ, a) convex in a
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stability of a statistical procedure.
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and the corresponding expected posterior loss (the posterior risk) %(π, a) of
the action a under the prior π (it depends on x).

The concept of conditional Γ -minimaxity is as follows: construct an
action a∗ ∈ A such that

sup
π∈Γ

%(π, a∗) = inf
a∈A

sup
π∈Γ

%(π, a).

Such an action a∗ is termed a conditional Γ -minimax (CGM) action.
The concept of stability is as follows: construct an action a# ∈ A such

that

sup
π∈Γ

%(π, a#)− inf
π∈Γ

%(π, a#) = inf
a∈A

{sup
π∈Γ

%(π, a)− inf
π∈Γ

%(π, a)} ,

i.e. an action a# is said to be stable if it minimizes the oscillation of %(π, a)
on Γ with respect to a ∈ A.

Solutions of some particular estimation problems show that CGM and
stable actions may coincide. As seen in Boratyńska and Mȩczarski [2] a
stable solution may lead to large losses of the posterior risk. For that reason
such coincidence is desirable and also the stability of CGM actions seems to
be a favourable property.

2. The following theorem characterizes CGM actions.

Theorem 1 (Betrò and Ruggeri [1]). Assume that %(π, a) is a strictly
convex function of a for each π∈Γ . Let Πa={πa : %(πa, a)= supπ∈Γ %(π, a)}
be the set of least favourable priors for a decision a. Let aB

π denote the
Bayes action under π. If at â ∈ A there exist π1 and π2 in Πâ such that
aB

π1
≤ â ≤ aB

π2
, then â is a CGM action.

Therefore if the stable action satisfies the conditions of Theorem 1 then
it is CGM. The problem is: when is the CGM action stable?

We assume hereafter that Γ = {πα : α ∈ [α1, α2] }.

Theorem 2. Let

(∀a ∈ A)(∀πα ∈ Γ ) %(πα, a) = r(α, a) = (Aα + B − a)2 + Cα + D ,

with A 6= 0, B,C,D real constants. If Πâ = {πα1 , πα2} for an action â ∈ A,
then â is stable; conversely , Πa# = {πα1 , πα2}.

P r o o f. Let α = (α1 + α2)/2 and αmin(a) be the minimum point of
the function r(·, a). The elementary geometry of the quadratic curve implies
that the oscillation of r(·, a) over [α1, α2] is the least iff αmin(a) = α or,
equivalently, r(α1, a) = r(α2, a), which is equivalent to Πa = {πα1 , πα2}
because of the form of r. This yields the value a# which is the unique
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solution. Since

sup
π∈Γ

%(π, a) = sup
α∈[α1,α2]

r(α, a) =
{

r(α1, a) if αmin(a) ≥ α ,
r(α2, a) if αmin(a) ≤ α ,

the conditions Πâ = {πα1 , πα2} and r(α1, â) = r(α2, â) are equivalent, which
ends the proof.

Corollary 1. Assume the conditions of Theorem 2. If the CGM action
satisfies the conditions of Theorem 1, then it is stable. If the stable action
is in the interval with endpoints aB

πα1
and aB

πα2
, then it is CGM.

The following examples show that the situation from Theorem 2 is real-
istic.

Example 1 (Mȩczarski and Zieliński [5], Betrò and Ruggeri [1]). The
problem is to estimate the mean λ in the Poisson distribution P(λ), given
an observation x, under the prior gamma G(α, β), α ∈ [α1, α2], β fixed and
under the quadratic loss function. Thus

Γ = {G(α, β) : α ∈ [α1, α2], β is fixed} ,

%(πα, a) = r(α, a) =
(

α + x

β + 1
− a

)2

+
α + x

(β + 1)2
,

aB
πα

=
α + x

β + 1
.

We have Πâ = {πα1 , πα2} only for â = (α + 1/2 + x)/(β + 1) and this is a
stable action; if aB

πα1
≤ â ≤ aB

πα2
, then â is a CGM action.

Example 2 (DasGupta and Studden [3], Boratyńska and Mȩczarski [2]).
The problem is to estimate the mean θ in the normal distribution N(θ, b2)
with known b > 0, under the normal prior N(µ, σ2), where σ ∈ [σ1, σ2] ⊂
R+ and under the quadratic loss. For α = (b−2 + σ−2)−1 we can write
Γ = {πα : α ∈ [α1, α2]}. Then

%(πα, a) = r(α, a) =
(

α
x− µ

b2
+ µ− a

)2

+ α

and

aB
πα

= α
x− µ

b2
+ µ .

We have Πâ = {πα1 , πα2} only for

â = α
x− µ

b2
+

1
2

b2

x− µ

and this is a stable action; if â is in the closed interval with endpoints aB
πα1

and aB
πα2

, then â is a CGM action. The last conclusions are valid for x 6= µ;
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otherwise any a is stable and a = µ is CGM; therefore this CGM action is
stable as well.

3. In Theorem 2 and Examples 1 and 2 the class Γ is defined by a
real parameter α from a compact interval. The posterior risk is a quadratic
function of α. By minimizing the oscillation of that function we arrive at
the condition %(πα1 , a) = %(πα2 , a), which defines the stable action. From
the shape of the function we obtain the conditions of Theorem 1 and the
stability of the CGM action.

Let us consider the following example.

Example 3 (Mȩczarski [4]). The problem is to estimate the parameter
θ = e−λ in the Poisson distribution P(λ). The class of priors and the loss
function are as in Example 1. Then

%(πα, a) = r(α, a) = (eβ1(α+x) − a)2 − e2β1(α+x) + eβ2(α+x) ,

βi = log
β + 1

β + 1 + i
, i = 1, 2 and aB

πα
= eβ1(α+x) .

By looking for infa∈A supπ∈Γ %(π, a) we obtain Πâ = {πα1 , πα2} only for the
â which is the unique solution of r(α1, â) = r(α2, â). If aB

πα2
≤ â ≤ aB

πα1
,

then â is a CGM action. By investigating the monotonicity of the oscillation
of r(·, a) over [α1, α2] we conclude that a# is its unique minimum point
(a stable action) if and only if it satisfies r(α1, a

#) = r(α2, a
#).

Example 3 shows that the function r(·, a) need not be quadratic to obtain
the considered connection between stability and conditional Γ -minimaxity.
As before, the condition r(α1, a) = r(α2, a) is a tool to construct an action
with both properties.

Theorem 3. Define a function r by r(α, a) = %(πα, a). Assume that it
satisfies the following conditions:

(a) r(α, ·) is strictly convex for any α;
(b) for any a the minimum point αmin(a) of r(·, a) is unique and αmin

is a strictly monotone function of a;
(c) for any α̃ and ã such that αmin(ã) = α̃ we have

(∀a′ < a′′ ≤ ã)
r(α̃, a′′)− r(α̃, a′)

a′′ − a′
<

r(αmin(a′′), a′′)− r(αmin(a′), a′)
a′′ − a′

and

(∀a′′ > a′ ≥ ã)
r(α̃, a′′)− r(α̃, a′)

a′′ − a′
>

r(αmin(a′′), a′′)− r(αmin(a′), a′)
a′′ − a′

;

(d) the function r(α1, a)− r(α2, a) is monotone in a.

Then the conclusion of Theorem 2 holds.
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P r o o f. Denote the oscillation of r(·, a) over [α1, α2] by Q(a). Then

Q(a) =



r(α2, a)− r(α1, a) if αmin(a) ≤ α1,
r(α2, a)− r(αmin(a), a) if α1 < αmin(a) < α2

and r(α1, a)− r(α2, a) ≤ 0,
r(α1, a)− r(αmin(a), a) if α1 < αmin(a) < α2

and r(α1, a)− r(α2, a) ≥ 0,
r(α1, a)− r(α2, a) if αmin(a) ≥ α2.

Let ai be a solution of αmin(a) = αi, i = 1, 2. The type of monotonicity
of the function r(α1, a) − r(α2, a) agrees with that of αmin. Then for αmin

increasing we have

Q(a) =



r(α2, a)− r(α1, a) if a ≤ a1,
r(α2, a)− r(αmin(a), a) if a1 < a < a2

and r(α1, a)− r(α2, a) ≤ 0,
r(α1, a)− r(αmin(a), a) if a1 < a < a2

and r(α1, a)− r(α2, a) ≥ 0,
r(α1, a)− r(α2, a) if a ≥ a2

and for αmin decreasing we have

Q(a) =



r(α1, a)− r(α2, a) if a ≤ a2,
r(α1, a)− r(αmin(a), a) if a2 < a < a1

and r(α1, a)− r(α2, a) ≥ 0,
r(α2, a)− r(αmin(a), a) if a2 < a < a1

and r(α1, a)− r(α2, a) ≤ 0,
r(α2, a)− r(α1, a) if a ≥ a1.

Observe that the functions r(αi, a) − r(αmin(a), a) have their unique min-
imum points at ai and they are decreasing for a < ai and increasing for
a > ai, i = 1, 2, respectively. This implies that Q has its unique minimum
point at a# which is defined by the condition r(α1, a

#)− r(α2, a
#) = 0.

Now,

sup
α∈[α1,α2]

r(α, a) =
{

r(α1, a) if r(α1, a) ≥ r(α2, a),
r(α2, a) if r(α1, a) ≤ r(α2, a)

and therefore Πa# = {πα1 , πα2}. Conversely, if Πâ = {πα1 , πα2}, then
â = a#. This ends the proof.

Corollary 2. Assume the conditions of Theorem 3. Let the function
f(α) = aB

πα
be strictly monotone and f([α1, α2]) = A. Then the conclusion

of Corollary 1 holds.

Now we can see that the conditions of Theorem 3 and Corollary 2 hold
in Examples 1, 2 and 3.
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[2] A. Boraty ń ska and M. Mȩczarsk i, Robust Bayesian estimation in the one-
dimensional normal model , submitted.

[3] A. DasGupta and W. J. Studden, Frequentist behavior of robust Bayes estimates
of normal means, Statist. Decisions 7 (1989), 333–361.

[4] M. Mȩczarsk i, On stable Bayesian estimation in the Poisson model , Sci. Bull.
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