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TRANSITION PROBABILITY DENSITY FUNCTION
OF A CERTAIN DIFFUSION PROCESS
CONCENTRATED ON A HALF LINE

Abstract. We prove that under some assumptions there exists a diffu-
sion process satisfying a one-dimensional It6 equation and living in a time-
dependent half line. We give a formula on the transition probability density
function of this process. This is also a probabilistic formula for a solution of
a deterministic Fokker—Planck equation in a time-dependent half line.

1. Introduction. Diffusion processes are used in biology to the descrip-
tion of polulation dynamics. In [5] and [6] A. G. Nobile and L. M. Ricciardi
consider a growth process of a population in a fluctuating environment.This
process can be a solution of some one-dimensional It or Stratonovich equa-
tion. In some cases the transition probability density of these solutions, con-
centrated on a finite interval or on a half line, are given ([5]). Some sufficient
conditions on the existence of a strong solution of the It6 equation

i t
(1.1) X(t) = Xo+ fa(s,X(s))ds+ fb(s,x(s))dW(s),

living in a bounded region in R™, are given in [3]. The transition probabil-
ity density functions for on&dlmensmnal diffusion processes with varying
boundaries are investigated in [2]. For a one-dimensional process satisfying
(1.1), the transition probability density function concentrated on a finite
spatial interval is given in [4].

In the present paper we give a formula for the transition probability
density function of a solution of (1.1), concentrated on a time-dependent half
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line. Using our result we obtain the transition probability density function
for the growth process satisfying the equation

(12)  dX(t)= [ gx(1 - %) + /\XlnX(l - %)] dt

- X(l - IH—X) dW (t)
g
in the diffusion interval (exp(f),o0), in the case § > 0 and A = —1/(28).
This equation is investigated in [6], p. 293, but the transition probability
density functions are not given there.

2. Constant boundary. To formulate our theorem concerning a diffu-
sion process concentrated on a half line we need some definitions.

Let the coefficients a(t,z) and b(t,z) of (1.1) be defined for ¢ > 0 and
xz > 0. If b(¢,z) # 0 for t > 0 and z > 0, then we introduce transformations
u(t,z) and v(t,z) by

(2.1) u(t,z) = f g y)
(2.2) - i ' )b_(?,% .
Note that v(%,-) is the inverse to u(t,-) for ¢ > 0. Then we define
(2.3) m(t,z) = wy(t, v(t, z)) + uz(t, v(t,;2))a(t, v(t, z))
+ %um(t, u(t, z))b3(¢, v(t, 7))
(2.4) o(t, z) = uz(t,v(t, z))b(t, v(t,x)).

THEOREM 1. Assume that the random variable X, is independent of a
given Wiener process W (t) and Xo > 0 with probability 1. Let the coefficients
a(t,z) and b(t,z) satisfy the following conditions:

1) a(t,z) and b(t,z) are C? in some open neighbourhood of the set
{(t,z):t >0, z > 0}.

2) b(t,0) =0 and b,(¢,0) # 0 fort >0, b(t,z) >0 fort >0, z > 0, and

fb(ts =00 foreacht>0.

3) m,(¢,z) and my(t,z) are bounded fort > 0, z € R.
4) E[u(0, Xo)]? < oo.

Then (1.1) has a strong solution X(t) satisfying the initial condition
X (t)|t=0 = Xo a.s. and such that Prob{X (t) > 0,t > 0} = 1. If X(t) and
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Y (t) are two such solutions of (1.1), then
Prob{sup |X(t) - Y (t)] =0} =1,
>0

t.e. pathwise uniqueness holds.
A transition probability density of the process X (t) exists and is given by

a9 dhes) =
—ult.z)}2 —
X exp{ _ us, gis — S’ )} + M(s,u(s,y)) — M(t,u(t, :c))}
x Eexp {(s —t) f B(t + z(s — t), u(t, z)
FVETE (2) + 2{u(s, ) — u(t,)}) dz} ,
where
(26)  B(o)=-gmi(t7) — ymi(t,z)— [ milt,y)dy,

0

— 2/ Lo 1 (t, 1 d
(A7) Mitulse)) = lf ( ;f t (E@T)) dork :(t, 3)) - Eb’”(t’y)) b(t,yy) ’

e _ Wit (s =)z - W(t)
85 \/m H

u(t,z) is given by (2.1) and m(t,z) is given by (2.3).

Me,s(2) = Wi o (2) — 2Wi, (1),

Proof. We consider the function u(t,-) for ¢ > 0. By Conditions 1 and
2 we have b(t,y) = b(t,y) — b(t,0) = yb,(t,£) for some £ € (0,y) and
0 < bz(t,€) < M < oo for some M € R. Hence
A TP 5
bt,y) wba(t,6) ~ yM’

Thus
j~ dy S 1 j‘dy_ 1 In
= = G S )
Job(ty) T MYy z
L
f—-——>+oo and u(t,z) > —oc0 asz— 07
2 b(ty)

By Condition 2, u(t,z) — oo as & — oo, hence u(t,z) is a one-to-one
mapping from (0, c0) onto R, for ¢ > 0.
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Now we look for a process £(t) satisfying (1.1) with the coefficients
m(t,z) and o(t,z) given by (2.3) and (2.4) and with the initial condition
P{E®)i=0 = u(0, Xo)} = 1.

To this end we show that m(t, z) and o (¢, z) satisfy all the assumptions of
the existence and uniqueness theorem ([1], Theorem 1, p. 40). Differentiating
the identity (2.2) with respect to z we obtain

(2.8) 'Um(t’ 93) = b(ta 1)(3, 2’:)) .

In the same way, by the identity u(t,v(t,z)) = z, we obtain u,(t,v(t,z))
X vg(t,z) = 1, and consequently

(2.9) il ol )= m
Thus, from (2.4) and (2.9), we have
(2.10) ot,z) =1.

By (2.10) and by Conditions 3 and 4 we conclude that all assumptions of

([1], Theorem 1, p. 40) are satisfied. Thus there exists a solution £(#) of (1.1)
satisfying the conditions

(A) &(t) is a.s. continuous and £(t) = u(0, X,) for t = 0.
(B) supE(E(¢))? < oo.

If & () and £2(t) are two solutions of (1.1) satisfying (A) and (B), then
Probl xup |G 0= &lel <o),

i.e. pathwise uniqueness holds.

By Condition 1 and by (2.1), the coefficients m(¢, ) and o (¢, ) are con-
tinuous in both arguments. Hence by ([1] Theorem 2, p. 68) the process (%)
is a diffusion with diffusion coefficient 0%(¢,z) and displacement coefficient
m(t, x).

Now we show that all conditions of ([1], Theorem 2, p. 96) are satisfied.
By (2.1), (2.3), (2.10) and by Condition 3 we conclude that mz(t, :::) and
o5(t,z) exist and are bounded. The derivatives 0%, 0,, o} and o, exist.
By (2.10) we can calculate the following functions (cf. the statement of ([1],
Theorem 2, p. 96)):

h(t,x) dy

(2.11) z= [ oty = M)

and
h(t,z)

@12) mta)= [ bl 4 mEhGa) 1
0

o%(t,y) Y o(t, k¢, 2)) — idz(t,h(t,a:)) = m(t, z)
so B(t,z) is given by (2.6).
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Taking into account Condition 3 we conclude that there exists some
constant K > 0 such that

T

Ll ha) - J e dy} < K(1+]a]).

Hence

X 1 = . 1 1 5 )
lim su sup B(f,z) = limsu su —=-m“(t,z) ] <0.
|..":|—o-o§) 14 22 ogth (¢,2) |z;_.oop 1+ 22 ostgr ( 2 \t:2)

Thus all conditions of ([1], Theorem 2, p. 96) are satisfied.
Hence the transition probability of the process £(t):

P(t,z,s,y) = Prob{{(s) <y | {(t) ==z}, t<s,
has a density given by
1

V2 (s —t)o(s,y)

exp { - LD = CBI 4 3765 o6,) - Wt 0,2)) )

(2.13) p(t,z,8.9) =

1

x Eexp {(s —t) f B(t+ z(s — t), p(t, )

VI (2) + 2l(s,9) - 0(t,2) dz} ,

where h(t,z), m(t,z) and B(t,z) are given by (2.11), (2.12) and (2.6) re-
spectively, and moreover

M(t,z) = 6[ m(t,y)dy, (¢, x) (‘)f oty

Wy, = WEEE D= TO - () = Wia(e) - Wi ().

Now we define the process

X(t) = v(t £(2))-

Using It6’s formula ([1], Theorem 4, p. 24) it is easy to prove that the
process X (t) satisfies the equation (1.1) with coefficients a(t, z) and b(t, z).
Thus X (t) is a strong solution of (1.1), and moreover

X(0) = v(0,u(0, Xp)) = Xo.
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If Y'(t) is a solution of (1.1) and Y'(0) = X, then
Prob{ sup |X(t)—Y(¢)| =0}
0<t<T
— Prob{ sup |u(t, X()) — u(t, Y(8))| =0} =1,
0<t<T
i.e. pathwise uniqueness holds.
Furthermore,
Prob{X(t) >0,t >0} =1.

The process X(t) is a diffusion with diffusion coefficient b%(¢,z) and drift

coefficient a(t,z) ([1], p. 66). By the definition of the process X(t), and by
Lemma 1 of [4], the transition probability

Q¢ z,s,y) =Prob{X(s) <y [ X(t) =z}, t<s,
has a density given by
(2.14) a(t, z,s,y) = p(t, u(t, m),s,u(s,y))uy(s,y)
where p(t, z, s,y) is given by (2.13).

Now we want to express the density (2.14) in terms of the coefficients

of (1.1). To this end we make some calculations. The functions ¢(t,z) and
M(t,z) are as follows:

w(t,w)=‘f 4 fdy=:c,
0

o o)
Mt,e)= [mty)dy= [ m(t,y)dy.
0 0
After some standard calculations we find that

v(t,z)

a( 1 a(t,v(t,z
(2.15)  mlt,2) = if a(m)dﬁgfm——:w_;gﬁ%bx(t,u(nm)).

Next we calculate

At = | (§ () a

0
a(t,w(t-, z))
Bt ) ~ 2606 ) .

We substitute in this integral v(t,2z) = y (for fixed t). From the identity
v(t,u(t, z)) = z, we obtain z = u(t,y). By (2.1) we have u,(t,z) = 1/b(t, z),
hence dz = dy/b(t,y), and consequently we obtain the formula (2.7) for
M(t,u(t, z))-
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From (2.6) we find that B(t,z) = W(¢t,v(¢,z)), where
1/ 287 1 a(t,z) 1 s

_ l( i, 5 il ®) +b?t(f;;‘)bw(t’z) - %bm(t, 2)bt, z))

1 M —a a(ts y)ba:(t: y)
- f { f ot? (b(t_s)) det (b(t,'y) =(hy) + b(t,y)

" §bzz(t,y)b(t!y)) lfy I%(ﬁ) “

ag (ti y) a‘(t} y)bt(t} y) 1 dy
— 5 o —bm (t,v)
b(t,y) v (t,y) b(t,y)’
which leads to the formula (2.5) for the transition probability density of the
process X.
This completes the proof of Theorem 1.

+

In this way we have obtained the probabilistic formula (2.5) for a solution
of the following deterministic Fokker-Planck equation:
dq(t, z, s, 1 62
o)) s alt, s+ g 5 B nlatt sl t<s,
Os 2 By
with the initial condition ¢(¢,z,t,y) = é(z — y), z > 0.
This solution has the following properties: ¢(t,z,s,y) > 0 for s > ¢t and

y >0, q(t,z,s,y) = 0 for s > ¢t and y < 0, and moreover f0°° q(t,z,s,y) dy
=1 for each s > 0.

3. Time-dependent half line. Let G = {(t,z): 0<t < T, z > v(t)},
where «y is defined for t € [0,T]. Define f(t,z) = = — v(¢). So f(¢,-) is a
one-to-one mapping from (v(0),00) onto (0,00), for t € [0,T]. Let g(t,-)
denote the inverse of f(¢,-), i.e. g(t,z) = = + (1).

Assume that the random variable X g is independent of a Wiener process
W (t) and Prob{X; o > ’]{(0)} =1,

Now we consider (1.1) with the coefficients a;(¢,z) and b, (¢,z) defined
in G, with the initial condition X;(t)|¢=0 = X1, a.s. We define

(3.1) a(t,z) = a1(t, g(t, z)),
(3.2) b(t,z) = b1(t,g(t,z)) forte[0,T] and z>0.

If a(t,z) and b(t,z) given by (3.1) and (3.2) satisfy all the conditions of
Theorem 1, then the following corollary is true:
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COROLLARY 1. Equation (1.1) with coefficients ay(t,z) and by(t,z) has a
strong solution X;(t) satisfying the initial condition Prob{X;(t)|;=o
= X1} = 1. Moreover, Prob{X1(t) > v(t),0<t<T} =1.

If X1 and Yy are two such solutions of (1.1) then

Prob{ sup |Xi(t) —Yit)|=0} =1,
0<t<T

i.e. pathwise uniqueness holds.
A transition probability density of the process X1(t) emists and is given
by

(3.3) a1t z,s,y) =q(t, f(t, ), s, f(s,9))

where q(t,z, s,y) is given by (2.5) for the coefficients a(t,z) and b(t,z) de-
fined by (3.1) and (3.2). The function q; is a solution of the Fokker—Planck
equation and satisfies the condition

00
f9'1(t»17;3,y)dy=1 fOf’S?_t.
¥(t)

4. Example. We can use Corollary 1 to calculate the transition proba-
bility density function of the diffusion process X (t) satisfying the equation

(1.2), in the case A = —1/(28), 8 > 0, on the interval (e?, c0), with the ini-
tial condition Prob{X;(0) = zo} = 1, where ¢ > €. In this case y(t) = P
for t > 0. Hence

+ Az + €°) In(z + eﬁ)(l - l—I:L(m;——ﬂ) ;
b(z) = (z+eﬁ)(]i($T-l-eﬁ—) - 1) .

Now we can show that a(z) and b(z) satisfy all the assumptions of Theorem 1
in the interval (0, co):

b(0)=0, ¥'(0)= I/ﬁ >0, b(z)>0 forz>0,
dz
f b(:c) = f (z+ef)In(z + €B) —

From (2.15) we have

a(v(z)) 1,
(4.1) m(z) = b(o(z)) §b (v(z)).
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Consequently, taking into account (2.8), we obtain
1 In(z + &)
£ A+ —=—1A ez ie) .
o) =2+ g5 (+35) "5

So m/(z) is bounded if and only if A + 1/(28) = 0. Then m/(z) = 0 and all
the assumptions of Theorem 1 are satisfied. From (2.2) and (4.1) we have

1 1
m(z):m(0)=g+§-%.
Define
+ - 5

” g 25 -
From (2.6) and (2.12) we have, respectwely,
(4.2) B(a) = 4%,
(4.3) M(z) =

By Corollary 1 we conclude that the probability
Prob{X;(t) <y | X1(0) = zo}
has a density function given by
q1(0, 2o, 3,y) = q(0, 20 — €, 5,y — €P)
where ¢ is given by (2.5). Taking into account (4.2) and (4.3) we have
[u(y — €°) — u(zo — €°)]?

1
91(0, o, 8,y) = me}ip{ = %%

+ pluly — &) - u(an - )]} exp(—$u%).

By (2.1),

£ dz
u(y — eﬁ) —u(xo — 6'6 f b(z) f (z + €P)[In(z + €P) — B)

Iny—p
= fln
B (1]‘12:0—[3)1
where 2, =z — €8, zp =y — €. So

Bexp(~1u%s)

_ w(y)
qi (0, Zo, S, y) my(lﬂ To — ﬁ) (q(y)) ¥
where
_hy-8 _ s
a(y) = T w(y) =pB—-1- % Ing(y)-
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