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Abstract. We first study the relation between the asymptotic behaviour
of the ratio of the errors and the ratio of the differences for converging
sequences. A classification of converging sequences is given.

Assuming that the ratio of the errors has m limit points, we study the
behaviour of the ratio of differences and three acceleration processes are
deduced. In the particular case m = 2, these processes are studied and a
characterization of some series is given.

I. Introduction and notations. The construction and the study of
convergence acceleration methods for sequences and series requires a knowl-
edge of the behaviour of the ratio of the errors g, and the ratio of differences
R,, between two consecutive terms of a converging sequence. The majority
of these methods fail if the sequences (g,) or (R,) do not converge.

In this paper we suppose that the sequence (g,) has m limit points
which may be zero, one or infinity. In Section 2 we study the behaviour of
the sequence (R,,) and we give some results, a classification of the converging
sequences and a characterization of some series. A subset of these sequences
was introduced in [5] where some results are given as well. These results are
applied to continued fractions in [4].

In the third section we recover the A2 process given in [5], the Tm
transformation introduced and studied in [6] and [13] and we propose a
generalization 63 ,, of the process 0, of Brezinski [2]. Some acceleration
properties of these processes are given in the particular case m = 2.

Numerical examples illustrate the results of this paper in the fourth
section.

Let (S,) be a real sequence converging to S. We set

en = Sp — S: On = (Sn+1 = S)/(Sn - S): R, = ASﬂ+1/ASﬂ
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and we consider the two cases:

1. (on) converges to p

a) If ¢ # 1, then the sequence (R,) converges to ¢ and (S,) converges
linearly; in this case we write (S,) € LIN.

b) If p = 1, then (S,) converges logarithmically: (S,) € LOG, and for
the sequence of ratios (R,) three cases can occur:

e lim, .o R, = 1; we write (S,) € LOGSF. This set of sequences was
defined by Smith and Ford [12] and named by Kowalewski [8]. As examples,
we consider the fixed point sequences (S,,) € AE-,"’)(S) [8] and (S,) € LOGF,
[11].

e lim,, o R, = —1; we write (S,) € LOGL [9].

ExAMPLE 1. Let (S,) be the sequence defined by

with agny1 = 1/(a+ vV2n+1), agp, = —1/v/2n+1 (n = 0,1,...). Then
lim, 00 S» = 0 and (S,) € LOGL. Note that (S,) represents the nth
convergent of some continued fraction [9, p. 119].

e (R,) does not converge. We write (S,) € LOGAP.

EXAMPLE 2. Let (S,) be defined by S,4+1 = Sp(1+ a,), S1 = 1, with
aon = af(n+1), agny1 =b/(n+1), a #b; if a,b <0, then lim, o S, =0,
and

lim Ry, =b/a, lim Ron41 = a/b.
n—o0 R=400

So (S,) € LOGAP.

DEFINITION 1. A sequence (U,) has m limit points if there exist m
subsequences (Uy,(n)), i = 1,...,m, such that lim,_.oU,,(n) exists.

2. (on) does not converge. Suppose that the sequence (¢,) has m limit
points o9, ..., o(™=1) and

lim gpmti = o fori=0,1,...,m—1.
n—o0

Set o(™ = (O, In this paper we assume that o) may be zero, one or
infinity.

Remark L1. In the particular case where o) (i = 0,...,m — 1) is
finite, different from 0, 1 and |H:"_‘__El 0| < 1, the sequence (S,) is called
periodic-linear. These sequences were introduced by Delahaye in [5] where
some convergence results are given as well. These results are applied to
continued fractions in [4].
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Relation between the asymptotic behaviour of the sequences (g,) and
(R,). We have

(1.1) R, = gn(on+1—1)/(en — 1)
and
lim Runyi = RO = 09 ~1)/(6P ~1)  (i=0,...,m~1),
R(™ — RO |

Note that R() #£ p() for i = 0,...,m — 1; this is the reason why some
processes do not accelerate the convergence of the sequences (S,), as is
shown in the following examples.

EXAMPLE 3 [10]. We consider the series S with partial sums
n

Sp = Z(—l)w A/(i+1), [z] = greatest integer contained in z,
i=0

and S =7/2+0.5In2. Then m = 2, and
RO =_1, RW =41, ,9=_0, M=o,
nli.ngo Onlas === RO RM)
In [14] Aitken’s A2 process applied to (S,) gives
AP = Sy, + (-1)™(2n + 3)/(2n + 2)(4n + 5),
AP = G+ (~1)(2n +4)/(2n + 3).

So the A? process is not regular for (S,), and the sequence (AS™) contains
three essentially distinct convergent subsequences.

We remark that R, is the acceleration factor of A% (see Definition 2).
So we can write

(1.2) A{Y = (Snt1— RaSa)/(1 - R)
and note that a subsequence of (R,,) has limit 1.
EXAMPLE 4 [6]. Let S be the series defined by

o0
S= Za“ with a, = 4sin(n7/2)/n.

n=1
We have
n+1 nmw n+1
Bo=-ligteny 88d Bafnp=-77rs.

In this case m = 2, and
R® =0, RW=_00, o®=-1, oM=1,
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lim RnRpt1=—1=¢®e®
n—+00

and no subsequence of (R,) has limit 1; then the Aitken process is regular
for (S,) but does not accelerate its convergence since o(¥) # R for i = 0, 1.
From (1.2), we remark that () = R(®) (i = 0,1) is the necessary condi-
tion for the Aitken process to accelerate the convergence of (S,,).
From (1.1) we deduce

m—1 ‘ m—1 )
(1.3) H R — H o
i=0 i=0

and if k is the number of limit points of (R,) then k < m, so we consider
the subsets

LAP(m) = {(S») : (Sn) converges and lim gmnti = gm ;

o9 # oW if i # 5},
LAP(m,k) = {(S») € LAP(m) : (R,) has k limit points }.
We shall prove that
LAP(m,1)=0 form >3,
LAP(2,1)#0,
LAP(m,k)#0 for2<k<m.

Let (Sn) be a sequence converging to S and let T : S, — T, be a
sequence transformation. We can write

T, = (Sn+l = fnsn)/(l = fn):
(Tn — 8)/(5n = 8) = (en — fn)/(1 = fn) -
DEFINITION 2. f, is called the acceleration factor of the sequence trans-
formation T'.

fn is introduced by Lembarki [9] and studied by Benchiboun [1]. Note
that, in most cases, f, depends on some terms of the sequence (R,).

Furthermore, T accelerates the convergence of (S,) if and only if
lim, oo(1 — 0,)/(1 — fn) = 1; therefore if lim,cn’ 0n = ¢ (where N’ C
N) then a necessary condition for accelerating the convergence of (S,) is
lim,en+ fr = 0. This condition is not satisfied by the majority of the pro-
cesses if (S,,) belongs to LOGL or LOGAP or LAP(m, k).

In order to accelerate the convergence of the sequences in LAP(m, k),
we propose a generalization of the 63 process of Brezinski [2]. From (1.3)
we have the asymptotic approximation ep,im/en ~ ASp4m/AS,, thus we
recover the transformation 7'y, [6, 13] and the process A2, [5].

Finally, the particular case m = 2 is fully studied, so a characterization
of some series of the set LAP(2,1) and some numerical examples are given.



Non-linear and non-logarithmic sequences 411

II. Classification and characterization. Let (S,,) be a real sequence
converging to S. We consider two cases, depending on whether (g,) con-
verges or not.

A. (0n) converges to p. We have |g| < 1 and,

e if p # 1 then (S,) converges linearly, (S,) € LIN,
e if p = 1 then (S,) converges logarithmically, (S,) € LOG.

First we present a theorem on the asymptotic comparison of the se-
quences (g,) and (R,).

THEOREM IL1 [5]. Let A € R, |A| # 1. Then
i Sn+1 - S _ i ¥ i Asﬂ+1 _
RILII;D Sn——S =A Gf and only ‘lf nllonc}o A Sn = A.
Moreover, from (1.1) we remark that, if |A\] = 1 and A # 1 and if
limp, o0 (Sn+1 — S)/(Sn — S) = A then limy, oo ASp+1/AS, = A

1. Linear convergence, (S,) € LIN. Let (S,) € LIN. Then (¢,) and
(Ry) converge to o # 1. We set

on =0+ a, where lim a,=0,
n—00

R,=0+ 06, where lim §,=0.
n—oo

We say that (S,) € LIN,. If lim, o @ny1/a, = a exists, then |a| < 1.
In this case we write (S,) € LIN,, and set a,41/a, = o + v,, where
limy, 00 v, = 0.

THEOREM IL.2. Suppose that (S,) € LIN, 4.

(i) If pa # 1, then lim, o0 Brnt1/Bn = B ezists, B = a and moreover
limp, o0 Brn/on = (1 — pa)/(1 — o).
(ii) If a =1 and limp— o0 Unt1/Vn = Vv exists, then |v| = 1.

Proof. (i) Since

Qan+1/a'n - l i an+1

ﬁann_i:’:an o T e

7

(i) is obvious.
(ii) Assume that |v| # 1. Since any1/@n = 14 vp, we have Aap41/A0n
= Vn+41/Vn + Vn41, hence

lim Aapy1/Aay, = im vpyy /v =v
n—0o n—oo

and from Theorem II.1 it follows that lim,_co@n+1/an = v because (o)
converges to 0 and |v| # 1, which yields a contradiction.
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2. Logarithmic convergence, (S,) € LOG. Let (S,) € LOG. Then
limy, e00n = 1. We set g, = 1 + oy, with lim,_,a, = 0, hence

Rn = (1 + an) 221,
Qp

Since en+1/en = 1+ o, we have Aeny1/Ae, = (14 an)an+1/an, by The-
orem II.1 and similarly to assertion (ii) of Theorem IL.2 we show that if
lim,—oo@n+1/@n = « exists then |a| = 1, or equivalently, if lim, ..o R, = R
exists then |R| = 1. So two cases can occur: either R=a=1,or R=a =
—1. Hence we find two subsets of LOG: LOGSF and LOGL, which have
been introduced by Smith and Ford [12] and Lembarki [9] respectively:

LOGSF = {(S,) € LOG: lim R, =1},
LOGL = {(S») € LOG : lim R, = -1}.

Notice that if (S,) € LOGSF, then the limits of (g,) and (R,) are
equal, but if (S,) € LOGL, then they have opposite values.
Let us now give examples of sequences in LOGSF and LOGL.

ExAMPLE 5 [8]. Let A% (S) be the set of sequences (S,) generated by
Sn+1 = F(S,) where F : R — R, F is analytic in a neighbourhood of §
which is the only fixed point of F, F'(S) =1, FO)(S) =0for2<i < p
and F(®)(§) = ¢ # 0, where ¢ < 0 for p odd. In [7] it is proved that
A%(S) ¢ LOGSF.

For LOGL we consider the sequence defined in Example 1.

In the preceding cases we have assumed that lim, ., R, exists, but it
is possible that the sequence (R,) does not converge. Thus we define the
set

LOGAP = {(S») € LOG : (R,) does not converge} .

In this paper we are interested in the cases where (R,,) has k limit points,
so we set

LOGAP(k) = {(Sn) € LOGAP :
lim Rgnyi =R (i=0,...,k—1), R® = RO},
The sequence (S,) defined in Example 2 belongs to LOGAP(2).

B. (on) does not converge. In this case we suppose that (p,) has limit
points and we define

LAP(m) = {(S,) : (Sn) converges and
lim Omn4i = Q(i) (‘ =0,1,...,m— 1): Q{m) = 9(0)} .
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Note that if (S,) € LAP(m), then o) may be zero, one or infinity, and
o # o) for i # 5.
The link between p, and R, is

(2-1) Rn = Qﬂ(9n+]. - 1)/(91?. - 1) )
hence if (S,) € LAP(m), then (R,) has limit points R} which satisfy

lim Rmnsi = RO = g@(o(+1) _ 1) /(o™ 1),
(2.2) i:ﬂ,l’_._,m_lj
Rm) — RO

Remark IL1. 1) If (S,) € LAP(m) for m > 2, then o # o0 (i # 7)
but not necessarily R(*) # R(), so the number of limit points of (R,) does
not exceed m.

2) If a subsequence of (p,,) has limit one, then (R, ) has two subsequences
having limits zero and infinity respectively.

Let us now define the subsets
LAP(m,k) = {(S,) € LAP(m) : (R,) has k limit points} .

THEOREM IL3.
1) LAP(m,1) =0 for m > 3.
2) LAP(m,k) #0 for2 <k <m.

Proof. 1) Suppose (S,) € LAP(m,1) with m > 3. Then (g,) has m
limit points and (R,) converges. From (2.2) we can show that if there exists
i € {0,1,...,m — 1} such that o) = 0, or 1, or infinity, then (R,) does not
converge, therefore these cases will not be considered. Moreover, the limit
R of (R,) satisfies |R| = 1, because if |R| # 1 then, by Theorem II.1, (o,)
converges.

So the following two cases can occur:

(i) R = —1. It follows from (2.1) that if we set lim, oo Rinn+i = —1 and
limy 0o Rmntis1 = —1 for i € {0,1,...,m — 2} we obtain

oWplith) — 1 4D p(i+2) — 7
Then o) = p(i+2), which gives a contradiction, because (0n) has m limit
points and m > 3.

(ii) R = 1. In this case we have lim, oo Rmn4i = 1for¢ =0,1,...,m—1;
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hence

[ 9(0)9(1) — 29{0) =1,
9(1)9(2) - 29(1) =1,
(2.3) {:

We prove that the last equation of (2.3) is incompatible with the others.
From the first m — 1 equations it follows that
(2.4) o™ = (mp® —m +1)/((m —1)0¥ —m +2).

Substituting (2.4) into the last equation of (2.3), we obtain ¢(°) = 1 and the
first equation gives p(*) = 1, which yields a contradiction.

2) For 2 < k < m we consider the sequence (S,) defined by
Smnt+i = G A"+ b, i=0,1,...,m-1, Sm(n+1) = agA“+1+bov“+1 :

where a; €R, b; € R for i = 0,1,...,m — 1. The sequence (S,) is a solution
of the linear recurrence

Snt+2m = ASnim + BSn,

where A = A+ v and B = —Av. We suppose that |v|] < |A] < 1. So
lim,, 00 Sn = 0,

0D =ai1/a;, i=0,1,....m—2, o™V =ag/am—1
and
R® = (aiyg — air1)/(ais1 — ai), i=0,1,...,m—3,
R™ % = (aoA — @m-1)/(am-1 — Gm—2),
R = Xax — ag)/(a0A = am-1)..
We can choose a; (i=0,1,...,m — 1) such that
oW #£eD (i#3),
RO — M) — = Rim—k) _ 5
RO £z, RY £ RO (i # j) fori,j € {m—k+1,...,m—1}.
Thus (S,) € LAP(m, k).

EXAMPLE. (i) Ifa; = tb+c,:1=0,1,...,m—1, whereb=1,c=1/2-m
and A = 1/(1 — 2m), then (S,) € LAP(m,?2).

(i) fa; =tb+¢, ¢ =0,1,...,m — 1, where b = ¢ = 1, then (S,) €
LAP(m,3).
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(iii) For 4 < k < m, if
a;=tb+c, 05i<m-—k+2,
a; =14, m-k+3<i<m-1,
where b=b'=1, c=—1/2 and A > 0, then (S,) € LAP(m, k).
Remark IL2. If m > 3, then for all sequences (S,) € LAP(m), the
sequence (R,) does not converge.

In the particular case m = 2, we distinguish between two subcases k = 1
and k = 2.

THEOREM IL.4.

1) LAP(2,1) = {(S,) € LAP(2) : lim,_,o, R, = —1}.

2) (Sn) € LAP(2,1) if and only if o(® o) = 1.

Proof. 1) Let (S,) € LAP(2,1). Then (g,) has two limit points p(©,
o) and (R,) converges to R. By (2.1) we obtain

e9(e® - 1)/(6® ~ 1) = oM (e® - 1)/(e - 1) = R,

hence 09 p(1) = 1 by the first equality and R = —1 by the second one.

2) follows from 1).

Remark IL3. 1) If (S,) € LAP(2) then (S,) € LAP(2,1) if p©@p(!) =
1, and (S,) € LAP(2,2) if p©@ (1) £ 1.

2) If (Sn) € LAP(2,1) and if the value of p(*) is known, then o(!) =
1/0©,

3) From Theorems II.3 and IL.4, we remark that if (S,) € LAP(m)
(m > 2) and if (R,) converges then its limitis —1 and m = 2.

4) If (S,) € LAP(2,1) then p(® # 1 and o™ # 1.

Characterization of some series in LAP(2,1). We consider four polyno-
mials Py, P, Q,, Q> defined by

P(X)=a1 XP' +apxXP7 1 ...+ [
Py(z) = a1 XP* + coXP*" L+ cppa s
Q1(X) = b1 XU + b X1 . +bgi 41,5
Qa(2) = di X + b X271 . +dgyy,
where a1b1¢1d; # 0. We have

THEOREM IL5. Let S = ) .° o be a series, where ¢z, = Py(n)/Q:1(n),
Cant1 = —Pa(n)/Q2(n). If p1 < g1, p2 < g2 and

P1—q1=p2—qz, aid; =bicy,
then
1) lim cpy1/en =-1,
n—00
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aydy + agdy — byco — bacy + (p1 — q1)a1ds
a1dz + azd; — bicz — bacy

2) nllsngo O2n-1 = 9(1) = )

1
i =@ = -
a0, 02n = € = 7hy

Proof. 1) follows by a simple application of the assumption p; — q; =
P2 — g2 and a;d; = bica.

2) Let A, = c2n + Cant1. Then A, = (P1(n)Q2(n) — Pa(n)Q1(n))/
Q1(n)Q2(n) and as a1d; —bye; = 0, we have deg(P1Q2 — P2Q1) < p1+¢g2—1
and hence deg(PQ2 — P>Q1) — deg(Q1Q2) <p1—q1 — 1< -2,

It follows that the series E:’:Oc,, = Yoo o An converges and A, =
YonP? -q1-1 + o(nm —411—1)’ where

_a1dz + azdy — bicy — bacy
Yo = .
P1—aQ

Since S — S2n—1 = Y oo, Ai, if we apply the corollary of [14, p. 19] to

the series ) - An, then we obtain
S?n—l - S = _,Yonp:—qx E O(.npz—th)’
and similarly we show that

Son — 8 = _,},E'nm 4 O(nm—q;),

where
, _ a1dz +agd; — bicz — bacy + (p1 — q1)ards
Ta= :
P1—q1
Thus, g2n-1 = (S2n — S)/(S2n-1 — S) converges to v5/v0 = oV, and from
1) and Theorem II.4 we deduce that

1
. PR {1} o
Jim gon = 0" = ok

and so (S,) € LAP(2,1).
EXAMPLE 6 7, p. 217]. We consider the series
m=ztan— |1— : +1 — + L
B z z—1 z+1 2z-1 2z+1 "]’
z#0, £1, £1/2, +1/3, ...

So m = ztan(m/z) Y oo o Cn, Where can = 1/(nz + 1), cant1 = —1/((n + 1)z
—1). Applying Theorem II.5 to this series, we obtain

2—x T
B =] (0) — , (1) —
@ T e 2—z

1

and thus (S,) € LAP(2,1).
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Finally, we consider the case m = k = 2. Let (S,) € LAP(2,2). We have
RO = (00 - 1)/(g® ~1),  BD = 0N ~1)/(e - 1).

Remark IL4. 1) Note that o o) # 1, because if o(®p(!) = 1 then
Theorem II.4 implies that (S,) € LAP(2,1).
2) In all cases we have () p(}) = RO RM) £ 1,

EXAMPLE 7. 1) Consider the series defined in Example 3 of Section I.
2) Consider the series defined by

2 1 1 1 1 1
—ln2:1——-—~+—+_-———+ —Zc"’

where co = 1, 2, = (=1)"/(3n + 1) and cop41 = (—1)"*/(3n + 2). Then
RO =41, RM=_1, ,@=0, oB=-
and lim, . Onfn41 = R(O}R(l) = -1

We summarize the results obtained for the special case m = 2 in the
table below.

(Rn) converges to R lim Ran = R®; lim Raony1 = R

n—oo n—oo -

(on) converges to o | LIN and LOGSF : R=p
LOGL:p=-R=1
lim g2, =0 |LAP(2,1):R= -1,

n—00

lim gzn41 = oD iff o9 = 1| LAP(2,2) : o(@o(1) = RO RM) 21

n—oo

LOGAP (2):0=1

III. Acceleration processes. Let (S,) € LAP(m). From (2.1), we
have

(3.1) H R® = H o .

=0

Note that if |1_[::":0l 0| <1 and H::__Ol 0 # 1 then the subsequences
(Sn, Sn+m)Snt+2am - - .) converge linearly and can be accelerated by Aitken’s
A? process. Thus we obtain

F(n} = Sﬂ+2msn i Sg+m
" Sn+2m = Sn == 2Sn+m

and we recover the A2, process given in [5] by Delahaye. It can be
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written
(3.2)
( f(")s
F,,(,:‘) Sntm = fm , where
1= fid
4 1 4 BSntmi1 ASniam-1
f(n) _ Sn+2m il Sn-l-m i AS‘n+m . ASn+m o ASn+m
mo Sn—l—m — Sﬂ, N ASn ASﬂ-l"l Asn+m—l
l+———F.. ..+ —
I t s, Tt as,

From (3.1), we have the asymptotic approximation e,tm/en ~ ASpim/
AS,, as n — oo, which gives

Bz ﬂ-+m (Asﬂ+m/AS )S

So that we recover the T',,, transformation introduced and studied in
[6] and [13]. It is a rank-two composite transformation of (S,) and (Sp+m),
as defined by Brezinski [3].

Note that TJ{::'% can be written as

_ ¢(n)
S"*m—fﬂ;s"‘, where ¢ = RoRn41... Ruym-1.
1—tm

We recall that R, is the acceleration factor of Aitken’s process. If we take
m = 1, then we obtain fl(“) = ti“) = R, so that the processes Ty; and F}
are identical with Aitken’s process.

Let us now generalize the @-algorithm of Brezinski [2].

Let (S,) be a sequence converging to S. The fs-algorithm applied to
(Sn) is

8y(n) = n+21 _y;SnH , where gn= Rn+1%-
mn T

=7,

(83) TH=

0, is a composite transformation of (S,41) and (Aé"') ) [3]. Similarly to the
transformation T ,,, the f2-algorithm can be generalized as follows: we have

(05 = 8)/(Snt1 = 8) = (@n+1 = gn)/(L = gn),

so that if (S,,) € LAP(m), then lim, o gnm+i # liMp—o0@nm+i+1 and the
09-algorithm does not accelerate the convergence of (Sy).

We consider gg:} = gnGn+1 -+ In+m-1 and

o) _ Sntm1 — 750 St .
1- g%

Note that for m = 1 we have 0;(!"1) = 6™,
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Convergence acceleration in the case m = 2. We now give some results on
convergence acceleration for the processes T2, F3 and 632 in the following
cases: a) (S,) € LAP(2,1) and b) (S,) € LAP(2,2).

Let (S,) € LAP(2). Then (g,) has two limit points ¢(©), o(}); we set

O2n = 0 + agn, Q2n+1 = o™ + O2n+41
where (a,) is a sequence converging to 0.

In the case (S,) € LAP(2,1), Theorem I1.4 gives limp, oo Rn = —1. We
set R, = -1+ 0,.

THEOREM IIL1. Let (S,) € LAP(2,1). If

lim 0—'2n+1/a2n =, lim a2n+2/a2n+l =i ’
n—oo —00
with |0@a| # oY), then

1) lao/| =1,
2) limp o0 Bon+1/B2n = B and limp_, o Bant2/Pant1 = B’ both exist, B
and ' satisfy

(0) (1) o (1) (0)
= g0 _te I e T P s
ﬁ =-ag 9(1} 4 Q(O)Q’ ' B =-ag 9(0) ra g(l)a" L] ﬁﬁ aq ,
3) lim Ben _ 0@+ lig P2nt1 _ oMo/ + o©
n—co Qigp 00 —1 " n—oo agpg o —1

Proof. 1) Suppose that |aa’| # 1. Remark that the subsequence u, =
San converges logarithmically, i.e. limy— o0 (#n+1 —5)/(un — S) = 1 because
090 = 1. We have

Aupi1/Aun = (S2n+a — S2n+2)/(S2n+2 — S2n)
= 02n02n+1 (92n+292n+3 = 1)/(92n92n+1 = 1) )
and we can prove that

lim Aupi1/Au, =ad’  with |ad/| # 1.

—+00
By Theorem II.1, we obtain lim, e (%n41 — §)/(un — S) = aa’ # 1, which
yields a contradiction.
2): 3) We have 83n, = Rap + 1, Bons1 = Ront1 + 1. So
— Q(l)a2n + 9(0)a2n+1 + a2n02n41
& 9{0} -1+ a2z,
0Qazni1 + 0Wagnia + A2n 1102042
oM — 1+ azgn41 '
Hence assertions 2) and 3) follow.

2

n+l =

Remark IIL.1. From assertion 1) of Theorem III.1 two cases can occur:
either aa’ =1 or ao/ = —1. If ao/ = 1 then 8 = —p® and ' = —pV.
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A simple application of Theorem IIL.1 in the case aa’ = 1 gives

THEOREM IIL2. Let (S,) € LAP(2,1). If lim,co@2n+1/02n = o
limp—oo@2n+2/@2n+1 = o with [0@al # |oV| and aa’ =1, then

1) the processes T2 and 022 accelerate the convergence of (Sy),
2) moreover, if lim,_,oo(1/Bn+2 — 1/Br) = 0, then F accelerates the
convergence of (Sp).

Note that in the case aa’ = —1 none of the three processes accelerate
the convergence of (S,).

Let now (S,) € LAP(2,2). Then (p,) and (R,) have two limit points
09, oM and R®, R respectively. We set

Rgn = RO + 5, Rony1 = RM + Bant1 -
By Remark IL.4 if R(®) #£ —1, R # —1, then from (3.1)—(3.3) we deduce
that the acceleration factors satisfy

lim #” = lim f{" = ROR® = g@M 21,

and if R® # 1, R® # 1, then
lim g™ = RORW = p@ 1) £ 1,

N—+00
In the cases R(® = 1 or R®Y) = 1 we give sufficient conditions for
lim, oo gi™ = 0@ M)
—o0f2 e
THEOREM IIL3. If (S,) € LAP(2,2), then

1) the processes T2 and Fy accelerate the convergence of (Sy) if R #
-1, RM £ 1

b # b

2) the process 03 2 accelerates the convergence of the sequences (S,) that
satisfy one of the following assumptions:

(i) R© #1 and RV #£1,
(ii) R® =1, RM =0 and 3M such that |Ban/Ban+2| < M, Vn,
(iii) R©® =1 and (B2n/P2n+2) converges to 1.

Note that in assertion 2), if R(Y) =1 then in (ii) and (iii), B2n/B2n+2 can
be replaced by B2n+1/P2ns3 and R by RO,

The three processes accelerate the convergence of other sequences than
those which belong to LAP(2,1) and LAP(2,2).

Let (S,) € LOGSF. Then lim, o 0n = 1, lim,_,o R, = 1. Setting
on =1+ a, and R, =1+ 8, we have

‘THEOREM I1I.4. If (S,,) € LOGSF and if limp_ooBn/an = K # 0, then

1) T42 and F accelerate the convergence of the sequences for which
K =1,
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2) moreover, if limp—oo(1/Bnt+1 — 1/Brn) = b then 022 accelerates the
convergence of the sequences for which b= 1/k — 1.

Let us give some sequences satisfying the conditions of assertion 2).
Let (S,) € A%(S) (defined in Example 4 of Section II). Then

Sn — S)P

Sn41=F(S,) =8+ (5. —5) + %Fﬂ’)(s +0(8, - 8)),

where 6 € ]0,1[. So

— g1
— S)y-1

hence (8, /a,) converges to p and (1/8,+1 — 1/f,) converges to 1/p—1 = b;
therefore b = 1/k — 1, and thus 8 > accelerates the convergence of (S,) €
AR (S).

Let now (S,) € LOGAP(2). Then (R,) has two limit points R(®), R(1),
If we apply the processes T2, F2 and 022 to a sequence (S,) for which
RORM =1 and lim,—cofBn/an = K # 0, we obtain three sequences (T_f_';) ;
(F{™) and (9:(,.“;) which belong to LAP(2,1). So in order to accelerate the
convergence of (S,), we once more apply one of the three processes to one
of the three sequences (Ti';)), (F{™) and (85"2} .

Note that the three processes also accelerate linear convergence (in the
case ¢ # —1) and the convergence of some sequences in LOGL.

IV. Numerical results. In the following figures the number of exact
digits is represented as a function of the number of terms used. We use the
notations:

T(n) =Ty2(n), F(n)=Fy(n), G(n)=62(n).
In the case (S,) € LAP(2,1), we consider two examples:
(i) Let S be the series defined in Example 5 of Section II,
T 1 1 1 1
S§=——7——=|1- - —-...
y tan(w/y) yv—1+y+1 2y—1+2y+1

where y # 0, £1,£1/2,... Then ad’ = BB’ = 1, |¢®a| # ||, and
lim, 00 (1/Bn+2 — 1/Bn) # 0. So, by Theorem II1.2, T';» and 6, 2 accelerate
the convergence of S.

For y = 0.98 the results are given in Figure 1.
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8 -
6 -
4 -
2 -
A ANV MM
1 AAVAREYRARR Y W o o O o
ACRART W Y o - S(N)
0 ™ + T(N)
= F(N)
4 * G(N)
2 L. I L I v I ¥ 1] I
0 10 20 30 40 50
Fig. 1
(ii) Let (S») be the sequence defined by §; =1,
_ 2n+1 _ 1 -
2n”—'n(n+1): 2n+1 n+1: S o

We have S = lim S, = 0, o(® =2, o(*) = 1/2 and R = —1. (S,) represents
the nth convergent of a continued fraction [9, p. 112]. The results are given
in Figure 2. In this example, the sequence G(n) is defined by G, = 0,
+3)(2n+3) forn=1,2,...

Gont1=4/(n

4 A

Fig. 2
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In the case (S,) € LAP(2,2), we consider the series defined in Example 7
of Section II.
(i) For S=Y 24 (-1)8/21/(i + 1), we have Figure 3.

8 A

o S(N)
- T(N)
L ~ F(N)
0 —— T T T T T T T T ] - G(N)
0 10 20 30 40 50
Fig. 3

(ii) For 2In2=1-1/2—1/4+1/5+1/7—~1/8~1/10+..., see Figure 4.

8 -

= S(N)
- T(N)
*+ F(N)
*G(N)
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For these examples one can show that assertion (iii) of Theorem IIL.3 is
satisfied, so T'4o, F; and 6,2 accelerate the convergence.
(iii) Let (S,) be the sequence defined by

Si=1, Sap=al"+pv", Sopp1=9A"+6"
S, is a solution of a linear recurrence.
Ex=1/2,v=1/3anda=1,8=0.2,7y=0.23;§ =1then lim, .Sz =
S =0 and (S,) € LAP(2,2). Assertion (i) of Theorem III.3 is satisfied, so

T2, F> and 0 2 accelerate the convergence of (S,). The results are given
in Figure 5.

15 1
10
1
5
-+ S(N)
0 + T(N)
- F(N)
< G(N)
=5 . T T T T T T —
0 10 20 30 40 50
Fig. 5
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