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SOLVING INITIAL-BOUNDARY VALUE PROBLEMS
FOR COUPLED SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

Abstract. In this paper an analytic solution of some initial-boundary
value problems for coupled systems of second order partial differential equa-
tions is given. The method is based on some algebraic matrix transforma-
tions and a matrix separation of variables technique. By truncation of the
infinite series solution, finite and computable approximate solutions and er-
ror bounds for them in terms of the data are given.

1. Introduction. Many physical systems cannot be described by a sin-
gle partial differential equation but are, in fact, modelled by a system of
coupled equations. So, the study of propagation of signals in a system of
electrical cables led to the investigation of a system of linear partial dif-
ferential equations. Some results related to these systems may be found in
(3, 5, 6, 11]. Also, systems of linear partial differential equations appear in
the study of temperature distribution in a composite heat conductor [4].
Numerical methods for solving such systems of coupled partial differential
equations are given in [7, 8, 13]. Methods based on the transformation of
the original system into a new system of uncoupled equations may be found
in [3, 5, 6, 14].

The aim of this paper is to find an explicit analytic solution of the
initial-boundary value problem

(1.1)  Ugs(z,t) — AUs(z,t)-BU(2,t) =0, O<z<p, t>0,
(1.2) U(0,t)=U(p,t) =0, t>0,
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(1.3) U(z,0) = f(z),
(1.4) Us(z,0) =0,

where the unknown U = (ui,...,un)T and f(z) take values in R™ and
A, B are matrices in R™*™ such that

(1.5) A is symmetric negative definite and A~!B is symmetric negative

0<z<p,

semi-definite
and f admits continuous derivatives up to order four in [0, p] such that
(16) 90 =@ =0, 0<i<4.

The explicit solutions are of considerable interest both in explaining the
physical phenomena and for checking results obtained by numerical meth-
ods. The paper is organized as follows. Section 2 provides a matrix separation
of variables method to solve problem (1.1)—(1.4) by means of a series solu-
tion. In Section 3 we obtain computable finite approximations of the infinite
series solution, and error bounds for the approximate solutions in terms of
the data are given.

If C is a matrix in R™*™, we denote by ||C|| the operator norm, defined
as the square root of the maximum eigenvalue of CTC, where CT is the
transpose matrix of C' [12, p. 41]. We denote by I the identity matrix in
R™>™ and the set of all eigenvalues of C is denoted by o(C).

2. A matrix separation of variables method. Suppose we are look-
ing for solutions U(z,t) of problem (1.1)—(1.2) of the form

(2.1) U(z,t) = T(H) X (z)

where T'(t) lies in R™*™ and X(z) lies in R™. Take a real number A such
that there exists a non-trivial solution of the boundary value problem

(2.2) X"(z)-AX(z)=0, X(0)=X(p)=0,
as well as a non-trivial solution T'(¢) of the matrix differential equation
(2.3) T"(t)+ A™Y(B - AI)T(t) = 0.

Then U(z,t) defined by (2.1) satisfies
Use(z,t) — AUs(z,t) — BU(z,t) = T(t) X" (z) — AT"(t) X (z) — BT (t)X (z)
= T()AX(z) + (B — \[)T(8)X (z) — BT(£)X(z) = 0.
Furthermore, from (2.2) it follows that
U0,t) = T()X(0) =0, U(p,t)=T(#)X(p)=0.

In consequence, for each value of A such that there are non-trivial solutions
X (z) and T'(t) of (2.2) and (2.3), respectively, one gets a solution U(z,t) of
the homogeneous problem (1.1)—(1.2), given by (2.1).
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An easy computation shows that taking A = A\ = —(kx/p)?, for any
vector ¢ in R™, the vector-valued function
Xi(z) = sin(kwzI/p)c

is a solution of (2.2). Now, consider the matrix differential equation (2.3)
corresponding to the value Az,

(2.4) Ty (t) + A7} (B + (kn/p)*)Ti(t) = 0

Following the ideas developed in [9], if we assume, for instance, that the
matrix Cx = —A~!(B + (kw/p)%I)) admits a square root Ry, then a set of
solutions of the matrix differential equation (2.4) is given by

Ti(t) = cos(tRi)E; + sin(tRy) E-

where E;, Ey are arbitrary matrices in R™*™. Thus, for arbitrary vectors
Ck, di in R™, the vector-valued functions

(2.5) Uk(z,t) = cos(tRy)sin(kwzlI/p)cy, + sin(tRy) sin(kwzI/p)ds

satisfy equation (1.1) and the boundary value conditions of (1.2).
Now we prove a lemma which ensures the existence of square roots Ry
for the matrix

(2.6) C = —A7Y(B + (kn/p)*I)
for any integer k > 1.

LEMMA 1. Let A and B be matrices in R™*™ satisfying the hypothesis
(1.5) and let k be a positive integer. If Cy is the matriz defined by (2.6)
and o(Cx) = {zix; 1 < i < m}, then there exist orthogonal matrices My, in
R™X™ such that

(2.7) Ry = M [diag(2/% 1 < i < m)]M;
s a square root of Cy, such that
(2.8) |Rx]| = O(k) ask— oo.

Proof. From (1.5), for any positive integer the matrix —(kn/p)?4 is
positive definite and the matrix —A~!B is positive semi-definite. Thus the
matrix Cj, defined by (2.6) is positive definite. Now, from Theorem 2 of [2,
p. 59], there exists an orthogonal matrix M in R™X™ such that

M CipM;7' = [diag(zik; 1 <4 < m))

where 0(Cy) = {zix; 1 < i < m}. Since 2 is positive for each i, k with
k > 1, 1 < i < m, there exists a real positive square root of z;; denoted by

‘1{ ? and an easy computation shows that

Ry = 1[d1ag(z},fz, 1 <1< m)|M
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is a symmetric square root of Cx. Moreover, as Ry is real and symmetric,
its norm || Rx|| is the maximum of the numbers |z;|'/2, for 1 < i < m [12,
p. 41]. Also, as Cy is real and symmetric its norm ||Cy|| is the maximum of
|zik|, for 1 < 4 < m. Since |[Mg|| = || M || = 1, we have ||Ri| = ||Ck||}/?
and by (2.6) the result is established.

Note that from (2.5) it follows that
(0Uy/8t)(z,t) = — Ry sin(tRy) sin(kwzl /p)ck + Ry cos(tRy) sin(knzl/p)dy .

Assume that there exists a solution U(z,t) of problem (1.1)—(1.4) of the
form

(29) U(z,t)= Z{cos(tRk) sin(kwzI/p)cy + sin(tRy) sin(kwal /p)di }
k>1

for appropriate vectors ci, di, to be chosen so that U(z,t) defined by (2.9)
satisfies the initial conditions (1.3) and (1.4). If we assume that we can
compute the partial derivatives by termwise partial differentiation in the
series (2.9), then we have

(2.10) Ui(z,t) = Y Ri{- sin(tRx)sin(knzI/p)ck
k>1
+ cos(tRy) sin(knzl /p)di },
Ugas(2;t) = Z(ils::fr/;s»)2 {— cos(tRy) sin(kwzI /p)ck
k>1
— sin(tRg) sin(kwzI/p)dy} .

Taking t = 0 in (2.10) and imposing the condition (1.4), it follows that
> Rysin(knzl/p)dy = 0.

k>1
Thus we can take dy = 0 for £ > 1 and (2.9) then takes the form
(2.11) Uz, t) = Z cos(tRy) sin(knzl/p)cy .
k>1

Taking into account the condition (1.3), from (2.11) the coefficients ¢; must
satisfy

(2.12) U(z,0) = f(z) = ) _ sin(krzI/p)ck.

k>1
If e = (ck1y---sckm) Ty f = (f1,..., fm)T, the condition (2.12) is equivalent
to the conditions

fi(z) = Zsin(kﬂ'm)ckg, 1<i<m,

k>1
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From hypothesis (1.6) and scalar Fourier series theory, it follows that
(2.13) cki = (2/p) fp sin(knz/p)fi(z)dz, 1<i<m, k>1.
0
Note that (2.13) may be written in vector form as
(2.14) ek = (2/p) ‘f sin(krzI/p)f(z)dz, k>1.
0

Taking into account (2.11) and (2.7) and that
cos(tRy) = M,:l[diag(cos(tz,-k); 1 <i<m)|M;
we have
(2.15) U(z,t) = Z M;l[diag(cos(tz‘;k); 1 < i < m)|My sin(krzI/p)ex
k>1

where c; is defined by (2.14).

To prove that U(z,t) defined by (2.14), (2.15), is a solution of problem
(1.1)—(1.4), we have to justify the convergence of the series which defines
U(z,t), as well as that the partial derivatives with respect ¢ and = may be
computed by termwise partial differentiation in the series (2.15).

Note that from (1.6) the coefficients in the Fourier sine series expansion
of the f;(z), for 1 < i < m, satisfy

(2.16) lekil = O(k™*) ask — oo
(see [16, p. 71]). On the other hand, as M; is an orthogonal matrix we have

| M|l = || M| = 1. As || sin(knzI/p)|| < 1, from (2.5) and (2.16), it follows
that

|Uk(z,t)|| = O(k™*) as k — oo, uniformly for (z,t) € [0,p]x]0, o0

Hence, from the Weierstrass majorant criterion [1], the vector series (2.15),
(2.14) defines a continuous function U(z,t) in [0, p]x]0, co[. Also, note that
the partial derivatives of the general term Uj(z,t) of (2.15) take the form

(Uk)t(z,t) = — Ry sin(tRy) sin(knzI /p)ck
(Uk)z(z,t) = (kmwz/p) cos(tRy) cos(kwzl /p)ck ,
(Ui)et(z,t) = —R2 cos(tRy) sin(kmzI/p)ey
(Uk)zz(z,t) = —(kwz/p)? cos(tRy) sin(krzI /p)cy .
From (2.8), (2.16) and (2.17), it follows that
gy IOHEHI=0E™), (el =OG™) ask—co,
I(Uk)et(z, )| = Ok~2),  [|(Uk)ea(z,t)l| = O(k™2) ask — oo,

(2.17)
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uniformly for (z,t) € [0, p]x]0, 0o[. From (2.18) and Theorem 9.14 of [1], it
follows that U(z,t) defined by (2.14), (2.15) is a continuous vector-valued
function which admits second order partial derivatives that may be com-
puted by termwise partial differentiation in (2.15). Thus the following result
has been proved:

THEOREM 2. Consider the coupled initial-boundary value system (1.1)-
(1.4), where the matrices A and B satisfy (1.5) and f(z) satisfies (1.6). Then
a solution U(z,t) of problem (1.1)—(1.4), is given by (2.14), (2.15) where M
and z;;, are defined by Lemma 1, for1 <i<m, k > 1.

Remark 1. If we do not impose the condition (1.6), then if one extends
f(z) to an odd function on the interval [—p, p| and next periodically to the
whole real line, then the extended function is not necessarily continuous and
we only can assure that

lekll < a/k + B/k* + o/k® + /k*
for some positive constants ¢, 3, ¢ and « (see [16, p. 71]).

- 8. Finite approximate solutions and error bounds. The series
solution U(z,t) of problem (1.1)—(1.4), provided by Theorem 2, has two nu-
merical drawbacks. First of all, the infinite series is not computable, and
secondly, the general term of (2.15) requires the computation of the orthog-
onal matrices M}, as well as the eigenvalues z;; of the matrix Cj, defined by
(2.6). Although the eigenvalues of any real matrix @ can be found by using
its Hessenberg form, a sequence of orthogonal transformations to get the real
Schur form of Wintner-Murnaghan and the QR-algorithm of Francis (see
contribution IT/14 of [15]), it is interesting to compute finite approximations
to the exact solution U(z,t), thereby avoiding the explicit computation of
the eigenvalues and expressing the approximate solutions in terms of data.

Note that if Q'/2 is a square root of a matrix @ € R™*™, then by using
the series expansion of cos(tQ/2), it follows that

cos(tQ'/?) = 3 (~1Y (tQ"/*)¥ /(25)! = ) ,(-*Q)?/(23)!
320 i>0
and from Theorem 11.2.4 of [8, p. 390], and Lemma 1, we have

61 |eostemy) — Y (-0 /@] < mfta+ 1
=0

for any positive real number ¢.
Let £ be an admissible error. From (2.16) there exists a positive constant
L and a positive kg such that

(3.2) llek|l < L/k* for k>1
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and

(3.3) > llewll < e/2.

k>ko
Since 3,5, n~* = 7*/90, let go be a positive integer such that
(3.4) 1/(go + 1)! < 45¢/(mL7?).
From (3.1)-(3.3), if we set

ko o

(35)  Ula,tko,q0) =Y Y (~t*Ch) sin(knal/p)en/(25)!

k=1 j=0
it follows that
|U(z,t) — U(z,¢, ko, o)l

<Y el i ||{ cos(tRy) — i(ﬂzzck)f /(2;;):} sin(km:I/p)ck"
=0

k>ko k=1 J
<e/24+mL( Y n) /(@ +1) <&
n>1

for any (,1) € [0,p]X]0, co].
Note that from (2.6), the finite series (3.5) may be written in terms of
the data, in the following form:
ko g0
U(,t,ko,q0) = Y (B + (kn/p)*I)) A~ sin(knzl/p)ext™ /(25)!
k=1j=0
Thus the following result has been established:

THEOREM 3. Let € > 0, and let ko, gqo be positive integers satisfying
(3.3) and (3.4), respectively. Then U(z,t,ko,qo) is an approzimate solution
of the problem (1.1)—(1.4), such that if U(z,t) is the ezact solution of the
problem given by Theorem 2, then ||U(z,t) — U(z,t, ko, o) < &, uniformly
for (z,t) € [0,p]x]0, ocol.
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