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EVALUATION OF THE FERMI-DIRAC INTEGRAL
OF HALF-INTEGER ORDER

1. Introduction. The Fermi-Dirac integral F), is defined by

zhdx

Fu(z)= TFe—=

0

(> -1).

Cody and Thacher [2] have obtained rational approximants (in z or an-
other variable) to this integral for p = —1, 1, 2. To find them the authors
computed first a table of the values F,(z). All computations were carried
out in 25-decimal arithmetic. Methods which were used (in particular, a
Sommerfeld-Dingle expansion for z > 4) gave, however, rather poor accu-
racies, about 9-13 significant digits. An accuracy of approximants based on
these values F,(z) was a priori still more limited, up to 8-9 significant digits.

In [10], Section 3, the author of this paper gave a new method of com-
puting F, for half-integer x and for rather small z, say for 2 < 2. (N.B.
In the abstract of [10] and at the beginning of Section 1 the upper limit
of integration in the definition of F), is evidently erroneous.) The goal of
this paper is to show that some formulae from [10], Section 4, with com-
plementary techniques (continued fractions, convergence acceleration) are
better than those used by Cody and Thacher. In fact, it turns out that
it is possible to evaluate F),(z) for half-integer p# and for sufficiently great
z, say for 2 > 2, with accuracy only a bit worse than that which is guar-
anteed by the arithmetic in use. The same method permits us to evaluate
some linear combinations of F, important in certain physical applications.
The method is rather time-consuming and it can be recommended when
a table of the values F),(z) is needed to construct an approximant of the
Fermi-Dirac integral.
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2. Continued fractions. In [10], Section 4, the following expansion
was proved:

(1) Fpap2)=

[m/2]
__4 —1) 3 _,. 2j-1 72 By; Lm+1/2-25
2m+ 1 ,.Z( D (’"+2 2’) @G

1)1
#2077 (3), Elwﬂn Gom(VED)  (m=1,2,..),

where (t); denotes the Pochhammer symbol (ie., (t)o := 1, (¥); ==
t(t+1)...((+3j—1) for j = 1,2,...), By; is the (2j)th Bernoulli num-
ber, a(m) := (-1)™,

(2) Gi1(t) := e~ Erfi(t) + e Erfe(t),

and Erfi, Erfc are known special functions:

t

Erfi(t) := feyady, Erfe(t) := fe“‘ady.
0 t

There are several continued fraction expansions for these functions. For
sufficiently great positive ¢ the following continued fractions are recom-
mended:

1t # 2t? 3i?
L+o-Tra-T+P-]+0-
([7], (7.3.108); it converges for every complex t) and

e~ Erfi(t) =

i F 413 2 %
Efi=2 1 = 1 %2 1
e B = T AT € Tk T

([7], (6.2.24); it converges if Ret > 0).
Substituting above u := 1¢~? we obtain

1 2u 4u 6u
1+u—1‘+3u—1+5u— 1+7u—..."
v 2u 3u 4u
1+'14'1 4 Lo T s
It can be proved that the nth approximant of (3) is equa.l to Ap(u)/ Bn(u),
where

(3) 2te™" Erfi(t) =

(4) 2tet” Erfe(t) =

Ba(u) = Z( 2)k(— ﬂ)k( 2) (n=0,1,..).

k=0
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It is a polynomial in u, with positive coefficients. Then a known formula
implies that for u > 0,2 > 0

Ap(u)  Ana(u) _ L ae1 (F2u)(—4u)...[-(2n — 2)u]
Bn(u) Bn-1(v) == Bp—1(4)Bya(u) >0

and the sequence {A,(u)/B,(u)} increases. The Nth approximant, calcu-
lated by the three-term recurrence formula for the numerators A,(u) and
the denominators B, (u), can be accepted as the best one if the computed
values satisfy the inequality Ax(u)/Bn(u) > Any1(u)/Bn+1(u) (contrary
to an inequality satisfied by the exact values). To check the accuracy of
the results the values Ay(u)/Bn(u) with the same N were computed by
the backward algorithm. The results obtained by the two methods were
identical. The speed of convergence of the continued fraction (3) turned
out to be quite satisfactory for any u > 0. In fact, when Turbo Pascal 4
for IBM PC and extended type variables are used, the N required to ob-
tain 2¢exp(—t)? Erfi(t) with 17-18 significant digits increases from 13 for
u = 0.002 to 67 for u = 0.014, 0.016, 0.018 and then decreases slower and
slower to 37 for u = 0.1, 28 for u = 0.2 and 25 for u = 0.3.

Let us now turn to the formula (4). For u > 0 the approximants of
this continued fraction are alternately greater and smaller than its value.
Therefore we can accept, as the best computed value of 2¢ exp(#?) Erfc(t),
the first Nth approximant (computed via numerators and denominators)
which, together with the (N + 1)st one, violates the property stated above.
In this case N increases a little faster than u. Using Turbo Pascal 4 for IBM
PC and extended type variables the values 20, 119, 142, 280, 601, 1095,
1490 and 2008 of N were obtained for » = 0.01, 0.1, 0.2, 0.5, 1, 2, 3 and
4, respectively. If, for example, z > 2 in (1), then £ > /2, u < } and the
maximal N needed is about 160.

Because of great values of N it is natural to seek a method of convergence
acceleration suitable for the continued fraction (4). Some methods were
tested. (4) is a particular case of the continued fraction

aq (/5]
() T & 1 s

such that {a,} — oo; namely, a,, = (n—1)u for n > 1. Jacobsen, Jones and
Waadeland [6] suggest that the approximants

a @ an
"TT4 T 41
of (5) should be replaced by the modified ones:
a as Ay

Salto,) =

T+14...41+w,
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with

i.e., in the case (4), with

(6) wL::ﬂmc+%—%.

A more sophisticated choice of w, results from Hautot’s [5] considerations.
In his notations oy = ai41. In general, ay should be expanded in powers of
k—1:

o = k"'(ao-}-al/k-l-ag/kz + ...)
(ax used here has clearly nothing in common with the notations in (5)). In
the case (4) this expansion is extremely simple: ¥ = 1, ap = u, a; = 0 for
7 > 0. Using the corresponding entry of Table 3 in [5] the expression

) wn = ull o= — 1+ VA Y pif ()

=0
can be obtained, with

1 _ —2u+1
pﬂ_ﬁ! P1—2, D2 = 8\/5 ’

(8) _‘4u2+4u-1 _2u-—1

P3=g K= "gu/m ' PT 33

The expressions (6) and (7) are, of course, nearly identical:

nu-i-l l—wu—l+ L +
4 2 2 8/nu 7
P, P2 1 —-2u+1
< B B ] = B Bt s
+ﬁ(po+ﬁ+n+ ) e 2+ 8/nu ¥

If z > 2in (1), then ¢t > /2 in (2) and u < 0.25 in (4). Nevertheless,
in order to investigate in detail the two methods of convergence accelera-
tion for the continued fraction (4), a larger range of u, namely the interval
[0.05, 5], was examined. The results of numerical computations lead us to
the following conclusions:

(i) The sequence {S.} where S}, := S,(w},) (cf. (6)) behaves quite regu-
larly:
8 <8RS un B N €5
Thus, we can stop the calculations when the evaluated values violate this
property, i.e. for N’ such that

9 (-1)N' (S = Shig1) 0.
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Let us recall here that for the sequence of approximants S, an analogous
stopping criterion has the form

(—I)N(SN —Sn4+1)20.

The ratio N'/N changes rather regularly from 0.83 to 0.58 when u ranges
between 0.05 and 5.

It is well known that S,(w,) (whatever the w, are) can be calculated
by the formula
Ap+ wpAp_q
B, + wy By ’
where A,, and B, denote the numerator and the denominator, respectively,
of §,. Taking this into a.ccount together with the necessity to evaluate the
expression (an41 + 1)!/% — 1, one can assert that evaluation of the sequence
{S!} is at least thce as time-consuming as evaluation of the sequence {S,}.
Therefore, in the case of the continued fraction (4), the use of modifying
factors w:‘ cannot be recommended for u € [0.05, 5).

(ii) The modifying factors w], (cf. (7), (8)) are better than the w), in
the sense that S/ := S,.(w]!) approximates the value of (4) more accurately
than S/, does. On the other hand, the sequence {5, } behaves, locally, rather
irregu]a.r]y In particular, it is possible that S}, while being identical with

wi1, differs from the value of (4). For example, if u = 0.180667 then the
numbers S for n =2,3,...,7 equal

0.8749009,
009,
271,
214,
2927,
223,
respectively. Thus, in the Hautot method, it is more difficult to decide

whether S sufficiently well approaches the value of (4) or not. The following
test turned out to work well:

Su(wy) =

SN“—I l Il _ NM
N"+1

Nu
€ denotes here a small number exceeding several times p, i.e. the relative
precision of numbers in use. For g = 1.4 X 10717 the value ¢ = 10~1® was
chosen with success.

Obviously, the above test is more complicated (and less elegant, too)
than (9). The same is true for the modifying factors. The numbers po,
71 — 1,ps,...,ps may be calculated only once but the evaluation of w,, for
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example by the formula

wy = (ps/n+p3)/n+pr — 1+ /al(pa/n+ p2)/n + po),

remains to be done for each n. It requires one square extraction, four divi-
sions, one multiplication and five additions. Thus, the cost of evaluating Sy
can be estimated as 3.5 times greater than for S,. In other words, in the
case of the continued fraction (4) the Hautot method can be recommended
only if N” < ZN. This inequality holds only for » > 0.9, which rather
excludes the use of the Hautot method in our main problem, namely that
of the Fermi-Dirac integral evaluation.

Taking into account a regular behaviour of the sequence {5}, an at-
tempt was made to accelerate its convergence by Levin’s ¢ transformation.
More precisely, the following formulae were applied for n = 1,2,...:

S.F
n 1= Sny1— Sn, P,{‘o):=_n, LU):z'"—'«'
3 +1 A Q E
Py =P - PO, Q=00 - (fn>1),

PO :=(n-j+1)PUD —(n+ 1)P,£f._,1+)1

n-J n—j

(fn>27=2...,n-1),
QY= (n—j+ 1)@V (n+1)Q"_J‘+’1}

PY
§P. =250 (j=0,...,n-1)
Q(
(cf. [4]). For an easily accelerable sequence converging to S each antidiagonal
(10) SO, ik 8770

ends with the best approximation of S. This is not the case for the sequence
{S!}, as shown in the following table. Its each entry, j, indicates the number
S,(f_’j which is, on the antidiagonal (10), the best approximation of the value
of (4). Obviously 7 > 1, except for small values of u or n:

n
«a\ 2 3 45 6 7 8 9101112
005 1 1 1 1 1 1
0251 1 1 1 1 11113 3 3
0.5 1 1112 2 4 46
1 11 2 3 445 6 7 8
5 1 12 3 45 6 7 8 9
Briefly, it is not a good idea to apply Levin’s ¢ transformation to the sequence

{5:}
Some other methods of convergence acceleration were also tested in the
case (4). The final conclusions are rather discouraging: probably the cheap-
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est method of evaluating the values of (4) consists in using this continued
fraction without any changes or transformations.

3. Summation of the series (1). To find a value of the Fermi-Dirac
integral Fy,_;/; we can use the expansion (1). We will show that owing
to the particular form of the series in (1), a considerable acceleration of its
convergence is possible. This is important because, as we already know, the
calculation of each term of this series is very expensive.

Let us remark first that every term G41(vkz) in (1) requires the eval-
uation of the continued fractions (3) and (4) for u = 1/(2kz). As k — oo,
the fractions both tend to 1. Therefore, to improve slightly the accuracy of
the results, it is worthwhile to introduce the auxiliary functions:

Fi(t) := 2te* Erfi(t) = 1, Fc(t) := 2te*” Erfc(t) - 1.
Then
(1)  Gi(t) = %[Fi(t) +Fe()+2], Ga(t)= %[Fi(t) ~ Fe(2)].

Fi and Fc can be calculated similarly to the fractions (3) and (4). In fact,
instead of the numerator A, of each approximant A,/B,, it suffices to
evaluate the difference A, — B, obeying the same three-term recurrence
formula as A, and B,.

Let us remark next that if m in (1) is an odd integer, m = 2] — 1, then
there the function G; occurs. According to (11) we decompose the series
from (1) into two series. The first contains the functions Fi and Fc and the
second is

1 read -1 k-1 22l _ 1)x2! .1
E( kz"‘ = (2:)!) B“T/?'

In pa.rticula.r,

Fipa(2) = 3"2 + i eV

ot k3/2

=2 12,rzz—1f2+ z—wz( D™ IF(VRR) + Pe(VER),

sfz x2/2 (- 1)" 1
Fya(z) = Z o G-1(Vkz)

2 5 1/2 _ - (_l)k_l :
-2 A xz / z 1!zZT[pl(\/E)—Fc(\/E)],

k=1
Fspa(2) = 712 2"3{2 = Z( k'i’)fz Gl(\/’_‘;)
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_2 Ay 32, 1 4 -1/2
=k 12jrr 2+ 1

+ 18—5z—1f2 g (‘Lﬁ{ﬁ(\/ﬁ) + Fe(Vkz)].

In some physical applications the following linear combinations of these
integrals are also needed:

(12) Fuyza() = 2 Fya(e) = 5Faya()

AR R o |
- %n.z A % /2 ; (_L_)z_[pi(,/ﬂ) + Fe(Vkz))

_ 18_52_1;2 i %IFWE) — Fe(Vk2)],
k=1

7 3
(13) .F]iz;g(Z) = —F5fg(2) — 52F3!2(Z) -+ —ZzFl)!g(Z)

=L 49 a za;zz( o i

3 384
X [Fi(x/E) + Fc(\fﬁ)]
15 (= 1)
+‘4_‘"‘m§ CEV* 5i(vRz) - Fe(vVRz)]

105 170 = (=1)F1 .
T / ;T[Fl(\/k_z)+l?c(\/5)].

For great z the values F3/,(2) and Fj/,(z) are of order z%/2 and 27/2, respec-

tively, whereas the values F}5,1(2) and Fy/z,5(2) are of order 2!/2 and 2312,
respectively. Therefore it is evident that evaluating these linear combina-
tions by means of the tabulated values of the Fermi-Dirac integrals (cf. [1],
[8]) may cause a considerable loss of accuracy. The formulae (12), (13) do .
not have this drawback.

It follows from (3) and (4) that for great ¢ (i.e., for small u)
ot~ Erfi(t) ~ 1 + u + 3u?, ote!” Erfe(t) % 1 — u + 3u?.
Then, as k — oo,
Fi(vVkz) 4+ Fe(Vkz) ~ EEﬁ’ Fi(vVkz) — Fe(Vkz) ~ kl—z

and hence all the series occurring in the formulae for the Fermi-Dirac inte-
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grals and their linear combinations (12), (13) behave like the series

Z (1) 1)"-1

They can be accelerated by the following algorithm applicable, more gener-
ally, to sequences {s;} such that

(m =4,6).

00
c:
81;"-28“}‘(-“1)’: k—]_":_'s- (k=1,2,...).
i=1

The algorithm belongs to a wide class of series transformations including,
among others, Levin’s transformation, but, contrary to the latter, is linear
with respect to the elements s: forn =1,2,...

P,Eo) = nds,, Qw) =03,

PO, = e PSP 4
Qu 1) (i-1) (=linm=1),
D= (n-9)QYT +0QY ),
(J)
s
s .= = -
g Q"’ (G=0,...,m—1).

It has been experimentally checked that for each z > 2 at most 15 terms
of the series suffice to guarantee about 16-17 significant digits in the values
of Fyy, F3/3, F5/; and of their linear combinations Fy 5, Fi/3;2. This is
rather surprising bearing in mind the difficulties caused by the function Erfc
(cf. Section 2).

4. Rational approximations. In [2] approximate expressions for the
functions Fj, (4 = —%,%,3) were given. Similar approximation forms are
applicable to the linear combinations F}/3;1(2) and Fj /2,5(2) (cf. (12), (13)).
Their approximation is necessary at least for sufficiently great z because
these combinations are then considerably less than their sums.

Consequently, one should solve some problems of uniform (Chebyshev)
weighted rational approximation. For example, bearing in mind (13) and the
conclusions of [2], we seek a rational function R such that for a sufficiently
great a > 0 (for a = 7, say)

1
Fipa(2) % gn°2** + 27 2R(z™) (2 2 ).

It is natural to minimize here the relative error of approximation, defined
as

” R(z7%) — 22 Fy jy0(2) — 1222
212 Fy ja9(2)

[a,00)



298 S. Paszkowski

where
I1Dllz == sup | D(2)] -
In other words, R(y) should approximate the function
4 - 1 5 _
F(y):=y AR pga(y/?) - g’rgy b

in I := [0,a~/2], with the weight function G(y) := y~V4F j2,2(y~1/?). The
minimum of ||(R— F)/G||; is taken over all the rational functions R = P/Q
with numerators P of degree < I and denominators Q of degree < m, for
some fixed I, m. Such a problem is well known (cf., for example, [9] or [11])-
To solve it, the so-called second Remes algorithm is often recommended.
Applying this method one should solve many systems of equations like this

one:
(14) R(-":k) — F(xk)
G(zk)

where zx € I, zg < 21 < ... < Ti4m4+1. Besides the coefficients of P and
Q, there is an extra unknown here, namely . Several methods of solving
such nonlinear systems were developed. Therefore we will describe only a
detail of our Remes algorithm implementation, possibly distinguishing it
from earlier ones.

Let, for the moment, P, @, R be arbitrary functions defined on {zo,
zi,...} and such that P = QR. Their divided differences satisfy the identity

=(-D* (k=0,...,l14+m+1),

P(Zgsenny@n)= ZQ(-’E[],...,35)R(3j,...,£n) (=010

3=0

(cf., for example, [3], p. 158). If P and Q are polynomials of degrees defined
as above then

P(ziy..Zips) =0 (s2141), Q(zi...zi4s) =0 (s> m+1)

and hence

(15) mIEm}Q(%---ﬂj)R(%---,zn)=0 (m=1+1,....0+m+1).
Let ~
Q=) Qi where Qufz)i= (5= 50)..(z—5ict) (i=0y..cym).
Then -

Qi(a‘o,-..,zj-)= {[1) Ej.i3$
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and (15) implies the following linear homogeneous system satisfied by the
coefficients ¢;:
min{n,m}
E R(zjy...s2n)eci=0 (n=1+41,...,04+m+1).
j=0
Hence, provided that R does not vanish identically,
R(Su,...,ﬂ!“.]) “es R(J:m,...,a}[.n)

R(2oy.. s Zigm+1) -+ R(Zmyeeor Tipmer)
(cf. [3], p. 158, (3.16b)), where R(z;,...,z;) := 0 for ¢ > j. It is worthwhile
to remark that (16) is a difference analogue of the differential condition

[R@IHD ... [a™R(@)H+D

(16)  Ae):=

....................................

[REIHD L R |

characterizing rational functions R of the type defined above ([9], §9.2).
According to (14),

(17) R(zx) = F(zx)+eH(zx) (k=0,...,04+m+1),
where

H(zi):=(-1)*G(zx) (k=0,....l+m+1).
Hence in the determinant A(¢) each entry R(z;,...,z;) equals F(z;,...,z;)
+ eH(zi,...,2;). The quantity € can be evaluated by solving the equation
A(e) = 0 (i.e., a generalized eigenproblem). In computations the regula falsi
method turned out to be very efficient.

After finding ¢ the rational function R can be evaluated from the interpo-
lation conditions (17) for k = 0,...,!+m. The resulting value of (R— F)/G
at ;4,41 permits one to verify the precision of the results.

There are well known difficulties associated with rational interpolation
and approximation, such as nonexistence of an interpolant, rather compli-
cated characterization of the best approximant and so on. Fortunately in
none of the considered cases did such phenomena occur.

Finally, four rational functions R;, R{°, Ry, R3® were obtained. They
are such that

Ry 2L #2857
Fipa(z) = { ( l;g + 273/ RP(272) E7 <z< ou:):a’),

2<2<L17),
Fx{z;z(z) ~ { 1 gz)Sﬁ + z“lf?Rm(z_z) E? < : < 0()))

The numerator (N) and the denominator (D) of each rational function R(z)
is a polynomial of degree four. The coefficients of z°, ..., z* in these polyno-

(18)
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mials are given below; the notation mEe is used there for m x 10¢. The last
row of the table contains the maximal relative errors (ME) of the approxi-
mation forms (18). It should be noted that the interval [2, 00) was split into
two subintervals [2,7] and [7, 00) in such a manner that these four errors be
approximately equal.

I—

Ry R{? Ro R
7.8490060468E4 —2.2163308226E—7 —2.4803761104E5 1.2941864362E—6
4,9370456818E4 1.2333674553E—5 —1.2196627916E5 —2.2844809340E—5

N 1.4969689827TE4 —2.8706825487TE—3 —3.1694056504E4 1.7929705949E~-2
2.1640900717E3 2.2158396050E—2 —4.8961272394E3 7.5620665001E—2
4.9084345912E1 —3.2759754440 —1.5941589997E3 1.8821262831E1
2.7193572913E4 7.8012049691E—8 —2.2974666173E4 7.5920649530E—8
2.8278463515E3 —4.8022523179E—6 —2.1633269279E3 —1.4882593217TE—6

D 1.7193827267TE3 1.0310564589E—3 —1.1508828042E3 1.0519838079E—3
6.7216742252E1 —1.3856896622E—2 —8.2815885995E1 2.5543094061E—3
1 1 1 1

ME 5.0E-9 3.0E-9 6.2E-9 2.5E-9
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