GEOMETRICAL ASPECTS OF MEASURES OF DEPENDENCE FOR RANDOM VECTORS

Introduction. The paper consists of two parts: geometrical and probabilistic.

In the first part we introduce the notion of an angle between linear subspaces and of its measure. Let $(\mathcal{X}, \mathcal{Y})$ be a pair of closed subspaces of a real separable Hilbert space $(H, \langle \cdot, \cdot \rangle)$ and let P'_1, P'_2 be the orthogonal projections of \mathcal{X} on \mathcal{Y} and of \mathcal{Y} on \mathcal{X}, respectively. The angle is defined for pairs $(\mathcal{X}, \mathcal{Y})$ such that $P'_2 P'_1$ and $P'_1 P'_2$ are compact. The set of all pairs $(\mathcal{X}, \mathcal{Y})$ with this property will be denoted by $\mathcal{K}(H)$; by a^2 we will denote the largest eigenvalue of $P'_2 P'_1$ among eigenvalues smaller than 1, which is equal to the respective eigenvalue of $P'_1 P'_2$. Then, for any $(\mathcal{X}, \mathcal{Y}) \in \mathcal{K}(H)$ we define the angle between \mathcal{X} and \mathcal{Y} as the angle between unit eigenvectors of $P'_2 P'_1$ and $P'_1 P'_2$ which correspond to a^2, and $\arccos a$ is said to be the measure of this angle.

If H is finite-dimensional then $\mathcal{K}(H)$ consists of all pairs of subspaces of H.

In the probabilistic part of the paper the cosine of the angle between subspaces \mathcal{X} and \mathcal{Y} of a real separable Hilbert space $(L^2(\Omega, \mathcal{A}, P; \mathbb{R}^k), \langle \cdot, \cdot \rangle_\Lambda)$ is considered. This space consists of all k-dimensional centered random vectors with finite covariance matrix, and the scalar product is given by

$$\langle X, Y \rangle_\Lambda = E(X^T \Lambda^{-1} Y) = \text{tr}(\Lambda^{-1} \Sigma_{12}),$$

where Λ is a positive definite symmetric $k \times k$ matrix, and Σ_{12} is the covari-

Key words and phrases: Hilbert space, compact operator, angle between linear subspaces and its measure, Sampson’s measure of closed dependence, Jupp & Mardia’s measure of dependence, Sampson’s correlation ratio, maximal canonical correlation, coefficient of maximal correlation, conditional expectation.
ance matrix of X and Y. Thus, we define for $U \in \mathcal{X}, V \in \mathcal{Y}, (X, Y) \in \mathcal{K}(H)$,

$$
\varrho_A(U, V) = \frac{(U, V)}{\|U\|_A \|V\|_A},
$$

which may be interpreted as the cosine of the angle between U and V. Maximal values of this expression on suitably chosen sets of pairs of random vectors will serve as measures of dependence between X and Y. Let \mathcal{L}_X be the subspace spanned by X, let $\mathcal{H}_X = \{AX \mid A \in \mathcal{M}_k\}$ where \mathcal{M}_k is the set of all $k \times k$ matrices, and let \mathcal{L}_X^2 be the set of all square integrable random vectors of the form $f(X)$ where f is a Borel measurable vector function; then for $i = 1, \ldots, 5$

$$
\varrho_A^{(i)}(X, Y) = \sup \{\varrho_A(U, V) : U \in \mathcal{X}_i, V \in \mathcal{Y}_i\},
$$

where $(\mathcal{X}_i, \mathcal{Y}_i)$ is respectively equal to $(\mathcal{H}_X, \mathcal{L}_Y), (\mathcal{L}_X^2, \mathcal{L}_Y), (\mathcal{H}_X, \mathcal{H}_Y), (\mathcal{L}_X^2, \mathcal{H}_Y), (\mathcal{H}_X, \mathcal{L}_Y^2)$. The supremum is attained if at least one of the subspaces \mathcal{X}_i and \mathcal{Y}_i is of finite dimension, i.e. for $i \leq 4$. Then there exist (X_i, Y_i) such that $\varrho_A^{(i)}(X, Y) = \varrho_A^{(i)}(X_i, Y_i)$. Moreover, for $i \leq 4$, $(\varrho_A^{(i)}(X, Y))^2$ is the maximal eigenvalue of $P_i P_i'$ and $P_i' P_i'$.

Since the measures $\varrho_A^{(3)}(X, Y)$ are identical for any A, the subscript A may be omitted. The same concerns $\varrho_A^{(4)}$, and also $\varrho_A^{(5)}$ for any (X, Y) such that $\varrho_A^{(5)}(X, Y)$ is defined.

The family $(\varrho_A^{(1)}, A \in \mathcal{M}_k)$ is strictly related to the measures of dependence proposed by Höschel [1] and by Jupp and Mardia [3]. Höschel’s measure is defined in a complicated manner and it is computationally inconvenient, while Jupp and Mardia gave no justification for their proposal. We show that for any (X, Y) Höschel’s measure is equal to $\varrho_A^{(1)}$ for A equal to the covariance matrix of Y and that Höschel’s measure is equal to the square of that proposed by Jupp and Mardia divided by the squared rank of the covariance matrix of Y.

The measures $\varrho_A^{(2)}, A \in \mathcal{M}_k$, introduced by Sampson [7], generalize the correlation ratio between a random variable and a random vector. The measure $\varrho^{(3)}$, known as maximal canonical correlation, was proposed by Johnson and Vehrly [2]. The measure $\varrho^{(4)}$ is closely related to another measure defined by Sampson [7]: Sampson’s measure is of the same form but \mathcal{H}_Y is restricted to BY such that $\text{cov}(BY) = A$.

Sampson remarked in his paper that the procedure of maximizing $\varrho_A(U, V)$ on $\mathcal{L}_X^2 \times \mathcal{H}_Y$ can be treated as a half way between maximal canonical correlation $\varrho^{(3)}(X, Y)$ and maximal correlation $\varrho^{(5)}(X, Y)$.

Maximization of $\varrho_A(f(X), g(Y))$ on $\mathcal{L}_X^2 \times \mathcal{L}_Y^2$, which is performed for $i = 5$ requires the compactness of $P'_2 P'_1$ and $P'_1 P'_2$. It is shown that the operators are compact if $P_{(X,Y)}$ is absolutely continuous with respect to
$P_X \otimes P_Y$ and the square of the density of $P_{(X,Y)}$ is integrable. Obviously, P_X, P_Y, $P_{(X,Y)}$ are the distributions generated by the random vectors X, Y and (X,Y), respectively. For (X,Y) satisfying these assumptions maximal correlation exists (Theorem 2) and is identical for any matrix A. Clearly, it generalizes the maximal correlation considered by Rényi [5] for a pair of random variables.

Generally, $\varepsilon_A^{(i)}(X,Y)$ is the cosine of the angle between the respective subspaces for any $i \leq 5$ and for any (X,Y) such that $\varepsilon_A^{(i)}(X,Y) < 1$.

1. Angle between linear subspaces. Let $(H, \langle \cdot, \cdot \rangle)$ be a separable real Hilbert space, and let \mathcal{X}, \mathcal{Y} be its closed subspaces.

Let Z denote $\mathcal{X} \cap \mathcal{Y}$ and let \mathcal{X}_0, \mathcal{Y}_0 be the orthogonal complements of Z in \mathcal{X} and \mathcal{Y}, respectively. We assume that $\mathcal{X} \neq Z$ and $\mathcal{Y} \neq Z$. Continuity of the scalar product implies closedness of \mathcal{X}_0 and \mathcal{Y}_0.

Let $(x_i, i \in I)$ and $(y_j, j \in J)$ be orthonormal bases of \mathcal{X}_0 and \mathcal{Y}_0, where I and J are some sets of indices, and let

$$
B_{\mathcal{X}_0} = \{x \in \mathcal{X}_0 : \|x\| = 1\}, \quad B_{\mathcal{Y}_0} = \{y \in \mathcal{Y}_0 : \|y\| = 1\},
$$

$$
s = s(\mathcal{X}, \mathcal{Y}) = \sup \{\langle x, y \rangle : x \in B_{\mathcal{X}_0}, y \in B_{\mathcal{Y}_0}\},
$$

$$
p_0 = \text{card } I, \quad q_0 = \text{card } J.
$$

Furthermore, let $P_1 : \mathcal{X}_0 \to \mathcal{Y}_0$, $P_2 : \mathcal{Y}_0 \to \mathcal{X}_0$ be the linear transformations defined by

$$
P_1 x = \sum_{j \in J} \langle x, y_j \rangle y_j, \quad x \in \mathcal{X}_0,
$$

$$
P_2 y = \sum_{i \in I} \langle y, x_i \rangle x_i, \quad y \in \mathcal{Y}_0.
$$

Thus, P_1 (P_2) is the orthogonal projection of \mathcal{X}_0 on \mathcal{Y}_0 (of \mathcal{Y}_0 on \mathcal{X}_0). By the continuity of P_1, P_2 the operators T_1, T_2, defined as

$$
T_1 := P_2 \circ P_1,
$$

$$
T_2 := P_1 \circ P_2,
$$

are also continuous.

Theorem 1. If T_1, T_2 are compact then there exist vectors $x_0 \in B_{\mathcal{X}_0}$ and $y_0 \in B_{\mathcal{Y}_0}$ such that

$$
s(\mathcal{X}, \mathcal{Y}) = \langle x_0, y_0 \rangle,
$$

$$
T_1 x_0 = s^2 x_0,
$$

$$
T_2 y_0 = s^2 y_0.
$$

Moreover, s^2 is the largest eigenvalue of T_1 and T_2.
Proof. First, we will show that P_1 and P_2 are adjoint to each other, i.e.

\[(1.8) \quad \langle P_1 u, z \rangle = \langle u, P_2 z \rangle \]

for any $u \in \mathcal{X}_0$, $z \in \mathcal{Y}_0$. The left-hand side of (1.8) can be rewritten as

$$\bar{u}^T \Sigma_{12} \bar{z},$$

where

$$\Sigma_{12} = [(x_i, y_j), \quad i = 1, \ldots, p_0, \quad j = 1, \ldots, q_0],$$

and the vectors \bar{u}, \bar{z} are the counterparts of u, z in the coordinate spaces \mathbb{R}^{p_0} and \mathbb{R}^{q_0} which obviously can be identified (1) with \mathcal{X}_0 and \mathcal{Y}_0.

The right-hand side of (1.8) has the same form, and therefore $P_1^* = P_2$, where P_1^* is adjoint to P_1.

The operators T_1 and T_2 are self-adjoint, since

$$T_1^* = (P_2 \circ P_1)^* = P_1^* \circ P_2^* = P_2 \circ P_1 = T_1$$

and similarly $T_2^* = T_2$. They are also nonnegative definite: for any $x \in \mathcal{X}_0$

$$\langle T_1 x, x \rangle = \langle (P_2 P_1)x, x \rangle = \langle P_1 x, P_1 x \rangle = \|P_1 x\|^2 \geq 0$$

and the same holds for T_2.

Now we will prove that $\|P_1\| = \|P_2\| = s$. Note first that the scalar product $\langle \cdot, \cdot \rangle$, restricted to $\mathcal{X}_0 \times \mathcal{Y}_0$, can be expressed as

\[(1.9) \quad \langle x, y \rangle = \langle x, P_2 y \rangle,\]

\[(1.10) \quad \langle x, y \rangle = \langle P_1 x, y \rangle.\]

Applying the Schwarz inequality to (1.9) we get $\langle x, y \rangle \leq \|x\| \|y\| \|P_2\|$. So by comparing the suprema of both sides of this inequality over $B_{\mathcal{X}_0} \times B_{\mathcal{Y}_0}$, we have $s \leq \|P_2\|$. But by (1.9), $s \geq \langle x, P_2 y \rangle$ for any $\|x\| = 1, \|y\| = 1$. Setting $x = P_2 y/\|P_2 y\|$ we get $s \geq \|P_2 y\|$ for any $\|y\| = 1$. Thus $s \geq \|P_2\|$ and, consequently, $s = \|P_2\|$. The proof of $s = \|P_1\|$ is analogous.

The next step is to show that $\|T_1\| = s^2$, where

$$\|T_1\| = \sup \{ \langle T_1 x, x \rangle : x \in B_{\mathcal{X}_0} \}. $$

Indeed, for any $x \in \mathcal{X}_0$, $\langle T_1 x, x \rangle = \|P_1\|^2$; comparing the suprema of both sides of this equality we get $\|T_1\| = s^2$. The equality $\|T_2\| = s^2$ is proved in a similar way.

Suppose now that the supremum

$$s = \sup \{ \langle x, y \rangle : x \in B_{\mathcal{X}_0}, \ y \in B_{\mathcal{Y}_0} \}$$

is attained on some vectors x_0 and y_0.

(1) If p_0 and q_0 are not finite then the elements of \mathbb{R}^{p_0} and \mathbb{R}^{q_0} are square summable sequences of real numbers.
By the Schwarz inequality applied to (1.9) and (1.10), \(P_1 x_0 = s y_0 \) and \(P_2 y_0 = s x_0 \), which implies \(T_1 x_0 = s^2 x_0 \), \(T_2 y_0 = s^2 y_0 \), i.e. \(x_0 \) and \(y_0 \) are eigenvectors of \(T_1 \) and \(T_2 \), respectively.

Remark 1. Both \(T_1 \) and \(T_2 \) are compact if either \(p_0 \) or \(q_0 \) is finite. This follows from the compactness of the superposition of two continuous operators of which at least one is compact (and a finite-dimensional operator is compact).

If \(p_0 \) and \(q_0 \) are finite then \(x_0 \), \(y_0 \) and \(s(\mathcal{X}, \mathcal{Y}) \) can be given explicitly. Let \((x_i, i \in I)\) and \((y_j, j \in J)\) be any bases of \(\mathcal{X}_0 \) and \(\mathcal{Y}_0 \) respectively. Let
\begin{align}
(1.11) \quad & \Sigma_{11} := [(x_i, x_j)], \quad i, j = 1, \ldots, p_0, \\
(1.12) \quad & \Sigma_{22} := [(y_i, y_j)], \quad i, j = 1, \ldots, q_0, \\
(1.13) \quad & \Sigma_{12} := [(x_i, y_j)], \quad i = 1, \ldots, p_0, \quad j = 1, \ldots, q_0, \\
(1.14) \quad & \Sigma := \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T, \\
(1.15) \quad & \tilde{\Sigma} := \Sigma_{22}^{-1} \Sigma_{12} \Sigma_{11}^{-1} \Sigma_{12}.
\end{align}
The matrices of \(P_1 \) and \(P_2 \) are equal to \(\Sigma_{22}^{-1} \Sigma_{12}^T \) and \(\Sigma_{11}^{-1} \Sigma_{12} \), and the matrices of \(T_1 \) and \(T_2 \) are given by (1.14) and (1.15), respectively, while \(s(\mathcal{X}, \mathcal{Y}) \) is the square root of the largest eigenvalue of (1.14) and thus of (1.15). If \(\bar{x}_0 \) and \(\bar{y}_0 \) are vectors in the respective coordinate spaces corresponding to the vectors \(x_0 \) and \(y_0 \), then to find \(\bar{x}_0 \) and \(\bar{y}_0 \) it is necessary to solve the system of equations:
\begin{align}
(\Sigma - s^2 I_{p_0}) \bar{x}_0 & = \bar{0}, \quad \bar{x}_0^T \Sigma_{11} \bar{x}_0 = 1, \\
(\tilde{\Sigma} - s^2 I_{q_0}) \bar{y}_0 & = \bar{0}, \quad \bar{y}_0^T \Sigma_{22} \bar{y}_0 = 1,
\end{align}
where \(I_k \) is the \(k \times k \) identity matrix.

Let \(\mathcal{K}(H) \) be the set of all pairs of closed subspaces \(\mathcal{X} \) and \(\mathcal{Y} \) such that the corresponding operators \(T_1 \) and \(T_2 \) are compact.

Definition 1. The angle between the unit eigenvectors \(x_0 \) and \(y_0 \) of \(T_1 \), \(T_2 \) corresponding to the common largest eigenvalue \(s(\mathcal{X}, \mathcal{Y}) \) (cf. (1.6) and (1.7)) will be called the angle between the subspaces \(\mathcal{X} \) and \(\mathcal{Y} \) and denoted by \(\angle(\mathcal{X}, \mathcal{Y}) \). Moreover, we shall treat \(\arccos(s(\mathcal{X}, \mathcal{Y})) \) as the measure of this angle, denoted by \(m(\angle(\mathcal{X}, \mathcal{Y})) \).

This definition will be generalized so that it can be applied in the case when \(\mathcal{Z} = \mathcal{X} \cap \mathcal{Y} \) is equal to \(\mathcal{X} \) or \(\mathcal{Y} \). Then \(\angle(\mathcal{X}, \mathcal{Y}) \) is defined as the angle between any two unit vectors \(z_1, z_2 \in \mathcal{Z} \), and we put \(m(\angle(\mathcal{X}, \mathcal{Y})) = 0 \).

We have
\[\cos(m(\angle(\mathcal{X}, \mathcal{Y}))) = \langle x_0, y_0 \rangle. \]
Thus, \(0 \leq m(\angle(\mathcal{X}, \mathcal{Y})) \leq \pi/2 \).

Orthogonality of \(\mathcal{X} \) and \(\mathcal{Y} \) implies \(m(\angle(\mathcal{X}, \mathcal{Y})) = \pi/2 \), but not conversely. It can easily be seen that \(\mathcal{X} \) and \(\mathcal{Y} \) are orthogonal iff \(m(\angle(\mathcal{X}, \mathcal{Y})) = \pi/2 \) and
Remark 2. A simpler procedure of deriving the cosine of the angle between subspaces is the following. We choose orthonormal bases \((x'_i, i \in I')\) and \((y'_j, j \in J')\) of \(\mathcal{X}\) and \(\mathcal{Y}\), respectively, where \(\text{card } I' = p\), \(\text{card } J' = q\) and \(I', J'\) are some sets of indices.

Analogously to (1.1)–(1.4), we define \(P'_1 : \mathcal{X} \to \mathcal{Y}\), \(P'_2 : \mathcal{Y} \to \mathcal{X}\), \(T'_1\) and \(T'_2\); if \(T'_1\) and \(T'_2\) are both compact then we deal with the eigenvalue \(a^2\) which is maximal among the eigenvalues smaller than 1. Then \(\cos(m(\angle(\mathcal{X}, \mathcal{Y}))) = a\).

If \(p\) and \(q\) are finite then we choose any bases of \(\mathcal{X}\) and \(\mathcal{Y}\) and form matrices \(\Sigma'_{11}, \Sigma'_{22}, \Sigma'_{12}, \Sigma', \Sigma'\) analogous to the matrices given by (1.11)–(1.15). Then \(\cos(m(\angle(\mathcal{X}, \mathcal{Y}))) = a\) where \(a^2\) is maximal among the eigenvalues of \(\Sigma'\) or \(\Sigma'\) smaller than 1.

The above definitions of the angle between subspaces and of its measures generalize the following elementary cases:

(i) \(p = q = 1\),
(ii) \(p = 1, q = 2\) or \(p = 2, q = 1\),
(iii) \(p = q = 2\).

In all these cases \(\mathcal{X}\) and \(\mathcal{Y}\) are subspaces of a three-dimensional Hilbert space.

Wysocki [8] defined similar notions of angle between linear subspaces and its volume measure.

Generally, the angle introduced in Definition 1 is different from that proposed in Wysocki [8] but the two definitions are identical if \(H\) is a three-dimensional Hilbert space. The volume measure is given by

\[
\text{arcsin} \left(\left(\prod_{\sigma^2 \neq 1} (1 - \sigma^2) \right)^{1/2} \right),
\]

where the product is over all eigenvalues of \(\Sigma'\) or \(\Sigma'\) which are different from 1.

2. Maximal correlation. Let \(L^2 := L(\Omega, \mathcal{A}, P; \mathbb{R}^k)\) be the vector space of all \(k\)-dimensional centered random vectors \(X = (X_1, \ldots, X_k)^T\) defined on \((\Omega, \mathcal{A}, P)\) with finite covariance matrix. The scalar product \((\cdot, \cdot)_A\) is given by

\[
(X, Y)_A := E(X^T A^{-1} Y) = \text{tr}(A^{-1} \Sigma_{12})
\]

where \(\Sigma_{12}\) is the covariance matrix between \(X\) and \(Y\), and \(A\) is any given positive definite symmetric \(k \times k\) matrix. The norm derived from (2.1), which will be denoted by \(\| \cdot \|_A\), is complete; thus \((L^2(\Omega, \mathcal{A}, P; \mathbb{R}^k), (\cdot, \cdot)_A)\) is a Hilbert space. It can be shown that it is separable.
The dimension of \mathcal{H}_X is not greater than k^2, and it is equal to k^2 iff X is a nondegenerate random vector (cf. Introduction for suitable definitions).

Let I_{ij} be a $k \times k$ matrix with (i, j) entry equal to 1 and all remaining entries zero. The sets

\begin{align}
(2.2) & \{I_{ij}X : i, j = 1, \ldots, k\}, \\
(2.3) & \{I_{ij}Y : i, j = 1, \ldots, k\}
\end{align}

are bases of \mathcal{H}_X and \mathcal{H}_Y, respectively. Thus for any $k \times k$ matrix $A = (a_{ij})$, $AX = \sum_{i,j} a_{ij}I_{ij}X$. Analogously $BY = \sum_{i,j} b_{ij}I_{ij}Y$.

Clearly, the spaces \mathcal{H}_X, \mathcal{H}_Y, \mathcal{L}_X^2, \mathcal{L}_Y^2 are closed in L^2 and the dimensions of \mathcal{L}_X^2, \mathcal{L}_Y^2 are at most countable.

Lemma 2. (a) For any $X \in L^2$, $E(\cdot \mid X) : L^2 \to L_X^2$ is an orthogonal projector.

(b) For any $X, Y \in L^2$, X nondegenerate, a transformation $P'_2 : \mathcal{H}_Y \to \mathcal{H}_X$ is an orthogonal projector iff

\begin{align}
(2.4) & \quad P'_2(BY) = B\Sigma_{11}^{T}\Sigma_{11}^{-1}X.
\end{align}

(c) If the bases of \mathcal{H}_X and \mathcal{H}_Y are given by (2.2), (2.3), respectively, then the matrix of the transformation (2.4) is

$$I_k \times (\Sigma_{11}^{-1}\Sigma_{12}),$$

where \times stands for Kronecker matrix multiplication.

Proof. (a) results from the theorem on orthogonal projection and from the following equality stated in Sampson [7]:

$$\inf\{||Y - f(X)||_A^2 : f(X) \in \mathcal{L}_X^2\} = ||Y||_A^2 - ||E(Y \mid X)||_A^2.$$

The infimum is attained for f_0 given by $f_0(x) = E(Y \mid X = x)$.

(b) Sufficiency of (2.4) is obvious.

Now let $P'_2(BY) = A_0X$ for some $k \times k$ matrix A_0. For any $k \times k$ matrix A, we have

$$\langle BY - A_0X, AX \rangle = tr(\Lambda^{-1}\text{cov}(BY - A_0X, AX)) = tr(\Lambda^{-1}(B\Sigma_{12}^T - A_0\Sigma_{11})A^T) = tr((B\Sigma_{12}^T - A_0\Sigma_{11})A^T\Lambda^{-1}) = 0.$$

The only solution of the above is

$$A_0 = B\Sigma_{12}^T\Sigma_{11}^{-1}.$$

(c) To derive the matrix of the projector (2.4) in the bases (2.2) and (2.3) we use Remark 2 and (1.11), (1.13). The matrix of P'_2 is equal to $\tilde{\Sigma}_{11}^{-1}\tilde{\Sigma}_{12}$, where

$$\tilde{\Sigma}_{12} = [(I_{ij}X, I_{i'j'}Y)_A], \\
\tilde{\Sigma}_{11} = [(I_{ij}X, I_{i'j'}X)_A], \quad i, i', j, j' = 1, \ldots, k.$$
Since \((I_{ij}X, I_{i'j'}Y)\) = \(\text{tr}(\Lambda^{-1}I_{ij} \Sigma_{12} I_{i'j'}^T)\) = \(\Lambda_{ij} \text{cov}(X_j, Y_{j'})\), where \(\Lambda^{-1} = [\Lambda_{ij}]\), we have \(\hat{\Sigma}_{12} = \Lambda^{-1} \times \Sigma_{12}\). Similarly, \(\hat{\Sigma}_{11} = \Lambda^{-1} \times \Sigma_{11}\), and finally \(\hat{\Sigma}_{11}^{-1} \hat{\Sigma}_{12} = I_k \times (\Sigma_{11}^{-1} \Sigma_{12})\), where \(I_k\) is the \(k \times k\) identity matrix. Notice that \(P_2\) restricted to the subspace \(L_Y\) is given by

\[P_2(bY) = b \Sigma_{12}^T \Sigma_{11}^{-1} X.\]

Let \(X, Y \in L^2\) be nondegenerate and let \(\Sigma_{11}, \Sigma_{22}\) and \(\Sigma_{12}\) denote the covariance matrices of \(X, Y\) and between \(X\) and \(Y\).

Let

\[g(X, Y) = \frac{\langle X, Y \rangle_{\Lambda}}{\|X\|_{\Lambda} \|Y\|_{\Lambda}} = \frac{\text{tr}(\Lambda^{-1} \Sigma_{12})}{\left(\text{tr}(\Lambda^{-1} \Sigma_{11})\right)^{1/2} \left(\text{tr}(\Lambda^{-1} \Sigma_{22})\right)^{1/2}}.\]

In view of the preceding considerations \(g_{\Lambda}(X, Y)\) can be interpreted as the cosine of the angle between \(X\) and \(Y\) in \((L^2, \langle \cdot, \cdot \rangle_{\Lambda})\). According to this interpretation, we treat \(\langle X, Y \rangle_{\Lambda}\) as the covariance of \(X\) and \(Y\), and \(\|X\|_{\Lambda}, \|Y\|_{\Lambda}\) as their respective dispersions. Sampson [7] introduced \(g_{\Lambda}\) as a measure of dependence for a pair of random vectors.

Now, we will maximize \(g_{\Lambda}\) on suitably chosen sets of random vectors in order to obtain different measures of dependence. We will consider the following measures of dependence:

\[g_{\Lambda}^{(i)}(X, Y) = \sup \{g_{\Lambda}(U, V) : U \in X_i, V \in Y_i\}, \quad i = 1, \ldots, 5,\]

where

\[X_1 = \mathcal{H}_X, \quad Y_1 = \mathcal{L}_Y,\]

\[X_2 = \mathcal{L}_X^3, \quad Y_2 = \mathcal{L}_Y,\]

\[X_3 = \mathcal{H}_X, \quad Y_3 = \mathcal{H}_Y,\]

\[X_4 = \mathcal{L}_X^2, \quad Y_4 = \mathcal{H}_Y,\]

\[X_5 = \mathcal{L}_X^2, \quad Y_5 = \mathcal{L}_Y^2.\]

Note that in view of Remark 1 (Sec. 1) the assumptions of Theorem 1 are fulfilled for the first four cases. The fifth case requires a separate treatment and will be dealt with in Theorem 2.

In the sequel we consecutively discuss \(g_{\Lambda}^{(i)}\) for \(i = 1, \ldots, 5\).

1) Maximization of \(g_{\Lambda}\) on \(\mathcal{H}_X \times \mathcal{L}_Y\). Let \(X, Y \in L^2\) and let \(P_1', P_2'\) and \(T_1', T_2'\) be the orthogonal projections and the operators appearing in Remark 2 which correspond to the spaces (2.5). Thus, \(P_1'\) and \(P_2'\) are of the form

\[P_1'(AX) = (\text{tr}(\Lambda^{-1}A \Sigma_{12}) / \text{tr}(\Lambda^{-1} \Sigma_{22})) Y\]

for any \(k \times k\) matrix \(A\), and

\[P_2'(bY) = b \Sigma_{12}^T \Sigma_{11}^{-1} X,\]
where b is any real number, and $\Sigma_{12}^T, \Sigma_{11}^{-1}$ is the matrix of P_2. This is due to the representation of Y which involves linear regression of Y on X, namely

$$Y = \Sigma_{12}^T \Sigma_{11}^{-1} X + U$$

where U is a random vector uncorrelated with X.

Consequently,

$$\langle Y - \Sigma_{12}^T \Sigma_{11}^{-1} X, AX \rangle = 0$$

for any $k \times k$ matrix A. Turning to T' and T_2' we have

$$T'_1(AX) = \frac{\text{tr}(A^{-1} A \Sigma_{12})}{\text{tr}(A^{-1} \Sigma_{22})} \Sigma_{12}^T \Sigma_{11}^{-1} X,$$

$$T'_2(bY) = b \frac{\text{tr}(A^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12})}{\text{tr}(A^{-1} \Sigma_{22})} Y.$$

There exist X_0 and Y_0 such that

$$\varrho^{(1)}_A(X, Y) = \left(\frac{\text{tr}(A^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12})}{\text{tr}(A^{-1} \Sigma_{22})} \right)^{1/2}$$

$$= \sup \{ \varrho_A(AX, bY) : AX \in \mathcal{H}_X, bY \in \mathcal{L}_Y \}$$

$$= \varrho_A(X_0, Y_0).$$

The quantity $(\varrho^{(1)}_A(X, Y))^2$ is the unique eigenvalue of T'_2 and the maximal eigenvalue of T'_1. For any given A, $\varrho^{(1)}_A(X, Y)$ is a measure of dependence between X and Y which generalizes multiple correlation [4]. If $\varrho^{(1)}_A(X, Y)$ is smaller than 1 then it is the cosine of the angle between \mathcal{H}_X and \mathcal{L}_Y.

Let us now discuss the relations between $\varrho^{(1)}_A(X, Y)$, $A \in \mathcal{M}_k$ and the measures proposed by Höschel [1] and by Jupp and Mardia [3]. It is convenient to concentrate first on nondegenerate X and Y. Höschel formulated a set of axioms to be fulfilled by a measure of linear stochastic dependence; then he constructed a suitable measure and proved its uniqueness. For nondegenerate X and Y Höschel’s measure is given by

$$\varrho^{(H)}(X, Y) = \frac{\text{tr}(\Sigma_{22}^{-1/2} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1/2})}{\text{rank} \Sigma_{22}}.$$

The matrix appearing in the numerator of the right-hand side of (2.9) is equivalent to $\Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12}$; hence

$$\varrho^{(H)}(X, Y) = \frac{\text{tr}(\Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12})}{\text{rank} \Sigma_{22}}.$$

It follows that

$$\varrho^{(H)}(X, Y) = (\varrho^{(1)}_{\text{cov}(Y)}(X, Y))^2.$$
Jupp and Mardia defined their measure as follows:

\[\varrho^{(J-M)}(X, Y) = \left(\frac{1}{2} \text{tr}(\Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12}) \right)^{1/2}; \]

however, they did not provide any justification for this proposal. Comparing (2.10) with the definition of \(\varrho^{(1)}_A \) we see that

\[\varrho^{(J-M)}(X, Y) = k \varrho^{(1)}_{\text{cov}}(Y)(X, Y). \]

It follows that

\[\varrho^{(H)}(X, Y) = \left(\varrho^{(J-M)}(X, Y) \right)^2 / k^2. \]

If \(X \) or \(Y \) are degenerate, we obtain similar results replacing (if necessary) the inverse matrices in (2.8), (2.9) and (2.10) by Moore–Penrose inverses.

2) Maximization of \(\varrho^{(2)}_A \) on \(\mathcal{L}_X^2 \times \mathcal{L}_Y^2 \). Now \(P_1', P_2' \) and \(T_1, T_2 \) will be the orthogonal projections and the operators appearing in Remark 2 which correspond to the spaces (2.6). Thus

\[
P_1'(f(X)) = \frac{\text{tr}(A^{-1} \text{cov}(f(X), Y))}{\text{tr}(A^{-1} \Sigma_{22})}Y,
\]

\[
P_2'(bY) = bE(Y | X),
\]

\[
T_1'(f(X)) = \frac{\text{tr}(A^{-1} \text{cov}(f(X), Y))}{\text{tr}(A^{-1} \Sigma_{22})}E(Y | X),
\]

\[
T_2'(bY) = b \frac{\text{tr}(A^{-1} \text{cov}(E(Y | X), Y))}{\text{tr}(A^{-1} \Sigma_{22})}Y
\]

\[
= b \frac{\text{tr}(A^{-1} \text{cov}(E(Y | X))))}{\text{tr}(A^{-1} \Sigma_{22})}Y = b \varrho^{(2)}_A(X, Y)Y,
\]

where

\[\varrho^{(2)}_A(X, Y) = \left(\frac{\text{tr}(A^{-1} \text{cov}(E(Y | X))))}{\text{tr}(A^{-1} \Sigma_{22})} \right)^{1/2}. \]

It follows from the form of \(T_2' \) that \((\varrho^{(2)}_A(X, Y))^2 \) is its unique eigenvalue. It is also the maximal eigenvalue of \(T_1' \). Let \(X_0 \) and \(Y_0 \) be eigenvectors of \(T_1' \) and \(T_2' \) which correspond to this eigenvalue. Since

\[
\text{cov}(E(Y | X), Y) = \text{cov}(E(Y | X), Y^T) = E(E(Y | X)Y^T)
\]

\[
= E(E((Y | X)Y^T) | X) = E(E(Y | X)(E(Y | X))^T) = \text{cov}(E(Y | X))
\]

we have

\[\varrho^{(2)}_A(X, Y) = \sup \{ \varrho_A(f(X), Y) : f(X) \in \mathcal{L}_X^2, bY \in \mathcal{L}_Y \} = \varrho_A(X_0, Y_0). \]

The measures \(\varrho^{(2)}_A(X, Y) \) were introduced by Sampson [7]. They generalize the correlation ratio between a random variable \(X \) and a random vector.
If \(g_A^{(2)}(X, Y) \) is smaller than 1 then it is the cosine of the angle between \(\mathcal{L}_X^2 \) and \(\mathcal{L}_Y^2 \).

3) Maximization of \(g_A \) on \(\mathcal{H}_X \times \mathcal{H}_Y \). The orthogonal projectors \(P'_1, P'_2 \), and the operators \(T'_1, T'_2 \) (defined in Remark 2) for \(\mathcal{H} = \mathcal{H}_X, \mathcal{Y} = \mathcal{H}_Y \) are of the following form:

\[
P'_1(AX) = A \Sigma_{12} \Sigma_{22}^{-1} Y, \quad P'_2(BY) = B \Sigma_{12}^T \Sigma_{11}^{-1} X,
\]

\[
T'_1(AX) = A \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} X, \quad T'_2(BY) = B \Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} Y.
\]

By Lemma 2(c), the matrices of \(T'_1 \) and \(T'_2 \) in the bases of (2.6), (2.7) are

\[
(2.11) \quad I_k \times \left(\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \right),
\]

\[
(2.12) \quad I_k \times \left(\Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \right),
\]

respectively.

Notice that (2.11) is a block matrix with \(k \) matrices equal to \(\Sigma_{12} \Sigma_{22}^{-1} \times \Sigma_{12}^T \Sigma_{11}^{-1} \) on the diagonal and with zero off-diagonal blocks. Therefore the eigenvalues of (2.11) are equal to those of \(\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \). Analogously the eigenvalues of (2.12) are those of \(\Sigma_{12}^T \Sigma_{11}^{-1} \Sigma_{12} \Sigma_{22}^{-1} \).

Let \(a^2 \) denote the maximal eigenvalue of \(\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^T \Sigma_{11}^{-1} \). We have

\[
g^{(3)}(X, Y) = a = \sup \{ g_A(AX, BY) : AX \in \mathcal{H}_X, BY \in \mathcal{H}_Y \} = g_A(X_0, Y_0).
\]

The random vectors \(X_0, Y_0 \) are eigenvectors of \(T'_1, T'_2 \), respectively, for the eigenvalue \(a^2 \).

Johnson and Verhly [2] introduced \(g^{(3)}(X, Y) \) and called it the maximal canonical correlation.

If \(g^{(3)}(X, Y) \) is smaller than 1 then it is the cosine of the angle between \(\mathcal{H}_X \) and \(\mathcal{H}_Y \).

For degenerate \(X \) and \(Y \) we use the Moore–Penrose inverse matrices in (2.11) and (2.12) if necessary.

4) Maximization of \(g_A \) on \(\mathcal{L}_X^2 \times \mathcal{H}_Y \). For \(\mathcal{X} = \mathcal{L}_X^2, \mathcal{Y} = \mathcal{H}_Y \), the operators \(T'_1, T'_2 \) are of the following form:

\[
T'_1(f(X)) = \text{cov}(f(X), Y) \Sigma_{22}^{-1} E(Y | X),
\]

\[
T'_2(BY) = B \text{cov}(E(Y | X)) \Sigma_{22}^{-1} Y.
\]

The matrix of the operator \(T'_2 \) in the base (1.5) is

\[
(2.13) \quad I_k \times (\text{cov}(E(Y | X)) \Sigma_{22}^{-1}).
\]

The maximal eigenvalue of the matrix (2.26) is equal to that of \(\text{cov}(E(Y | X)) \Sigma_{22}^{-1} \), it is also the maximal eigenvalue of the operators \(T'_1 \) and \(T'_2 \). Let \(a^2 \) denote this maximal eigenvalue and let \(X_0, Y_0 \) denote the corresponding eigenvectors of the operators \(T'_1 \) and \(T'_2 \), respectively.
Hence we have
\[\varrho(4)(X, Y) = a = \sup \{ \varrho_A(f(X), BY) : f(X) \in L_X^2, BY \in \mathcal{H}_Y \} = \varrho_A(X_0, Y_0). \]
If \(\varrho(4)(X, Y) \) is less than 1 then it is the cosine of the angle between \(L^2_X \) and \(\mathcal{H}_Y \).

In Sampson [7], \(\varrho_A \) has been maximized on the set \(L^2_X \times \tilde{\mathcal{H}}_Y \), where \(\tilde{\mathcal{H}}_Y \) is the set of random vectors \(BY \) such that \(\text{cov}(BY) = \Lambda \). By this procedure he has got
\[
\tilde{\varrho}(4)(X, Y) = \sup \{ \varrho_A(f(X), BY) : f(X) \in L_X^2, BY \in \tilde{\mathcal{H}}_Y \}
= \left(\frac{1}{k} \text{tr}(\text{cov}(Y \mid X) \Sigma^{-1}_{22}) \right)^{1/2} = \varrho_A(X'_0, Y'_0)
\]
for suitably chosen random vectors \(X'_0, Y'_0 \).

5) Maximization of \(\varrho_A \) on \(L^2_X \times L^2_Y \). Dealing now with the most general case, we will give a simple condition under which maximal correlation exists.

Theorem 2. Suppose \(X \) and \(Y \) have finite respective covariance matrices. If \(P_{(X, Y)} \) is absolutely continuous with respect to \(P_X \otimes P_Y \), and if the squared density \(p \) of \(P_{(X, Y)} \) with respect to \(P_X \otimes P_Y \) is integrable then there exist random vectors \(f_0(X) \) and \(g_0(Y) \) such that
\[
(2.14) \quad \varrho(5)(X, Y) = a = \sup \{ \varrho_A(f(X), g(Y)) : f(X) \in L^2_X, g(Y) \in L^2_Y \}
= \varrho_A(f_0(X), g_0(Y)),
\]
where \(a^2 \) is the maximal eigenvalue of the operators \(T'_1, T'_2 \) which correspond to the spaces \(L^2_X, L^2_Y \).

The proof is an obvious modification of that given by Rényi [5] in the univariate case. Let \(P'_1, P'_2 \) and \(T'_1, T'_2 \) be the orthogonal projections and operators appearing in Remark 2, related to the spaces (2.7). Hence we have
\[
P'_1(f(X)) = E(f(X) \mid Y), \quad P'_2(g(Y)) = E(g(Y) \mid X), \quad T'_1(f(X)) = E(E(f(X) \mid Y) \mid X), \quad T'_2(g(Y)) = E(E(g(Y) \mid X) \mid Y).
\]
In view of Theorem 1 it is sufficient to show that \(T'_1 \) and \(T'_2 \) are compact. We will prove it for \(T'_1 \) since the proof for \(T'_2 \) is analogous.

Let us introduce the following Hilbert space:
\[\widetilde{L}_X^2 = \{ f : f(X) \in L_X^2 \}, \]
with the scalar product
\[\int_{\mathbb{R}^k} (f_1(x))^T \Lambda^{-1} f_2(x) \, dP_X(x). \]
It is obvious that \mathcal{L}^2_X and \mathcal{L}^2_Y are isomorphic. Thus, T'_1 can be used in \mathcal{L}^2_X and it has the following form ([6]):

$$T'_1(f(X)) = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^k} p(u,v)p(x,v) \, dP_Y(v) \right) \, dP_X(u).$$

It follows that T'_1 is an integral operator with kernel

$$\int_{\mathbb{R}^k} p(u,v)p(x,v) \, dP_Y(v).$$

We will show that the squared kernel is integrable, which, as is known, implies the compactness of the integral operator. By the Schwarz inequality,

$$\left(\int_{\mathbb{R}^k} p(u,v)p(x,v) \, dP_Y(v) \right)^2 \leq \left(\int_{\mathbb{R}^k} p^2(u,v) \, dP_Y(v) \right) \left(\int_{\mathbb{R}^k} p^2(x,v) \, dP_Y(v) \right).$$

Consequently,

$$\int_{\mathbb{R}^k} \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^k} p(u,v)p(x,v) \, dP_Y(v) \right)^2 \, dP_X(u) \, dP_X(x)$$

$$\leq \left(\int_{\mathbb{R}^k} \int_{\mathbb{R}^k} p^2(u,v) \, dP_Y(v) \, dP_X(u) \right)^2 < \infty.$$

It follows by Theorem 1 that there exist functions f_0 and g_0 such that

$$T'_1(f_0) = a^2 f_0, \quad T'_2(g_0) = a^2 g_0,$$

where a^2 is the maximal eigenvalue of T'_1 and T'_2. Moreover, f_0 and g_0 satisfy (2.14).

If $g^{(5)}(X,Y)$ is smaller than 1 then it is equal to the cosine of the angle between \mathcal{L}^2_X and \mathcal{L}^2_Y.

References

WLODZIMIERZ WYSOCKI
INSTITUTE OF COMPUTER SCIENCE
POLISH ACADEMY OF SCIENCES
P.O. BOX 22
00-901 WARSAWA, POLAND

Received on 24.2.1988;
revised version on 19.2.1990