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ON THE EXTREME GAP IN THE RENEWAL PROCESS

1. Introduction. Consider a sequence X7, X3,... of independent non-
negative random variables with common distribution function F. Define the
renewal process and the process of actual working time by

N(t)=) ls,ct, () =t= S,
n=1

respectively, where So =0, S, = Sp-1 + X5, n=1,2,...,t > 0.
Define the process of extreme gap by

(1) M(t) = TR v(u), t2>0,

and the first passage time in the process 4 from the state 7(0) = 0 to the
state z by

(2) T(z)=inf{t: M(t) >z}, z2>0.

Our purpose in the paper is to analyse the distribution of M(t). In
particular, we consider the distribution of the extreme gap in the Poisson
process, for which we give a formula for the expected value of the extreme
gap. In the general considerations we study the discrete part of the distribu-
tion F and its role in the limit theorem and estimation of the distribution.

Note that the distribution functions are right continuous; the discrete
part of the distribution F' will be denoted by

Pz = F(z) - F(z-).

Observe that the stochastic processes N, v, T have right continuous
realizations and the process M is continuous. The fundamental relation is
obvious:

(3) P(M(t) >z)=P(T(z)<t), t>0,z>0.
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Now we introduce a few general notations:
P(t,z) = P(M(?) < z),
R(t,z)=1- P(t,2),
w(t)=EM(@), t>0,z2>0.

It is trivial and we do not repeat this in further considerations that
P(t,z)=1, R(t,z)=0for z > t.

2. The extreme gap in the Poisson process. Suppose that F(z) =
1—e %, 2>0,)>0,ie. N is a Poisson process with parameter A. Now

we characterize the distribution function of the extreme gap and find its
- expected value.

THEOREM 1. For the Poisson process with parameter A we have

(4) R(t,z)= e + [ R(t—u,z)de™du, 0<2z<{,
0

(5) R*(s,z) = j?e_“R(t,:c) dt = (s + N)e~(s+)= / (32 (1 + %e‘(""“)"")) ,

(6) R**(s,u) = f j?e_’"“” R(t,z)dt dz
0 o

_3+A o0 . i)k-l— .
Y ;( 1) (3 k(s+)«)+u’ Res > 0, Reu > 0.

Proof. For each renewal process, from the total probability formula it
follows that

R(t,z)=1- F(z) + fR(t—u,:c)dF(u), 0<z<t.

For the exponential distribution function, this is (4). Hence for the Laplace
transform we have

) sR*(s,z) = #e_("‘“\)” — A2 Re(s,2),

which yields (5) for Res > 0.
Finally, from (7) we get

s+ A 1

s s+A4u
The solution of this equation is (6).

SR™(s,u) = — AR™(s,8+ A+ u).
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COROLLARY 1. For the Poisson process with parameter A we have

(8) R(t,z) = e>* i (=A(t - kz)pe2)k1 (1 * }1;)‘(1‘ - k$)+) ,
k=1

1
(k=1)!
where a; = max(0,a), and
At

(9) p(t) = % f ;l‘-(l —e %) du.

0
Indeed, from (5) we get

. 1 A 0o K k-1 i .
R*(s,z) = (;+8—2)2(-3—) gt

k=1
The original for this function is

oo t — u)k-2
R(t,2) = §(~A>*-’e-**=( J e 1 (0) du
— )kl
f).(t uz)' lth,w,(u)du).

Hence, after a transformation we get (8).
Note that

u(t) = f P(M(t) > z)dz = f R(t,z)dz,

hence
o0

pr(s) = fe‘“,u(t) dt= f ~at fR(t z)dzdt = j? j?R(t, z)e~* dzdt

= R**(s,0) = Z( B : (-) = %log (1+ -iﬁ)

Using the propertles of convolution and the Laplace transform we get

1 Akgk 1 /1
k=1 — Z(1 _ p—Az
(t)_AJE( 1) RS ) _,\of.zu e~ ) dz.
This proves (9).
COROLLARY 2. For the Poisson process with parameter A we have

1
u(t) = 3 (log At + C) + o(1), & — oo,
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where C = 0.5772... is the Fuler constant.
Indeed, we have

c 1
f—(l—e_“)du
g

3 - 4 ©1 - 1
=6[;(]-e )du+ f; f; du + !Ee du

00 0
= J(l-exp(—e""))dv+logt— _o{ exp(—e™")dv + f%e’“du

- rl ~u
—C+Iogt+!ue du,
and
j?l e “du=o0(1), t— o0
m ?

(see for example [4]).

If the distribution function F is concentrated on the positive integers,
then the processes N, 4, M and T may be considered in discrete time. Set
px = F(k)— F(k—1), R(k) = pr41 +Prs2+ ..., k= 1,2,... In these terms
we present a recurrence formula for the distribution of the extreme gap.

COROLLARY 3. If F is discrete, then

k+1
R(t,k) = R(k+1)+ Y R(t—j,k)p;, t=k+1,k+2,..., k=0,1,...

i=1

If, in particular pr = ¢*"p, k=1,2,...,q=1—-p, 0 < p < 1, then the
formula has the form (see [5], Theorem 1)

(10) R(t+1,k)— R(t,k) = ¢"*'p(1 — R(t — k - 1,k)),
t=k+1,k+2,...,k=0,1,...
COROLLARY 4. For the Poisson process with parameter A we have
(11) R(z,z) = ™7,
(12) %R(t_, z) = de~**(1- R(t—z,2)), z<t.
Indeed, from (4) we get
R(t + h,z) — e R(t,2) = e **(1 — e~*})
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h z
+ f R(t+h—u,z)Ae * du+ e~ P f R(t — u,z)\e~ " du.
0 z=h

Since R(t,z) is continuous for t > z, the derivative (&) R(t,z) exists and
(12) holds. The formula (11) follows from the assumption that in a Poisson
Process there are no signals in an interval of length z.

The formula (12) is a continuous version of the discrete formula (10).

3. Limit theorem and estimation. The analysis of the limiting
distribution of the extreme gap is strictly related to the analysis of extremes
in sequences of random variables. The latter theory concentrates on the
existence and form of the limiting distributions for which some regularity
of F at ap = sup{z : F(z) < 1} is required. The next theorem is a simple
consequence of Theorem 1.5.1 of [7].

THEOREM 2. Let X4,..., X, be independent random variables with com-
mon distribution function F and let M, = max(Xy,...,X,). Assume the
ezistence of two sequences of real constants un,,m, with 7, > 0 and 1,
bounded, such that

(13) n(l — F(up)) =™ — 0 asn— oo.
Then
(14) P(M, < u,)—exp(-7n) =0 asn— .

If the distribution function F' is continuous, then we may take u, =
F=1(1 - t/n) = inf{z : F(z) > 1 —t/n} and 7, = n(1 — F(u,)). However,
in this case not the estimation but the limit convergence is established. If
F has a discrete part then for the limit theorem to hold it is necessary to
make some additional assumptions (see [7], Theorem 1.7.13).

THEOREM 3. Assume that F has the discrete part p,, >0,k =1,2,...,
Jor which zx — ap as k — oco. Then if

(15) 6 = lim sup pz, /(1 — F(zx)) < oo,
k—o0

then the condition (13) is satisfied for some sequences u, and 75 > 0.

Proof. Fix t and let u, = F~'(1 - t/n), 7, = n(1 — F(u,)). Then
F(u,) — py, < 1—1t/n < F(uy), which implies that #(1 —6) < 7, < ¢,
showing that the sequence 7, is bounded and (13) holds.

Now we pass to the analysis of the limiting properties of the extreme gap.
We formulate the main theorem and in addition analyse the asymptotics
of T. Denote by pur the expected value in distribution F.
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THEOREM 4. Assume that ur < oo and that z — ap implies F(z) — 1,
and let u(t), 7(t) be functions such that

16). 1 Fu@)) 1) >0, w(t)~ap ast—ics,
pF

where 7(t) is bounded. Then
(17) P(t,u(t)) —exp(—7(t)) =0 ast— oo.

Remark. The condition (16) holds if (15) is fulfilled (in particular, if
F is continuous). If 7(t) = 7, 0 < 7 < 00, as ¢ — oo, then P(t,u(t)) » e~ "
ast — oo.

Now we pass to the asymptotics of T'. Fix z such that z < ap. Define a
sequence of random variables by

_JX; ifX;<Lz,
Xila) = {+oo if X; >z,

and introduce a renewal process N(z,t) as follows:
(18) N(ﬂ:,t) = E 1-5',.[:.‘)Sb t>0,
n=1

where So(z) = 0, Sp(2) = Sp—1(z) + Xn(z), n = 1,2,...
Note that this is a transitive process with the total number of renewals
N(z,00), and the endpoint §(z) = Sn(z,00)(Z)-

LEMMA. If pr < o0, and if z — ap implies F(z) — 1, then

T'(z) ~t
P(Es(z)gt)—rl—e as T — ap.

Proof. We have P(N(z,00) = n) = F*(z)(1 - F(z)),n=0,1,..., and

P(S(z) < y) = ) P(N(z,0) = n)P(Sa(z) < v)
n=0
=D F"(@)(1- F@)F*"(z,9)
where F**(z,y) is the n-fold c-onvolution (with respect to y) of the function
F ify<e,

Fizg)= {FEQ g s
Hence
(19) ES(s) = 1= piashe(a)
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where
(20) pr(z) = ftdF(t) =pr+o(l), =z ap.
0
Let f*(z,s) denote the Laplace-Stieltjes transform of F(z,y):
f(z,8) = fe"‘ dF(t)=1-s ftdF(t) +o0(s) ass—0.
0 0

Hence the Laplace-Stieltjes transform of the distribution function of the
random variable S(z) has the form

8*(z,s) = f eV dP(S(z) < y) = ):(1 — F(2))(F(z)f*(z,8))"

n=>0

1 - F(z) _sF(z)
T 1= F(z)f*(z,9) (1 1= F) of tdF(t)+o(1))

-1

ass— 0.
For the random variable S(z)/ES(z) we have, for fixed s,

“(e53m) = (1+o+o (a5 ))1_;@))_1* T wTer

But T'(z) = S(z) + =, ET(z)/ES(z) = 14 o(1) as z — ap and pr < 00
implies z(1 — F(z)) — 0 as z — ap. Hence P(T(z)/ES(z) > t) =
P(S(z)/ES(z) > t) = et +0(1) as z — ap.

Proof of Theorem 4. From (16) it follows that t/ES(u(t)) =
T(t) + o(1) as t — co. Hence, from (3) and the Lemma it follows that
P(M(t) > u(t)) = P(T(u(t)) < t) = exp(—7(t)) + o(1) as t — 0.

COROLLARY 5. In the Poisson process with parameter A the eztreme gap
has asymptotically an ezponential distribution function:

P(t, %(]og At + a:)) — exp(—e™%) ast— oo.

Indeed, for u(t) = (1/A)(log A\t + z), 7(t) = e~%, (16) holds.

4. The extreme gap in an alternating process. Consider the
alternating process generated by a sequence of pairs of random variables
(X1,Y1) (X2,Y2),... independent with joint distribution function H and
With boundary distributions F' and G for working and breakdown times,
Tespectively. Define the process of actual working time by

(t) ifSn'*'S:;(t_(_Sn‘l'S:;-}-l!
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where So =0, Sp = Sp—1+ X, 50 =0,5, =S, _,+ Yo, n=1,2,...
As previously, we define the process of the extreme gap by (1).

THEOREM 5. Assume that pp + g < 0o, and let u(t) and 7(t) be such
that

(1)  (ur+ue) (1 Fu(®) - (t) >0 as t— oo,
where 7(t) is bounded. Then
(22) - P(t,u(t)) —exp(-7(t)) -0 ast— oo.

Proof. Set §(z) = SN(z,00)(%) + Si(z,00)(%)> Where N(z,t) is defined
by (18). Then
ES(z) = (kr(z) + pe(2))F(2)/(1 - F(2))
where pp(z) is defined by (20) and

pa(z)=ffyH(dz,dy)=pa+o(l) as z — ap.
0o o

As previously, we can prove that P(S(z)/ES(z) < t) - 1—e™! as
z — ar. Hence using (3) we get
P(t(ur + pa)/(1- F(2)),2) > €™ asz - ap.
Thus, (21) implies (22).

5. Estimation of the expected value. In the case of a Poisson
process we have proved an elegant formula for the expected value of the
extreme gap. For a general renewal process we give an estimation using the
method of Lai and Robbins [6].

THEOREM 6. If F is continuous, then

EM(t)<a(t)+(H(@)+1) j? (1 - F(u)) du,
a(t)

where a(t) = F~1 (1 - H_(E;TI') ;

Proof. For each a we have
M(t) = max(X;,..., XN, 7(t)) < max(Xy,..., Xn()+1)
N(t)41
< a+max((Xy - a)4,. .., (X1 —@)4) Sat Y (Xi—a)s.

i=1
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From Wald’s equality (see e.g. Ross [8], p. 59), after taking the most
favourable a we get

EM(t)<a+ E(N(t)+ 1)E(X1—a)y =a+ (H(t)+ 1) f(l — F(u)) du,
and therefore

EM(t) < min (a +(H()+1) j?(l - F(u)) du)

=a(t)+(HQ)+1) [ (1-F(v))du.
a(t)
CoOROLLARY 6. In the case of a Poisson process with parameter A we
have H(t) = At, a(t) = (1/A)log()t + 1), hence

EM(t) < -i-(log()«t+ 1)41) fort>0.

6. Maximal success-run in Bernoulli trials. Let X;, X3,...beinde-
Pendent random variables with the geometric distribution function P(X; =
k) = ¢*~1p, k = 1,2,... This is a well known example in which the lim-
iting distribution of the extreme value does not exist but an asymptotic
estimation does. Referring to Theorem 2 we set, for fixed z,

un = [logy(z/n)], Ta =zqT(~{logy(z/n)}),

Where [q] is the integer part of @ and {a} = a —[a]. Then the condition (13)
15 fulfilled and from (14) we get

(23)  P(M, < uy) = exp(—2q 1 (~{logy(z/m)})) + o(1) s n.— oo.
For p = 1/2 and fixed k the last relation yields
P(M, — [logy n] < k) = exp(~2~*+{%0a"}) 1 o(1) a5 n — co.
Referring to Theorem 4 we set for fixed k
u(t) =k + [log, pt], 7(t) = g1 ({log,pt} + k).
Then the condition (16) is fulfilled and from (17) we get
(24)  P(M(t) +1 < k — [log, pt]) = exp(~q T ({log, pt} + ) +o(1)

as t — o0.
For p = 1/2 and fixed k the last relation yields (see F&ldes [2])
P(M(n) < k + [log, n]) = exp(—2~(k+2-{l0627D)) L o(1) as n — oo.



136 I. Kopociiiska and B. Kopocinski

Referring to Theorem 5 let P(X; = k,Y1 = 1) = p*¢, k,1 = 1,2,...
Then for fixed k we set

u(t) =k +[log,pt], 7(t)=q1(k+1-{log,pt}).
Then the condition (21) is fulfilled and (22) is equivalent to (24).
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