S. TRYBULA (Wrocław)

A NOISY DUEL UNDER ARBITRARY MOVING. V

1. Introduction. In the papers [18]-[22] of the author and in this paper an m-versus-n-bullets-noisy duel is considered in which duelists can move at will. The cases $m \le 25$, $n \le 6$, and n = 1 for any m are solved. Also an idea is given how to solve the duel for any (m, n) using the computer.

In this paper we consider the cases n = 6, m = 1, 2, 3.

Let us define a game which will be called the *game* (m, n). Two Players I and II fight a duel. They can move as they want. The maximal speed of Player I is v_1 , the maximal speed of Player II is v_2 and it is supposed that $v_1 > v_2 \ge 0$. Player I has m bullets (or rockets), Player II has n bullets (rockets).

Assume that at time t = 0 the players are at distance 1 from each other and that $v_1 + v_2 = 1$.

Denote by P(s) the probability (the same for both players) that a player succeeds (destroys his opponent) if he fires at distance 1-s. It is assumed that the function P(s) is increasing and continuous in [0,1], has a continuous second derivative in (0,1), P(s)=0 for $s\leq 0$ and P(1)=1.

Player I gains 1 if only he succeeds, gains -1 if only Player II succeeds and gains 0 in the remaining cases. It is assumed that the duel is a zero-sum game.

The duel is noisy—the player hears the shot of his opponent.

Without loss of generality we also assume that Player II is motionless. Then $v_1 = 1$, $v_2 = 0$.

We suppose that between successive shots of the same players there has to pass a time $\hat{\varepsilon} > 0$.

We also assume that the reader knows the papers [18]-[21] and remembers the notations, assumptions and results given there.

¹⁹⁸⁵ Mathematics Subject Classification: 90D26.

Key words and phrases: noisy duel, game of timing, zero-sum game.

For definitions and notions in the theory of games of timing see [4], [23]. For results see [1], [2], [5], [7], [9]–[12], [14], [24].

2. Duel (1,6), $\langle a \rangle$. In this section we solve the duel (1,6) in the case when at the beginning the players are at distance 1-a from each other.

We define the strategies ξ and η of Players I and II.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (1,5), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ (at the beginning of the duel) and if Player I did not fire at that moment, play optimally the resulting duel $(1,4), \langle 2,a,a \wedge c \rangle$.

The duels (m, n), $(1, a \land c, a)$ and (m, n), $(2, a, a \land c)$ are defined and discussed in [19], Section 5.

(a) denotes the earliest moment when Player I reaches the point a.

"Play optimally" means: apply a strategy optimal in limit (i.e. as $\hat{\varepsilon} \to 0$, see [19] for the precise definition).

We prove that if $a \le a_{16}$, where a_{16} is the root of the equation

(1) $Q^6(a_{16}) + Q^5(a_{16}) + Q^4(a_{16}) - Q(a_{16}) - 1 = 0$, $Q(a_{16}) \cong 0.913491$, Q(s) = 1 - P(s), then the strategies ξ and η are optimal in limit and the limit value of the game (1,6), (a) is

$$v_{16}^a = -1 + Q^4(a).$$

To prove this suppose that Player II fires at $a' \leq a$ and then applies a strategy $\hat{\eta}_0$. For this strategy (call it $(a', \hat{\eta}_0)$) we have

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a')_{15}^{2a'} - k(\hat{\varepsilon}),$$

where $K(\cdot;\cdot)$ is the payoff function (the expected gain of Player I), \hat{v}_{15}^a is the limit value of the game (1,5), $(2,a,a \land c)$ and $k(\hat{\varepsilon}) \to 0$ as $\hat{\varepsilon} \to 0$.

Applying the formula for $a_{15}^{2a'}$ (see [21]) we obtain

$$K(\xi; a', \hat{\eta}_0) \ge -1 + Q^4(a') - k(\hat{\varepsilon}) \ge -1 + Q^4(a) - k(\hat{\varepsilon}).$$

Suppose that Player II fighting against the strategy ξ does not fire; call his strategy $\hat{\eta}$. Then

$$K(\xi; \hat{\eta}) = 0 \ge -1 + Q^4(a)$$
.

It follows that

$$K(\xi; \hat{\eta}) \ge -1 + Q^4(a) - k(\hat{\varepsilon})$$

for any strategy $\hat{\eta}$ of Player II.

Now we prove that if $a \le a_{16}$ then

$$K(\hat{\xi};\eta) \le -1 + Q^4(a) + k(\hat{\varepsilon})$$

for any strategy $\hat{\xi}$ of Player I.

Assume that Player I does not fire at (a). For such a strategy $\hat{\xi}$

$$K(\hat{\xi};\eta) \le -P(a) + Q(a)\hat{v}_{15}^a + k(\hat{\varepsilon}) = -1 + Q^4(a) + k(\hat{\varepsilon})$$

if $a \leq \hat{a}_{15}$, $Q(\hat{a}_{15}) \cong 0.902816$.

If Player I also fires at (a) we have

$$K(\hat{\xi}; \eta) \le -Q^2(a)(1 - Q^5(a)) + k(\hat{\varepsilon}) \le -1 + Q^4(a) + k(\hat{\varepsilon}).$$

In the above inequality we took into account the fact that if both players fire at $\langle a \rangle$ and miss then Player I fires the remaining shots immediately since otherwise Player I can escape.

Thus we need

$$Q^{7}(a) - Q^{4}(a) - Q^{2}(a) + 1 \leq 0,$$

which after dividing by Q(a) - 1 leads to the inequality

$$Q^{6}(a) + Q^{5}(a) + Q^{4}(a) - Q(a) - 1 \ge 0,$$

which is satisfied for $a \leq a_{16}$.

Thus the strategies ξ and η are optimal in limit for $a \leq a_{16}$.

3. Duel (1,6), $(1,a \wedge c,a)$. Suppose now that Player I can fire a shot from time (a) + c on and Player II can fire from (a) on (but sometimes not at (a), see [19]). In the sequel we denote by t the point where Player I is at time t. Moreover, for given a' set

$$a_1 = \langle a \rangle + c \langle a_1 \rangle + c \langle a_2 \rangle = \max(a_1, a_1).$$

We define the strategies ξ and η of Players I and II.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (1,5), $(2,a'_1,a'_1 \wedge c_1)$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (1,5), $(2,a_1,a_1 \wedge c_1)$.

The value of the game is

for $a \le \hat{a}_{15}$, $Q(\hat{a}_{15}) \cong 0.902816$ (for the definition of \hat{a}_{15} see [21]).

The optimality in limit of the strategies ξ and η for $a \leq \hat{a}_{15}$ can be easily established by comparing with the duel (1,6), (a). The proof is omitted.

4. Duel (1,6), $(2,a,a \wedge c)$. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (1,5), $(2,a',a'\land c)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the resulting duel (1,5), $\langle 2, a_1, a_1 \wedge c_1 \rangle$. If he has fired, fire all shots as soon as possible.

The limit value of the game is

$$2_{16}^a = -1 + Q^4(a),$$

thus it is the same as for the previous two duels but the set of the values for which it holds is different. Now the strategies ξ and η are optimal in limit and formula (3') holds for $a \leq \hat{a}_{16}$, where

(4)
$$Q^7(\hat{a}_{16}) - Q^4(\hat{a}_{16}) - 2Q(\hat{a}_{16}) + 2 = 0$$
, $Q(\hat{a}_{16}) \cong 0.921700$. The proof is omitted.

5. Results for the duels (1,6)

$$\begin{array}{ll} ^1v_{16}^a = -1 + Q^4(a) & \text{for } Q(a) \geq Q(\hat{a}_{15}) \cong 0.902816 \,, \\ v_{16}^a = -1 + Q^4(a) & \text{for } Q(a) \geq Q(a_{16}) \cong 0.913491 \,, \\ ^2v_{16}^a = -1 + Q^4(a) & \text{for } Q(a) \geq Q(\hat{a}_{16}) \cong 0.921700 \,. \end{array}$$

6. Duel (2,6), $\langle a \rangle$

Case 1. We define the strategies ξ and η of Players I and II.

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (2,5), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (2,5), $\langle 2, a, a \wedge c \rangle$ or (1,5), $\langle a_1 \rangle$.

The above strategies are optimal in limit and

(5)
$$v_{26}^{a} = \begin{cases} -1 + Q^{2}(a) & \text{if } a \leq a_{24}, \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } a_{24} \leq a \leq a_{26}, \end{cases}$$

where the constants $v_{23}^{a_1}$ and a_{24} are defined in [19] and [20], respectively, $v_{23}^{a_1} \cong 0.013757$, $Q(a_{24}) \cong 0.986429$, the number a_{26} is the root of the equation

(6)
$$Q^5(a_{26}) - (1 + v_{23}^{a_1})Q^3(a_{26}) - Q^2(a_{26}) + 1 = 0$$
, $Q(a_{26}) \cong 0.953808$.

To prove this suppose that Player II fires at $a' \leq a$ and later applies a strategy $\hat{\eta}_0$. For this strategy (call it $(a', \hat{\eta}_0)$) we obtain

$$K(\xi; a', \eta_0) \ge -P(a') + Q(a') \hat{v}_{25}^{a'} - k(\hat{\varepsilon})$$

$$= \begin{cases} -1 + Q^2(a') - k(\hat{\varepsilon}) & \text{if } a' \le a_{24}, \\ -1 + (1 + v_{23}^{a_1}) Q^3(a') - k(\hat{\varepsilon}) & \text{if } a_{24} \le a' \le a_{26}. \end{cases}$$

Thus

$$K(\xi; a', \hat{\eta}_0) \geq v_{26}^a - k(\hat{\varepsilon})$$

for $a \leq a_{26}$ if v_{26}^a is given by (5).

Suppose that Player II fighting against ξ does not fire at all if Player I does not fire. For this strategy (call it $\hat{\eta}$)

$$K(\xi;\hat{\eta})=0>v_{26}^a$$

if v_{26}^a is given by (5).

On the other hand, suppose that Player I also fires at $\langle a \rangle$. We obtain

$$K(\hat{\xi};\eta) \le Q^2(a)v_{15}^a + k(\hat{\varepsilon}) = -Q^2(a) + Q^5(a) + k(\hat{\varepsilon})$$

if $Q(a) \ge 0.889891$ (see [21]). Therefore we need

$$-Q^2(a) + Q^5(a) \le -1 + Q^2(a)$$

or

$$S_1(Q(a)) = Q^5(a) - 2Q^2(a) + 1 \le 0$$

for $a \le a_{24}$. The function on the left hand side is decreasing in a in $[0, a_{24}]$ and $S_1(1) = 0$. Thus the inequality holds.

For $a_{24} \leq a \leq a_{26}$ we need the inequality

$$S_2(Q(a)) = Q^5(a) - (1 + v_{23}^{a_1})Q^3(a) - Q^2(a) + 1 \le 0.$$

This function is increasing in a and $S_2(Q(a_{26})) = 0$. Thus also here the inequality holds. This ends the proof in this case.

When Player I does not fire at (a) we have simply

$$K(\hat{\xi}; \eta) \le -P(a) + Q(a)_{25}^2 + k(\hat{\varepsilon}) = v_{26}^a + k(\hat{\varepsilon})$$

if v_{26}^a is given by (5).

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: Fire at $\langle a \rangle$ and play optimally the duel (1,6), $(1,a \wedge c,a)$ or (1,5), (a_1) .

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (2,5), $(2,a,a \wedge c)$ or (1,5), $\langle a_1 \rangle$.

Now

(7)
$$v_{26}^a = Q^2(a)v_{15}^a = -Q^2(a) + Q^5(a)$$

for $a_{26} \le a \le a_{16}$.

To prove this suppose that Player II does not fire at $\langle a \rangle$. In this case

$$K(\xi; \hat{\eta}) \ge P(a) + Q(a) v_{16}^{1a} - k(\hat{\varepsilon})$$

= 1 - 2Q(a) + Q⁵(a) - k(\hat{\varepsilon}) \geq -Q^{2}(a) + Q⁵(a) - k(\hat{\varepsilon})

for $a \leq a_{16}$.

If Player I does not fire at (a) we obtain

$$\begin{split} K(\hat{\xi};\eta) & \leq -P(a) + Q(a) \hat{v}_{25}^{2} + k(\hat{\varepsilon}) \\ & = \begin{cases} -1 + (1 + v_{23}^{a_1})Q^3(a) & \text{if } a_{24} \leq a \leq \hat{a}_{25}, \\ -1 + 2Q(a) - 2Q^2(a) + Q^5(a) & \text{if } \hat{a}_{25} \leq a \leq \check{a}_{14}, \end{cases} \end{split}$$

 $Q(\hat{a}_{25}) \cong 0.949182, Q(\check{a}_{14}) \cong 0.871757.$

Therefore we need

$$-1 + (1 + v_{23}^{a_1})Q^3(a) \le -Q^2(a) + Q^5(a)$$

for $a_{26} \le a \le \hat{a}_{25}$, which holds by the results of Case 1, and

$$-1 + 2Q(a) - 2Q^{2}(a) + Q^{5}(a) \le -Q^{2}(a) + Q^{5}(a)$$

for $\hat{a}_{25} \leq a \leq a_{16}$, which always holds.

7. Duel (2,6), $(1,a \wedge c,a)$. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (2,5), $(2,a'_1,a'_1 \wedge c_1)$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (2,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$.

We remind that

$$a_1 = \langle a \rangle + c \langle a_1 \rangle + c \langle a_2 \rangle = \max(a', a_1).$$

For the above duel the strategies ξ and η are optimal in limit and

(8)
$$v_{26}^{1} = \begin{cases} -1 + Q^{2}(a) & \text{if } a \leq a_{24}, \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } a_{24} \leq a \leq \hat{a}_{25}, \\ -1 + 2Q(a) - 2Q^{2}(a) + Q^{5}(a) & \text{if } \hat{a}_{25} \leq a \leq \check{a}_{14}, \end{cases}$$

 $Q(\hat{a}_{25}) \cong 0.949181, Q(\check{a}_{14}) = 0.871757.$

The proof of omitted.

8. Duel (2,6), $(2,a,a \land c)$

Case 1. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (2,5), $(2,a',a'\land c_1)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the resulting duel (2,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$ or (1,5), $\langle a_2 \rangle$, where $a_2 = \langle a \rangle + c + \hat{\varepsilon} \langle$. If Player I fired, play optimally the duel (1,6), $\langle 1,a_1,a_1 \wedge c_1 \rangle$.

Now

$$\begin{split} \hat{v}_{26}^a &= -P(a) + Q(a) \hat{v}_{24}^a \\ &= \begin{cases} -1 + Q^2(a) & \text{if } a \leq a_{24}, \\ -1 + (1 + v_{23}^{a_1}) Q^3(a) & \text{if } a_{24} \leq a \leq \hat{a}_{26}, \end{cases} \end{split}$$

where \hat{a}_{26} is the only root of the equation

(9)
$$Q^5(\hat{a}_{26}) - (1 + v_{23}^{a_1})Q^3(\hat{a}_{26}) - 2Q(\hat{a}_{26}) + 2 = 0$$
, $Q(\hat{a}_{26}) \cong 0.957316$.

The proofs of the optimality in limit of the strategies ξ and η and of the above formulae are omitted.

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (1,6), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the duel (2,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$ or (1,5), $\langle a_2 \rangle$, where $a_2 = \langle a \rangle + c + \hat{\varepsilon} \langle a \rangle$.

The limit value of the game is

$$v_{26}^a = 1 - 2Q(a) + Q^5(a)$$

for $\hat{a}_{26} \leq a \leq a_{16}$.

The proof is omitted.

9. Results for the duels (2,6)

$$\begin{split} & \overset{1}{v}_{26}^{a} = \begin{cases} -1 + Q^{2}(a) & \text{if } Q(a) \geq Q(a_{24}) \cong 0.986429, \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } Q(a_{24}) \geq Q(a) \geq Q(\hat{a}_{25}) \cong 0.949181, \\ -1 + 2Q(a) - 2Q^{2}(a) + Q^{5}(a) & \text{if } Q(\hat{a}_{25}) \geq Q(a) \geq Q(\check{a}_{14}) \cong 0.871757, \end{cases} \\ & v_{26}^{a} = \begin{cases} -1 + Q^{2}(a) & \text{if } Q(a) \geq Q(a_{24}), \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } Q(a_{24}) \geq Q(a) \geq Q(a_{26}) \cong 0.953808, \\ -Q^{2}(a) + Q^{5}(a) & \text{if } Q(a_{26}) \geq Q(a) \geq Q(a_{16}) \cong 0.913491, \end{cases} \\ & \overset{2}{v}_{26}^{a} = \begin{cases} -1 + Q^{2}(a) & \text{if } Q(a) \geq Q(a_{24}), \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } Q(a) \geq Q(a_{24}), \\ -1 + (1 + v_{23}^{a_{1}})Q^{3}(a) & \text{if } Q(a_{24}) \geq Q(a) \geq Q(\hat{a}_{26}) \cong 0.957316, \\ 1 - 2Q(a) + Q^{5}(a) & \text{if } Q(\hat{a}_{26}) \geq Q(a) \geq Q(a_{16}). \end{cases} \end{split}$$

10. Duel (3,6), $\langle a \rangle$

Case 1. As before, by ξ and η we denote the strategies which are next proved to be optimal in limit:

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (3,5), $(2,a',a'\land c)$.

STRATEGY OF PLAYER II: If Player I escapes, do not fire. If he comes nearer, do not fire till $\langle a_{36} \rangle$ and play optimally the duel (3,5), $\langle 2, a_{36}, a_{36} \wedge c \rangle$ or (2,5), $\langle a_{36} \rangle + c \rangle$, where $c = \hat{\varepsilon}$.

In the considered case

$$v_{36}^a = 0$$

for

(11)
$$Q(a) \ge Q(a_{36}) = \frac{1}{1 + P^2(a_{24})} \cong 0.999816.$$

Suppose then that Player II fires at $a' \leq a$. We obtain

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a') v_{35}^{2a'} - k(\hat{\varepsilon})$$

= -1 + (1 + P²(a₂₄))Q(a') - k(\hat{\varepsilon})

if $a' \leq a_{35}$, $Q(a_{35}) \cong 0.980064$.

We have

$$-1 + (1 + P^{2}(a_{24}))Q(a') \ge -1 + (1 + P^{2}(a_{24}))Q(a) \ge 0 = v_{36}^{a}$$

if $a \leq a_{36}$.

On the other hand, if Player I does not reach the point a_{36} and does not fire then

$$K(\hat{\xi};\eta)=0=v_{36}^a.$$

If Player I fires before a₃₆ (at a') then

$$K(a', \hat{\xi}_0; \eta) \le P(a') + Q(a') v_{26}^{1a'} + k(\hat{\varepsilon})$$

= 1 - 2Q(a') + Q³(a') + k(\hat{\varepsilon}) < k(\hat{\varepsilon})

for $a' \leq a_{36}$.

If Player I fires at (a_{36}) then

$$K(\hat{\xi};\eta) \leq Q^2(a_{36})v_{25}^{a_{36}} + k(\hat{\varepsilon}) = Q^2(a_{36})(-1 + Q(a_{36})) + k(\hat{\varepsilon}) \leq k(\hat{\varepsilon}).$$

If, finally, Player I does not fire before or at $\langle a_{36} \rangle$ but reaches the point a_{36} then

$$K(\hat{\xi};\eta) \leq -P(a_{36}) + Q(a_{36})^2 v_{35}^{a_{36}} + k(\hat{\varepsilon})$$

= $-P(a_{36}) + Q(a_{36})P^2(a_{24}) + k(\hat{\varepsilon}) = k(\hat{\varepsilon}).$

Thus ξ and η are optimal in limit for $a \leq a_{36}$.

Case 2. We define ξ and η .

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (3,5), $(2,a',a'\wedge c)$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the resulting duel (3,5), $\langle 2,a,a\wedge c \rangle$ or (2,5), $\langle a_1 \rangle$.

Now

(12)
$$v_{36}^a = -P(a) + Q(a)v_{35}^2 = -1 + (1 + P^2(a_{24}))Q(a)$$

for $a_{36} \leq a \leq a_{36}^{(1)}$, where the number $a_{36}^{(1)}$ satisfies equation (13) below.

Assume that Player II fires at $a' \leq a$. We have

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a') v_{35}^{2a'} - k(\hat{\varepsilon})$$

= -1 + (1 + P²(a₂₄))Q(a') - k(\hat{\varepsilon}) \geq -1 + (1 + P²(a₂₄))Q(a) - k(\hat{\varepsilon}).

If Player II applying $\hat{\eta}$ against ξ does not fire at all then

$$K(\xi;\hat{\eta}) = 0 \ge -1 + (1 + P^2(a_{24}))Q(a)$$

provided

$$Q(a) \leq \frac{1}{1 + P^2(a_{24})} = Q(a_{36}).$$

On the other hand, if Player I also fires at (a) then

$$K(\hat{\xi};\eta) \le Q^2(a)v_{25}^a + k(\hat{\varepsilon})$$

= $-Q^2(a) + Q^3(a) + k(\hat{\varepsilon}) \le -1 + (1 + P^2(a_{24}))Q(a) + k(\hat{\varepsilon})$

always in the interval $[a_{36}, a_{36}^{(1)}]$, where $a_{36}^{(1)}$ is the only root of the equation

(13)
$$Q^3(a_{36}^{(1)}) - Q^2(a_{36}^{(1)}) - (1 + P^2(a_{24}))Q(a_{36}^{(1)}) + 1 = 0,$$

 $Q(a_{36}^{(1)}) \cong 0.990428.$

Case 3. We define ξ and η .

STRATEGY OF PLAYER I: Fire at $\langle a \rangle$ and play optimally the resulting duel (2,6), $\langle 1,a \wedge c,a \rangle$ or (2,5), $\langle a_1 \rangle$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the resulting duel (3,5), $(2,a,a\wedge c)$ or (2,5), (a_1) .

We now prove that

$$(14) \quad v_{36}^a = Q^2(a)v_{25}^a = \begin{cases} -Q^2(a) + Q^3(a) & \text{if } a_{36}^{(1)} \le a \le a_{24}, \\ -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) & \text{if } a_{24} \le a \le a_{36}^{(2)}, \end{cases}$$

where the number $a_{36}^{(2)}$ is the root of the equation

$$(15) \qquad (1+v_{23}^{a_1})Q^4(a_{36}^{(2)}) - Q^2(a_{36}^{(2)}) - (1+P^2(a_{24}))Q(a_{36}^{(2)}) + 1 = 0$$

in the interval (a_{24}, a_{35}) , with $Q(a_{36}^{(2)}) \cong 0.986229$.

Suppose that Player I did not fire at (a). Then

$$\begin{split} K(\hat{\xi};\eta) &\leq -P(a) + Q(a) v_{35}^{2} + k(\hat{\varepsilon}) \\ &= \begin{cases} -1 + (1 + P^{2}(a_{24}))Q(a) + k(\hat{\varepsilon}) & \text{if } a \leq a_{35}, \\ -1 + (1 + v_{34}^{a_{1}})Q^{2}(a) & \text{if } a_{35} \leq a \leq \check{a}_{35}, \end{cases} \end{split}$$

 $v_{34}^{a_1} \cong 0.020530, Q(\check{a}_{35}) = 0.948807.$

Thus we need the inequality

$$Q^{3}(a) - Q^{2}(a) - (1 + P^{2}(a_{24}))Q(a) + 1 \ge 0$$

for $a_{36}^{(1)} \le a \le a_{24}$: in view of (13) it holds for those a.

For $a_{24} \le a \le a_{36}^{(2)}$ we need

$$S(Q(a)) = (1 + v_{23}^{a_1})Q^4(a) - Q^2(a) - (1 + P^2(a_{24}))Q(a) + 1 \ge 0,$$

which holds since the polynomial considered is increasing in Q for those a and $S(Q(a_{36}^{(2)})) = 0$.

Suppose then that Player II did not fire at $\langle a \rangle$. We have

$$K(\xi; \hat{\eta}) \ge P(a) + Q(a) v_{26}^{1a} - k(\hat{\varepsilon})$$

$$= \begin{cases} 1 - 2Q(a) + Q^{3}(a) & \text{if } a \le a_{24}, \\ 1 - 2Q(a) + (1 + v_{23}^{a_{1}})Q^{4}(a) & \text{if } a_{24} \le a \le \hat{a}_{25}. \end{cases}$$

Therefore we need

$$1 - 2Q(a) + Q^3(a) \ge -Q^2(a) + Q^3(a)$$

for $a_{36}^{(1)} \le a \le a_{24}$, which is always satisfied, and

$$1-2Q(a)+(1+v_{23}^{a_1})Q^4(a) \ge -Q^2(a)+(1+v_{23}^{a_1})Q^4(a)$$

for $a_{24} \leq a \leq a_{36}^{(2)}$ which also always holds. Thus the strategies ξ and η are optimal in limit.

Case 4. For given a denote by a^{ε} a random variable with an absolutely continuous probability distribution in $[\langle a \rangle, \langle a \rangle + \alpha(\varepsilon)]$, where $\alpha(\varepsilon) \to 0$ as $\varepsilon \to 0$ (and as $\hat{\varepsilon} \to 0$, see [19]). We define the strategies ξ and η of Players I and II.

STRATEGY OF PLAYER I: If Player I has not fired before, fire a shot at a^{ε} and play optimally the resulting duel (2,6), $\langle 1, \rangle a^{\varepsilon} \langle \wedge c, \rangle a^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the resulting duel (3,5), $\langle 2, a', a' \wedge c \rangle$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and if Player I has not fired, play optimally the duel (3,5), $\langle 2,a,a \wedge c \rangle$. If he has, play optimally the duel (2,5), $\langle a_1 \rangle$.

Now

(16)
$$v_{36}^a = -P(a) + Q(a)v_{35}^2 = -1 + (1 + P^2(a_{24}))Q(a)$$

for $a_{36}^{(2)} \le a \le \hat{a}_{36}$, where

(17)
$$(1+v_{23}^{a_1})Q^4(\hat{a}_{36}) - (3+P^2(a_{24}))Q(\hat{a}_{36}) + 2 = 0,$$

$$Q(\hat{a}_{36}) \cong 0.986016.$$

Suppose that Player I does not fire at (a). We obtain

$$K(\hat{\xi};\eta) \leq -P(a) + Q(a)_{35}^2 + k(\hat{\varepsilon}).$$

If Player I fires at (a) then

$$\begin{split} K(\hat{\xi};\eta) &\leq Q^2(a)v_{25}^a + k(\hat{\varepsilon}) = -Q^2(a) + (1+v_{23}^{a_1})Q^4(a) + k(\hat{\varepsilon}) \\ &\leq -1 + (1+P^2(a_{24}))Q(a) + k(\hat{\varepsilon}) \end{split}$$

for $a_{24} \le a \le a_{35}$. Therefore we need

$$S(Q(a)) = (1 + v_{23}^{a_1})Q(a) - Q^2(a) - (1 + P^2(a_{24}))Q(a) + 1 \le 0$$

for $a_{36}^{(2)} \leq a \leq \hat{a}_{36}$, which holds since S(Q(a)) is decreasing in a in this interval and $S(Q(a_{36}^{(2)})) = 0$. Thus Player II assures in limit the value $-1 + (1 + P^2(a_{24}))Q(a)$.

On the other hand, if Player II fires at (a) then

$$K(\xi; \hat{\eta}) \geq -P(a) + Q(a)_{35}^{2a} - k(\hat{\varepsilon}).$$

If Player II does not fire before $\langle a \rangle + \alpha(\varepsilon)$ then

$$K(\xi; \hat{\eta}) \ge P(a) + Q(a)v_{26}^{1a} - k(\hat{\varepsilon}) = 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^4(a) - k(\hat{\varepsilon})$$

$$\ge -1 + (1 + P^2(a_{24}))Q(a) - k(\hat{\varepsilon})$$

for $a_{36}^{(2)} \leq a \leq \hat{a}_{36}$ provided

$$S(Q(a)) = (1 + v_{23}^{a_1})Q^4(a) - (3 + P^2(a_{24}))Q(a) + 2 \ge 0.$$

This function is decreasing in the considered interval and $S(Q(\hat{a}_{36})) = 0$ by (17). Thus the inequality holds.

From the above it follows that

$$K(\xi; \hat{\eta}) \ge -1 + (1 + P^2(a_{24}))Q(a) - k(\hat{\varepsilon})$$

for properly chosen $k(\hat{\varepsilon})$, which proves that also Player I applying ξ assures in limit the value $-1 + (1 + P^2(a_{24}))Q(a)$.

Case 5. We define ξ and η .

STRATEGY OF PLAYER I: If Player II has not fired before, escape, reach the point \hat{a}_{36} , fire at $\hat{a}_{36}^{\varepsilon}$ and play optimally the duel (2,6), $\langle 1, \rangle \hat{a}_{36}^{\varepsilon} \langle \wedge c, \rangle \hat{a}_{36}^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the resulting duel (3,5), $\langle 2,a',a',\wedge c \rangle$.

The random variable a_{36}^{ε} is defined similarly to a^{ε} .

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and if Player I did not fire at that moment, play optimally the duel (3,5), $(2,a,a \wedge c)$. If he fired, play optimally the duel (2,5), (a_1) .

In this case

(18)
$$v_{36}^{a} = \begin{cases} -1 + (1 + P^{2}(a_{24}))Q(a) & \text{if } \hat{a}_{36} \leq a \leq a_{35}, \\ -1 + (1 + v_{34}^{a_{1}})Q^{2}(a) & \text{if } a_{35} \leq a \leq a_{36}^{(3)}, \end{cases}$$

where

$$(19) \quad (1+v_{23}^{a_1})Q^4(a_{36}^{(3)}) - (2+v_{34}^{a_1})Q^2(a_{36}^{(3)}) + 1 = 0, \quad Q(a_{36}^{(3)}) \cong 0.956425.$$

To prove this suppose that Player I does not fire at $\langle a \rangle$. Then

$$K(\hat{\xi};\eta) \leq -P(a) + Q(a)_{35}^{2a} + k(\hat{\varepsilon}).$$

If Player I fires at $\langle a \rangle$ we obtain

$$K(\hat{\xi};\eta) \le Q^2(a)v_{25}^a + k(\hat{\varepsilon}) = -Q^2(a) + (1+v_{23}^{a_1})Q^4(a) + k(\hat{\varepsilon})$$

if $a_{24} \leq a \leq a_{25}$, $Q(a_{25}) \cong 0.943073$. Thus we need the inequality

$$-Q^{2}(a) + (1 + v_{23}^{a_{1}})Q^{4}(a) \le -1 + (1 + P^{2}(a_{24}))Q(a)$$

for $\hat{a}_{36} \leq a \leq a_{35}$, which holds by the proof in Case 4.

Moreover, we need

$$-Q^{2}(a) + (1 + v_{23}^{a_{1}})Q^{4}(a) \le -1 + (1 + v_{34}^{a_{1}})Q^{2}(a)$$

for $a_{35} \leq a \leq a_{36}^{(3)}$, which is satisfied for $a \leq a_{36}^{(3)}$.

Thus for one side the proof is given.

For the other side, assume that Player II fires at a', $\hat{a}_{36} \leq a' \leq a$. We have

$$K(\xi; a', \hat{\eta}_0) \ge -P(a') + Q(a') \hat{v}_{35}^{a'} - k(\hat{\varepsilon})$$

$$= \begin{cases} -1 + (1 + P^2(a_{24}))Q(a') - k(\hat{\varepsilon}) & \text{if } \hat{a}_{36} \le a' \le a_{35}, \\ -1 + (1 + v_{34}^{a_1})Q^2(a') - k(\hat{\varepsilon}) & \text{if } a_{35} \le a' \le a_{36}^{(3)}, \end{cases}$$

which gives

$$K(\xi; a', \hat{\eta}_0) \geq v_{36}^a - k(\hat{\varepsilon})$$

if v_{36}^a is given by (18).

Suppose now that Player I fighting against η fires after $\langle \hat{a}_{36} \rangle + \alpha(\varepsilon)$ or does not fire. Then

$$K(\xi; \hat{\eta}) \ge P(\hat{a}_{36}) + Q(\hat{a}_{36}) v_{26}^{1} - k(\hat{\varepsilon})$$

$$= 1 - 2Q(\hat{a}_{36}) + (1 + v_{23}^{a_1})Q^4(\hat{a}_{36}) - k(\hat{\varepsilon})$$

$$\ge -1 + (1 + P^2(a_{24}))Q(a) - k(\hat{\varepsilon})$$

for $\hat{a}_{36} \leq a \leq a_{35}$, since for $a = \hat{a}_{36}$ we have equality (see (19)).

Moreover,

$$1 - 2Q(\hat{a}_{36}) + (1 + v_{23}^{a_1})Q^4(\hat{a}_{36}) \ge -1 + (1 + v_{34}^{a_1})Q^2(a)$$

for $a_{35} \le a \le a_{36}^{(3)}$, because the right hand side of the above inequality is decreasing in a and for $a = a_{35}$ the inequality holds, since

$$-1 + (1 + P^{2}(a_{24}))Q(a) = -1 + (1 + v_{34}^{a_{1}})Q^{2}(a)$$

for this a.

This ends the proof of the optimality in limit of the strategies ξ and η .

Case 5'. Assume that instead of firing at \hat{a}_{36}^{ϵ} if Player II has not fired before, Player I fires at $\langle \hat{a}_{36} \rangle$ and then plays optimally. This strategy (say ξ') is optimal in limit provided that, besides the inequalities proved above, we ensure that if Player II also fires at $\langle \hat{a}_{36} \rangle$ then

$$K(\xi; \hat{\eta}) \ge Q^2(\hat{a}_{36})v_{25}^{\hat{a}_{36}} - k(\hat{\varepsilon})$$

$$= Q^2(\hat{a}_{36})(-1 + (1 + v_{23}^{a_1})Q^2(\hat{a}_{36})) - k(\hat{\varepsilon}) = -0.013998 - k(\hat{\varepsilon})$$

$$\ge -1 + (1 + (1 + P^2(a_{24}))Q(a) - k(\hat{\varepsilon}),$$

i.e. provided

(20)
$$Q(a) \leq Q(\check{a}_{36}) \cong 0.985820,$$

since the inequality

$$-0.013998 \ge -1 + (1 + v_{34}^{a_1})Q^2(a)$$

for $a_{35} \le a \le a_{36}^{(3)}$ is satisfied too.

Thus for $\check{a}_{36} \leq a \leq a_{36}^{(3)}$ the strategy ξ' defined above is also optimal in limit.

Case 6. We define ξ and η .

STRATEGY OF PLAYER I: Fire at $\langle a \rangle$ and play optimally the duel (2,6), $\langle 1, a \wedge c, a \rangle$ or (2,5), $\langle a_1 \rangle$.

STRATEGY OF PLAYER II: Fire at $\langle a \rangle$ and play optimally the duel (3,5), $\langle 2, a, a \wedge c \rangle$ or (2,5), $\langle a_1 \rangle$.

Now

$$(21) v_{36}^a = Q^2(a)v_{25}^a = \begin{cases} -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) & \text{if } a_{36}^{(3)} \le a \le a_{25}, \\ -Q^4(a) + Q^6(a) & \text{if } a_{25} \le a \le a_{34}, \end{cases}$$

$$Q(a_{34}) \cong 0.903576$$
 (see [20]), $Q(a_{25}) \cong 0.943073$ (see [21]).

Suppose that Player I does not fire at $\langle a \rangle$. Then

$$\begin{split} K(\hat{\xi};\eta) & \leq -P(a) + Q(a) v_{35}^2 + k(\hat{\varepsilon}) \\ & = \begin{cases} -1 + (1 + v_{34}^a) Q^2(a) + k(\hat{\varepsilon}) & \text{if } a_{36}^{(3)} \leq a \leq \check{a}_{35}, \\ -1 + 2Q(a) - 2Q^2(a) + (1 + v_{23}^{a_1}) Q^4(a) + k(\hat{\varepsilon}) & \text{if } \check{a}_{35} \leq a \leq \check{a}_{24}, \\ -1 + 2Q(a) - 2Q^2(a) + 2Q^3(a) - 2Q^4(a) + Q^6(a) + k(\hat{\varepsilon}) & \text{if } \check{a}_{24} \leq a \leq a_{34}, \end{cases} \end{split}$$

 $Q(\check{a}_{35}) \cong 0.948807$ (see [21]), $Q(\check{a}_{24}) \cong 0.933827$ (see [20]). We consider several cases.

(i)
$$a_{36}^{(3)} \le a \le \check{a}_{35}$$
. In this case we need
$$-1 + (1 + v_{34}^{a_1})Q^2(a) \le -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a),$$

which is satisfied by the results of Case 5 (see equation (19)).

(ii)
$$\check{a}_{35} \leq a \leq a_{25}$$
. In this case we need

$$-1+2Q(a)-2Q^2(a)+(1+v_{23}^{a_1})Q^4(a) \leq -Q^2(a)+(1+v_{23}^{a_1})Q^4(a)\,,$$
 which is always satisfied.

(iii)
$$a_{25} \le a \le \check{a}_{24}$$
. In this case we need
$$-1 + 2Q(a) - 2Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) \le -Q^4(a) + Q^6(a)$$

10

$$S(Q(a)) = Q^{6}(a) - (2 + v_{23}^{a_1})Q^{4}(a) + 2Q^{2}(a) - 2Q(a) + 1 \ge 0.$$

This function is increasing in a in the interval considered and $S(Q(a_{25})) = S(0.943073) \cong 0.003241$. Thus the inequality holds.

(iv)
$$\check{a}_{24} \leq a \leq a_{34}$$
. In this case we need

$$-1 + 2Q(a) - 2Q^{2}(a) + 2Q^{3}(a) - 2Q^{4}(a) + Q^{6}(a) \le -Q^{4}(a) + Q^{6}(a)$$
, which is satisfied for any a .

On the other hand, if Player II does not fire at (a) we have

$$\begin{split} K(\xi;\hat{\eta}) &\geq P(a) + Q(a) \overset{1}{v}_{26}^{a} - k(\hat{\varepsilon}) \\ &= \begin{cases} 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^4(a) - k(\hat{\varepsilon}) & \text{if } a_{36}^{(3)} \leq a \leq \hat{a}_{25}, \\ 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^6(a) - k(\hat{\varepsilon}) & \text{if } \hat{a}_{25} \leq a \leq a_{34}, \end{cases} \end{split}$$

 $Q(\hat{a}_{25}) \cong 0.949181$ (see [21]), $Q(a_{34}) \cong 0.903576$ (see [20]). We consider three cases.

(i)
$$a_{36}^{(3)} \leq a \leq \hat{a}_{25}$$
. We need the inequality $1 - 2Q(a) + (1 + v_{23}^{a_1})Q^4(a) \geq -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a)$, which is always satisfied.

(ii) $\hat{a}_{25} \leq a \leq a_{25}$. We need

$$1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{6}(a) \ge -Q^{2}(a) + (1 + v_{23}^{a_{1}})Q^{4}(a)$$

or

$$S(Q(a)) = Q^{6}(a) - (1 + v_{23}^{a_1})Q^{4}(a) - 2Q^{3}(a) + 3Q^{2}(a) - 2Q(a) + 1 \ge 0.$$

This function is increasing in the interval considered and $S(Q(\hat{a}_{25})) \cong S(0.949181) \cong 0.002583 > 0$. Thus the inequality holds.

(iii) $a_{25} \leq a \leq a_{34}$. We need

$$1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{6}(a) \ge -Q^{4}(a) + Q^{6}(a),$$

which always holds.

Thus the strategies ξ and η are optimal in limit.

11. Duel (3,6), $(1,a \wedge c,a)$. Since the paper would become very long we omit the proofs of the results given in this section.

Case 1: $a \le a_{36}$. The strategies optimal in limit are the same as in the duel (3,6), (a) and the limit value of the game is the same.

Case 2: $a_{36} \le a \le a_{35}$. The strategies optimal in limit are:

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (3,5), $(2,a'_1,a'_1 \wedge c_1)$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (3,5), $\langle 2, a_1, a_1 \wedge c_1 \rangle$.

We remind that

$$a_1 = \langle a \rangle + c \langle a_1' = \max(a_1, a') \rangle$$

The limit value of the game is

(22)
$$v_{36}^a = -P(a) + Q(a)v_{35}^2 = -1 + (1 + P^2(a_{24}))Q(a).$$

Case 3: $a_{35} \le a \le a_{34}$. The strategies optimal in limit are:

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire at $\hat{a}_{36}^{\varepsilon}$ and play optimally the resulting duel (2,6), $\langle 1, \rangle a_{36}^{\varepsilon} \langle \wedge c_1, \rangle a_{36}^{\varepsilon} \langle \rangle$.

STRATEGY OF PLAYER II: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (3,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$.

Now

$$(23) \quad \begin{array}{l} {}^{1} \dot{a}_{36} = -P(a) + Q(a) \dot{v}_{25}^{a} \\ = \begin{cases} -1 + (1 + v_{34}^{a_1}) Q^2(a) & \text{if } a_{35} \leq a \leq \check{a}_{35}, \\ -1 + 2Q(a) - 2Q^2(a) + (1 + v_{23}^{a_1}) Q^4(a) & \text{if } \check{a}_{35} \leq a \leq \check{a}_{24}, \\ -1 + 2Q(a) - 2Q^2(a) + 2Q^3(a) - 2Q^4(a) + Q^6(a) & \text{if } \check{a}_{24} \leq a \leq a_{34}, \end{cases}$$

 $Q(\check{a}_{35}) \cong 0.948807, Q(\check{a}_{24}) \cong 0.933827, Q(a_{34}) \cong 0.903576.$

12. Duel (3,6), $(2,a,a \wedge c)$. We also omit the proofs of the results obtained in this section.

Case 1: $a \le a_{36}$. The strategies optimal in limit are the same as in the duel (3,6), $\langle a \rangle$ and the limit value of the game is the same.

Case 2: $a_{36} \le a \le a_{36}^{(4)}$, $a_{36}^{(4)}$ is the only root of the equation

(24)
$$Q^3(a_{36}^{(4)}) - (3 + P^2(a_{24}))Q(a_{36}^{(4)}) + 2 = 0, \quad Q(a_{36}^{(4)}) \cong 0.992186.$$

The strategies optimal in limit are:

STRATEGY OF PLAYER I: Escape if Player II has not fired. If he fired (say at a'), play optimally the resulting duel (3,5), $(2,a',a' \wedge c_1)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the resulting duel (3,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$ or (2,5), $\langle a_2 \rangle$, $a_2 = \langle a \rangle + c + \hat{c} \langle$. If he has fired, play optimally the duel (2,6), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

The limit value of the game is

Case 3: $a_{36}^{(4)} \le a \le \hat{a}_{36}$. The strategies optimal in limit are:

STRATEGY OF PLAYER I: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (2,6), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally the duel (3,5), $\langle 2,a_1,a_1 \wedge c_1 \rangle$ or (2,5), $\langle a_2 \rangle$, $a_2 = \rangle \langle a \rangle + c + \hat{\epsilon} \langle$. If he fired, play optimally the duel (2,6), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

The limit value of the game is

Case 4: $\hat{a}_{36} \leq a \leq a_{36}^{(3)}$. The strategies optimal in limit are:

STRATEGY OF PLAYER I: If Player II has not fired before, escape, fire at $\hat{a}_{36}^{\varepsilon}$ and play optimally the duel (2,6), $\langle 1, \rangle \hat{a}_{36}^{\varepsilon} \langle \wedge c_1, \rangle \hat{a}_{36}^{\varepsilon} \langle \rangle$. If he fired (say at a'), play optimally the duel (3,5), $\langle 2, a'_1, a'_1 \wedge c_1 \rangle$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at (a) + c and play optimally afterwards. If he fired, play optimally the duel (2,6), $(1,a_1 \wedge c_1,a_1)$.

The limit value of the game is now

Case 5: $a_{36}^{(3)} \leq a \leq a_{34}$. The strategies optimal in limit are:

STRATEGY OF PLAYER I: Fire before $\langle a \rangle + c$ and play optimally the resulting duel (2,6), $(1,a_1 \wedge c_1,a_1)$.

STRATEGY OF PLAYER II: If Player I has not fired before, fire at $\langle a \rangle + c$ and play optimally afterwards. If he has, play optimally the resulting duel (2,6), $\langle 1,a_1 \wedge c_1,a_1 \rangle$.

Now

(28)
$$\begin{aligned}
\hat{v}_{36}^{a} &= P(a) + Q(a) \hat{v}_{26}^{a} \\
&= \begin{cases}
1 - 2Q(a) + (1 + v_{23}^{a_1})Q^{4}(a) & \text{if } a_{36}^{(3)} \leq a \leq \hat{a}_{25}, \\
1 - 2Q(a) + 2Q^{2}(a) - 2Q^{3}(a) + Q^{6}(a) & \text{if } \hat{a}_{25} \leq a \leq a_{34}.
\end{aligned}$$

13. Results for the duels (3,6)

$$v_{36}^a = \begin{cases} 0 & \text{if } Q(a) \geq Q(a_{36}) \cong 0.999816, \\ -1 + (1 + P^2(a_{24}))Q(a) & \text{if } Q(a_{36}) \geq Q(a) \geq Q(a_{35}) \cong 0.980064, \\ -1 + (1 + v_{34}^{a_1})Q^2(a) & \text{if } Q(a_{35}) \geq Q(a) \geq Q(\check{a}_{35}) \cong 0.948807, \\ -1 + 2Q(a) - 2Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) & \text{if } Q(\check{a}_{35}) \geq Q(a) \geq Q(\check{a}_{24}) \cong 0.933827, \\ -1 + 2Q(a) - 2Q^2(a) + 2Q^3(a) - 2Q^4(a) + Q^6(a) & \text{if } Q(\check{a}_{24}) \geq Q(a) \geq Q(a_{34}) \cong 0.903576, \end{cases}$$

$$\begin{cases} 0 & \text{if } Q(a) \geq Q(a_{36}), \\ -1 + (1 + P^2(a_{24}))Q(a) & \text{if } Q(a_{36}) \geq Q(a) \geq Q(a_{36}) \cong 0.990428, \\ -Q^2(a) + Q^3(a) & \text{if } Q(a_{36}^{(1)}) \geq Q(a) \geq Q(a_{24}) \cong 0.986429, \\ -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) & \text{if } Q(a_{36}^{(2)}) \geq Q(a) \geq Q(a_{36}^{(2)}) \cong 0.986229, \\ -1 + (1 + P^2(a_{24}))Q(a) & \text{if } Q(a_{36}^{(2)}) \geq Q(a) \geq Q(a_{35}^{(3)}), \\ -1 + (1 + v_{34}^{a_1})Q^2(a) & \text{if } Q(a_{35}) \geq Q(a) \geq Q(a_{36}^{(3)}) \cong 0.956425, \\ -Q^2(a) + (1 + v_{23}^{a_1})Q^4(a) & \text{if } Q(a_{36}^{(3)}) \geq Q(a) \geq Q(a_{25}) = 0.943073, \\ -Q^4(a) + Q^6(a) & \text{if } Q(a_{25}) \geq Q(a) \geq Q(a_{34}), \end{cases}$$

$$\begin{array}{l} S. \ \, {\rm Trybula} \\ \\ 0 & {\rm if} \ Q(a) \geq Q(a_{36}), \\ -1 + (1 + P^2(a_{24}))Q(a) & {\rm if} \ Q(a_{36}) \geq Q(a) \geq Q(a_{36}^{(4)}) \cong 0.992186, \\ 1 - 2Q(a) + Q^3(a) & {\rm if} \ Q(a_{36}^{(4)}) \geq Q(a) \geq Q(a_{24}), \\ 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^4(a) & {\rm if} \ Q(a_{24}) \geq Q(a) \geq Q(\hat{a}_{36}) \cong 0.986016, \\ -1 + (1 + P^2(a_{24}))Q(a) & {\rm if} \ Q(\hat{a}_{36}) \geq Q(a) \geq Q(a_{35}), \\ -1 + (1 + v_{34}^{a_1})Q^2(a) & {\rm if} \ Q(a_{35}) \geq Q(a) \geq Q(a_{36}^{(3)}), \\ 1 - 2Q(a) + (1 + v_{23}^{a_1})Q^4(a) & {\rm if} \ Q(a_{36}^{(3)}) \geq Q(a) \geq Q(\hat{a}_{25}) \cong 0.949181, \\ 1 - 2Q(a) + 2Q^2(a) - 2Q^3(a) + Q^6(a) & {\rm if} \ Q(\hat{a}_{25}) \geq Q(a) \geq Q(a_{34}). \end{array}$$
 This ends the analysis of the duels $(m,6), m=1,2,3$.

This ends the analysis of the duels (m, 6), m = 1, 2, 3.

The duels (m,6), $4 \le m \le 25$ (and some others) are solved by the author in [22]. Noisy duels with retreat after firing all shots of the player are considered in [15]-[17]. For other noisy duels see [3], [9], [13], [25]

References

- A. Cegielski, Tactical problems involving uncertain actions, J. Optim. Theory [1] Appl. 49 (1986), 81-105.
- -, Game of timing with uncertain number of shots, Math. Japon. 31 (1986), [2] 503-532.
- [3] M. Fox and G. Kimeldorf, Noisy duels, SIAM J. Appl. Math. 17 (1969), 353-361.
- [4] S. Karlin, Mathematical Methods and Theory in Games, Programming, and Economics, Vol. 2, Addison-Wesley, Reading, Mass., 1959.
- [5] G. Kimeldorf, Duels: an overview, in: Mathematics of Conflict, North-Holland, 1983, 55-71.
- R. D. Luce and H. Raiffa, Games and Decisions, PWN, Warsaw 1964 (in [6] Polish—translation from English).
- K. Orlowski and T. Radzik, Non-discrete silent duels with complete coun-[7] teraction, Optimization 16 (1985), 257-263.
- -, -, Discrete silent duels with complete counteraction, ibid., 419-429. [8]
- L. N. Positel'skaya, Non-discrete noisy duels, Tekhn. Kibernetika 1984 (2), [9] 40-44 (in Russian).
- T. Radzik, Games of timing with resources of mixed type, J. Optim. Theory [10]Appl., to appear.
- [11] R. Restrepo, Tactical problems involving several actions, in: Contributions to the Theory of Games, Vol. III, Ann. of Math. Stud. 39, 1957, 313-335.
- [12]A. Styszyński, An n-silent-vs.-noisy duel with arbitrary accuracy functions, Zastos. Mat. 14 (1974), 205-225.
- Y. Teraoka, Noisy duels with uncertain existence of the shot, Internat. J. [13] Game Theory 5 (1976), 239-250.

- [14] —, A single bullet duel with uncertain information available to the duelists, Bull. Math. Statist. 18 (1979), 69–83.
- [15]-[17] S. Trybuła, A noisy duel with retreat after the shots. I-III, Systems Science, to appear.
- [18]-[22] —, A noisy duel under arbitrary moving. I-IV, VI, Zastos. Mat. 20 (1990), 491-495, 497-516, 517-530; this fasc. 43-61, 83-98.
 - [23] N. N. Vorob'ev, Foundations of the Theory of Games. Uncoalition Games, Nauka, Moscow 1984 (in Russian).
 - [24] E. B. Yanovskaya, Duel-type games with continuous firing, Engrg. Cybernetics 1969 (1), 15-18.
 - [25] V. G. Zhadan, Noisy duels with arbitrary accuracy functions, Issled. Operatsif 1976 (5), 156-177 (in Russian).

STANISLAW TRYBUŁA
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF WROCŁAW
WYBRZEŻE WYSPIAŃSKIEGO 27
50-370 WROCŁAW, POLAND

Received on 9.1.1989