B. CERANKA and M. KOZŁOWSKA (Poznań)

CONNECTEDNESS OF ROW AND COLUMN DESIGNS

Abstract. This paper is concerned with the investigation of connected row and column designs. It is known that a connected row and column design is row-connected and column-connected. For certain classes of row and column designs it is shown that row-connectedness and/or column-connectedness implies connectedness.

1. Introduction. The connectedness of row and column designs has been studied by Shah and Khatri [7], Raghava Rao and Federer [6], Eccleston and Russell [3], Sia [8], Baksalary and Kala [1]. It has been shown in [6] that if a design is connected, then it is row-connected and column-connected. Therefore, it is interesting to provide conditions under which a row and column design is connected. Baksalary and Kala [1] give such a condition, but for ordinary designs only. The main aim of the present paper is to examine the connectedness of designs with unequal row sizes and unequal column sizes.

2. Preliminaries. Suppose v treatments are applied to n experimental units arranged in b_1 rows and b_2 columns. Let $N_1 = [n_{ij}^1]$ be the $v \times b_1$ row incidence matrix of the design, n_{ij}^1 being the number of units which receive the ith treatment in the jth row, let $N_2 = [n_{ih}^2]$ be the $v \times b_2$ column incidence matrix, n_{ih}^2 being the number of units which receive the ith treatment in the hth column, and let $N_3 = [n_{jh}^3]$ be the $b_1 \times b_2$ row-column incidence matrix, n_{jh}^3 being the number of units which appear in the jth row and hth column. It is known that $N_1 1 = N_2 1 = r$, $N_1' 1 = N_3 1 = k_1$, $N_2' 1 = N_3' 1 = k_2$, where r is the vector of replications, k_1 the vector of

1985 Mathematics Subject Classification: 62K99.

Key words and phrases: row and column design, connectedness, row-connectedness, column-connectedness.
row sizes, k_2 the vector of column sizes, and 1 is the vector of ones, of appropriate dimension.

The properties of a row and column design can be considered by examining the matrices

\[
\begin{align*}
C_1 &= R - N_1 K_1^{-1} N_1', \\
C_2 &= R - N_2 K_2^{-1} N_2', \\
C_3 &= K_2 - N_3 K_1^{-1} N_3, \\
C_0 &= R - r r'/n, \\
C &= C_1 - (N_2 - N_1 K_1^{-1} N_3) C_3 (N_2' - N_3' K_1^{-1} N_1'),
\end{align*}
\]

where

\[
R = \text{diag}[r_1, \ldots, r_v], \quad K_1 = \text{diag}[k_{11}, \ldots, k_{1b_1}], \quad K_2 = \text{diag}[k_{21}, \ldots, k_{2b_2}],
\]

and C_3^{-} denotes the generalized inverse of the matrix C_3. An equivalent formula for C can be obtained by replacing N_1 by N_2, N_2 by N_1, N_3 by N_3', K_1 by K_2 and C_3 by $C_4 = K_1 - N_3 K_2^{-1} N_3'$. Let λ_i be an eigenvalue of the matrix C_1 with respect to R. Let λ_i' be an eigenvalue of C_2 with respect to R and let λ_i be an eigenvalue of C with respect to R. It is known that all eigenvalues of C_1, C_2, C with respect to R belong to the interval $[0,1]$ (see e.g. [5]). The design is said to be row-connected if the rank of C_1 is $v - 1$, $r(C_1) = v - 1$; column-connected if $r(C_2) = v - 1$; and connected if $r(C) = v - 1$. A row and column design is said to be ordinary if the row-column incidence matrix satisfies $N_3 = 11'$. In this case $k_1 = b_21$ and $k_2 = b_11$. If N_3 can be expressed as

\[
N_3 = k_1 k_2' / n
\]

then the matrix C_3, defined in (1), takes the form $C_3 = K_2 - k_2 k_2' / n$, and it can be easily checked that K_2^{-1} is its generalized inverse. In consequence the matrix C, given in (2), reduces to the form

\[
C = C_1 + C_2 - C_0.
\]

3. Results. Consider a row and column design with incidence matrices N_1, N_2 and N_3 satisfying for $i = 1$ or $i = 2$ the condition

\[
N_i = N_j K_j^{-1} N_{3i}
\]

where $i \neq j$, $j = 1, 2$ and $N_{31} = N_3'$ and $N_{32} = N_3$. Eccleston and Russell [3] show that this design is connected if and only if $r(C_1) = v - 1$ and $r(C_2') = b_1 - 1$, where $C_2' = K_i - N_i' R^{-1} N_i$, $i = 1, 2$.

Theorem 1. A row and column design with incidence matrices satisfying (4) for $i = 1$ or $i = 2$ is connected if and only if it is column-connected or row-connected respectively.
Proof. By (2) and (4) we have $C = C_2$ for $i = 1$ and $C = C_1$ for $i = 2$, which completes the proof.

Now we consider a row and column design with row-column incidence matrix $N_3 = k_1 k_2 / n$ (see [4]). Let the incidence matrices N_1 and N_2 satisfy, for $i = 1$ or $i = 2$, the relation

$$N_i' R^{-1} N_j = k_i k_j' / n, \quad j \neq i, \quad j, 1, 2.$$

(5)

In the special case when $N_3 = 11'$ and $r = r1$ the condition (5) describes the class of row and column designs considered in [2].

Theorem 2. If a row and column design with row-column incidence matrix $N_3 = k_1 k_2 / n$ satisfies (5) for $i = 1$ or $i = 2$, then the design is connected if and only if it is row-connected and column-connected.

Proof. Since $N_3 = k_1 k_2 / n$, the matrix C has the form (3). From (5) for $i = 1$ or $i = 2$, it is easily seen that the matrices $C_1 R^{-1} C_2$, $C_1 R^{-1} C_0$ and $C_2 R^{-1} C_0$ are symmetric. Hence C_1, C_2 and C_0 have a common set of eigenvectors with respect to the matrix R. Moreover, it can be verified that each of these matrices has eigenvalue zero with respect to R, and that this eigenvalue corresponds to the same eigenvector for all three matrices. The other eigenvalue of C_0 with respect to R is 1 and it appears with multiplicity $v - 1$. Thus, in view of (3) the eigenvalues of C with respect to R have the form $\lambda_h = \lambda_{1h} + \lambda_{2h} - 1, \quad h = 1, \ldots, v - 1$, where λ_{1h} and λ_{2h} are the eigenvalues of C_1 and C_2 respectively with respect to R. It can be easily seen that $(C_0 - C_1) R^{-1} (C_0 - C_2) = 0$. It follows that for each $h = 1, \ldots, v - 1$, either λ_{1h} or λ_{2h} (or both) is equal to 1. This completes the proof.

If a row or column incidence matrix is of the form $N_i = rk_i' / n$, $i = 1, 2$, then (5) is satisfied and hence from Theorem 2 we have

Corollary 1. A row and column design with row-column incidence matrix $N_3 = k_1 k_2 / n$ and with $N_i = rk_i' / n$ ($i = 1, 2$) is connected if and only if it is column-connected or row-connected, respectively.

Consider now row and column designs for which $N_3 = k_1 k_2 / n$ and $C_1 R^{-1} C_2$ is a symmetric matrix.

Theorem 3. If for a row and column design with row-column incidence matrix $N_3 = k_1 k_2 / n$ the matrix $C_1 R^{-1} C_2$ is symmetric then the design is connected if and only if it is row-connected and column-connected.

Proof. Since C is of the form (3) and $C_1 R^{-1} C_2$, $C_1 R^{-1} C_0$ and $C_2 R^{-1} C_0$ are symmetric, the eigenvalues of C with respect to R are $\lambda_h = \lambda_{1h} + \lambda_{2h} - 1, \quad h = 1, \ldots, v - 1$. Hence, for each h, $\lambda_{1h} + \lambda_{2h} > 1$. This holds if and only if $\lambda_{1h} > 0$ and $\lambda_{2h} > 0$.

If the non-zero eigenvalues of the matrix C_1 with respect to R are all equal to λ_1, then the design is said to be row-balanced. If the non-zero eigenvalues of C_2 with respect to R are all equal to λ_2, then the design is said to be column-balanced. Finally, if the non-zero eigenvalues of C with respect to R are all equal to λ, then the design is said to be balanced. It can be shown that a row-connected row and column design is row-balanced if and only if its matrix C_1 is of the form $C_1 = \lambda_1(R - rr'}/n)$. Similarly, a column-connected row and column design is column-balanced if and only if C_2 is of the form $C_2 = \lambda_2(R - rr'}/n)$. Hence, if C_1 and C_2 are of the form given above, then $C_1R^{-1}C_2$ is also symmetric. In addition, it has been shown in [6] that if a row and column design is connected, then it is row-connected and column-connected. Using these notions we can formulate the following corollary:

Corollary 2. If a row and column design with row-column incidence matrix $N_3 = k_1k_2'/n$ is row-balanced and column-balanced then it is connected if and only if it is row-connected and column-connected.

4. Examples. First we discuss the design with incidence matrices

$$N_1 = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 1 & 2 & 1 & 2 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix},$$

$$N_3 = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}.$$

For this design $N_2 = N_1N_3/3$. Hence the condition (4) of Theorem 1 is satisfied. Moreover, since $r(C_1) = 2$, the design is row-connected, and hence connected by Theorem 1.

Consider the row and column design with

$$N_3 = N_1 = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{pmatrix}$$

These incidence matrices satisfy the conditions of Corollary 1. The column incidence matrix N_2 may be of the form

$$N_2 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 1 & 3 \end{pmatrix}.$$

Since $r(C_2) = 2$, the design is column-connected and hence connected.
Now consider the row and column design with incidence matrices

\[N_1 = \begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}, \quad N_2 = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 1 \end{pmatrix}, \quad N_3 = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \end{pmatrix}. \]

This design is non-ordinary and thus neither the criterion of Sia [8] nor that of Baksalary and Kala [1] may be used to decide whether the design is connected or not. Observe, however, that this design satisfies the necessary conditions for connectedness, i.e. it is row-connected and column-connected. Since

\[C_1 = \frac{1}{5} \begin{pmatrix} 14 & -7 & -7 \\ -7 & 16 & -9 \\ -7 & -9 & 16 \end{pmatrix}, \quad C_2 = \frac{1}{3} \begin{pmatrix} 10 & -5 & -5 \\ -5 & 9 & -4 \\ -5 & -4 & 9 \end{pmatrix}, \]

and, in consequence, \(C_1 R^{-1} C_2 \) is a symmetric matrix, Theorem 3 of the present paper is applicable.

References

BRONISLAW CERANKA
MARIA KOZŁOWSKA
DEPT. OF MATH. & STATIST. METHODS
ACADEMY OF AGRICULTURE
UL. WOJSKA POLSKIEGO 28
60-637 POZNAN, POLAND

Received on 28.3.1989