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Whitney’s extension theerem for
nonguasianalytic classes of ultradifferentiable functions
“ by )
J. BONET {Valencia), R. W. BRAUN and R. MEISE (Diisseldorl),
and B, A, TAYLOR (Ann Arbor, Mich,)

Abstract. For a weight function o let 4, ( (R} (resp. {m}(RN N denote the nonquasianalytic
class of w-ultradifferentiable functions of Beurling type (resp. Roumieu type) on RY. Recently,
Meise and Taylor (resp. Bonet, Meise, and Taylor) have characterized those weight functions e for
which the analogue of E. Borel’s theorem holds for cﬁ”(m}(R”) (resp. m}(RN)) In the present pote it is
shown that for these weight functions and arbitrary compact sets K in RV even the analogue of
Whitney's extension theerem holds. In the Roumieu case, the proof is a modification of the one
given by Bruna [5]. However, the existence of appropriate cut-off functions is now reduced — by
Hormander's solution of the Z-problem—to the existence of subharmonic functions with very
special properties. The Beurling case can be reduced to the Roumieu case.

Various versions of Whitney’s extension theorem and 'of E. Borel's
theorem for different classes of ultradifferentiable functions have been presen-
ted by many auvthors. We only mention Carleson [6], Ehrenpreis [8], Komatsu
[14], Bruna [5] Meise and Taylor [16], Petzsche [18], and Bonet, Meise, and
Taylor 3], since they influenced our research. ,

In the present paper we use the classes &, and &y introduced by Beurling
[1] and by Petzsche and Vogt [19], where we assume that o is a weight
function in the sense of Braun, Meise, and Taylor [4]. This means that e:
[0, o[ -+ [0, e[ is a continuous function which satisfies

(2) w(27) = O(w(z)). (v) logt = o{w(),

B [£{o@)/t?)dt < o, (8) ¢: t>w(d) is convex.

Let ¢* denote the Young conjugate of ¢. Then for open sets @ % & in R¥ one
defines the Spaces ‘

&5(Q):={feC®(Q): for each K < @ compact there is meN with
sup sup | /@ ()| exp(—m ™' @*(mla])) < oo},
xaK el

by (Q):= {f e C®(Q): for each K < Q compact and each meN
sup sup | @) exp(—mep*{Ju)/m)) < 0}

xeK ucENar

They are nonguasianalytic for sach weight function .
1985 Mathematics Subject Classification: Primary 46E25.
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The main result of the present paper is to characterize for which of these
classes the analogue of Whitney's extension theorem holds. Extending previous
results of Meise and Tayler [16] and Bonet, Meise and Taylor [3], we show
that the following assertions are equivalent:

(i) There exists C > 1 so that for all y >0

Tww)

€ Co{(n+C

(2) For each closed set 4 in R¥ and each Whitney jet F of type &, on
A there exists fe&,,(R") so that F is the restriction of f to A.

(3} For each closed set 4 in RY and each Whitney jet F of type &, on
A there exists ge &, (RY) so that F is the restriction of g to A.

For the precise definition of a Whitney jet F of type &', (resp. £} we refer to
Definition 3.2 (resp. 4.1).

The basic idea for the proof of this result in the case &, goes back to
Bruna [5], who indicated that the analogue of Whitney's extension theorem
holds in a class of nonquasianalytic functions if it holds for a point and if the
class contains cut-off functions satisfying certain estimates. Since it had been
shown in [16] and [3] that Whitney’s extension theorem for a point holds in
& () and &, if and only if @ satisfies condition (1), the main step in the proof is
to construct these special cut-off functions whenever w satisfies (1). This is done
in Section 2 of the present paper, using Hormander’s é-method. In order to
apply it, we show that (1} implies the following: There exists AeN so that
for each keN there exists ry >0 such that for each 0 <r <r, there
exist a subharmonic function tw,, and B(k,r}> 0 so that for all zeC
we have

A 1
rimz| ——w(z)—Blk, ) < u, () < rilmz| - a(z)
where B(k, 7} can be estimated from above in a certain sense (see 2.9). Then the
case &, is treated in Section 3 in the same way as Bruna [5] proved his
version of Whitney’s extension theorem. The case &, is reduced to the case
&y in Section 4.

It should be noted that our main result implies that Whitney’s extension
theorem holds for the Carleman classes ™ and #™9 (see Komatsu [137)
whenever (M ).y, satisfies the conditions (M1}, (M2) and (M3) (see 3.11).
Hence it extends the results of Bruna [5], Kantor [12] (see 4.8), and Chung and
Kim [7].

The results of the present paper were used by Kaballo [11] to derive
estimates for the distribution of the eigenvalues of integral operators with
ultradifferentiable kernels.
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1. Preliminaries. Following Braun, Meise and Taylor [4], we introduce the

classes of nonquasianalytic functions which we are going to use in the sequel.
To do this we recall some basic definitions and facts concerning weight
functions.

1.1. DerNiTION. A continuous increasing function w: [0, cof [0, oo[ is

called a weight fumtwn il it satisfies
{o) there exists 'K

=1 with w(2) < K(w{@+1) for all £ =0,

() ? i (?z dt < o0,
[H]
logt
b)) 13}1; w@

(8) @ te>w(€) is convex.

The Young conjugate o*: [0, co[ =R of ¢ is defined by

@*(y)1=sup {xy—e(x): x = 0}.

1.2. Remark. (a) For each weight function & we have lim,, ,
the remark following 1.3 of Meise, Taylor and Vogt [17].

(b) For each weight function w there exists a weight function ¢ satisfying
o(t) = w{t) for all large ¢ > 0 and ¢|[0, 1] = 0. Since the subsequent definitions
involving w do not change if w is replaced by o, we sometimes will assume
tacitly that @|[0, 1] =0 in the sequel. Then ¢* has only nonnegative values
and ¢** = o.

()t = 0 by

13. DeFINITION. Let @ be a weight fanction.
(a) For a compact set K in RY and > 0 let

84K, 1= {f€C=(K): | flxu:= supsup|f®(x)|exp(—pe* (lo/w) < oo}.

xaK acNg
(b) For an open set 2 < RY define
&1(Q) 1= {f€C*(Q): for each K € there is meN with || f{lx.1m < o0}
= proj ind &, (K, 1/m),

K m—ren
@)= {JeC™(@
= proj proj &, (K, m).

Kef m-ros

): for each K € € and each maN: || [llxm < 00}

" The elements of 81 (82) (vesp. &y(@)) are called w-ultradiffer entiable functions

of Roumieu (resp. Beurling) type on £. Sometimes we write &, where % can be
replaced by {w} or (w).
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(¢) For a compact set K in RY we let
2,(K):={fe &, RY: suppf = K}

and we endow 2, (K) with the induced topology. For an open set Qin RY we

define
D, (Q):= ind Z(K).
Kef2

14. Remark. In Braun, Meise and Taylor [4] it is shown that for each
weight function  the spaces & (R™} are nontrivial, i.. that the classes &, are
nonquasianalytic. By [4], 4.9, é"’(w (©) is a nuclear Fréchet space, -while cé’{u,:,(Q) is
complete, nuclear and reflexive for each open set 2% @ in R".

1.5. ExampLE. The following functions w: [0, oo[ — [0, oo[ are examples of
weight functions:
() w@):=t*, O0<xz<l,
(2) w@):=(ogl+rf, F=>1,
(3) o@):=tlogle+)?, f>1,
4 o@):=-exp(fllogt +1)), O0<a<1,§>0.
Note that for o) =1% 0 <z <1, the space &l (RY) is the classical Gevrey
class I'"(RM for d:=a™"

1.6. DEFINITION. (a) Let u: R—R be a continuous function satisfying

e

Then we define its harmonic extension P,: C—R by

bleu
P (xAiy):= {Tt .:L (I"—X)J"l'yzdt
1(x) if y=0

if [y >0,

. (b) For a weight function o we extend w to’ C by the definition 7+ w()z]).
By P, we denote the harmonic extension of t~rw(J]).

Note that for w as in 1.6{a), the function P, is continuous on C and
harmonic in the open upper and lower half plane. Moreover, we have w < P,
for each weight function @.

From Meise and Taylor [16], 3.10, and Bonet, Meise and Taylor [3], 3.8,
we recall:

17. THEOREM. For a weight function w the following assertions are
equivalent:

0

® t
“’g’.)d: < Co()+C for all y >0,
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(2} limlim sup ew(t)/w(et) = 0

gl o

(3) There exists K > 1 with limsup o(Kt)w () < K.
oo

(4)  There exists D > O so that P,(z) < Da(2}+D for all zeC.

(5)  For each positive integer N and each family (a,)weny of complex numbers
satisfying SuP.nyla,lexp(—mp*(ei/m) < oo for all meN, there exists
fedwmRY) such that f“0) = a, for all neN.

(6)  For each positive integer N and each family (a,).any of complex numbers
satisfying  Sup,enyla,jexp(~m™ (p*(!oclm)) < 0 for some meN, there
exists f & &, (R ”) such that f®(0) = a, for all xeNJ.

L8, DrreviTioN, A weight function o is called a strong wezght function if it
satisfies one of the eguivalent conditions in 1.7.

1.9. Remark. (a) For each strong weight function @ there exists a strong
weight fonction x which is concave and satisfies #«(0) = 0, and such that there
exists 4 = 1 such that

A k() - A € w(t) € Ax(t)+ A4

This holds by [16], 1.3, and implies &, = &, and &, = §p-
(b) Note that by 1. 1((5) each concave weight function is differentiable on
10, ool.

In[16], 3.10, and [3], 3.8, it was also shown that strong weight functions
are characterized by the fact that for compact sets K in RY with K # @ which
are convex (or K = &, where G is open and 2G is real-analytic) one can
describe the image of the restriction map gx: £, (RY)— C(K) in a certain way.
Subsequently we want to extend this result to arbitrary compact sets in RN

for all t =0

2. Existence of eptimal cut-off functions in &, (R). Bruna [5] has noticed
that Whitney’s extension theorem for nonguasianalytic classes of Roumieu
type holds on arbitrary compact sets if it holds for points and if there exist
cut-off functions in the class which satisfy certain estimates. In a different
setting and with a different proof we show in this section that such cut-off
functions can be constructed in &, whenever  is a strong weight function. To
give a precise statement, we first introduce the Young conjugate w* of w, which
was used already by Petzsche and Vogt [19] in a related context.

2.1 DemNitron. For a weight function e its Youny cowjugate w*
10, oo~ 10, ol is defined by

w*(s):= sup (0 () —1s).
tE0

Note that o*(s) is finite by 1.2(b) and that o* is decreasing and convex.
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2.2. PROPOSITION. Let o be a strong weight function which is concave and
satisfies w(0) = 0. Then for eachne N there existme N, M > 0and 0 <ry < 1/2
such that for each 0 < r < ry there exists f,,c C*(R) which has the following
properties:

1) 0<f,, <1, suppfy,<=[—9/8 98], Jf.il-r.rl=l,
() sup sup | £ (x)|exp ("—l @*(mf)) < Mexp (l cu*(nr))-
xeR jeNgo m 4

The proof of Proposition 2.2 requires several steps and will be given at the
end of this section. The underlying idea is to use Hérmander's I*-method to
construct first certain entire functions F,,, and to use then the theorem of
Paley-Wiener to get the desired functions f,, from the functions F,,.

2.3, LEMMA. Let © be a weight function. Then there exists A > 0 so that
for each 0 <r < 1, each keN and each subharmonic function u on C whzck
satisfies .

(*) u(2)

\<__r|Imz|—%aJ(z) for all zeC

there exists an entire function F on C which satisfies F(0) =1 and

IF(z)| < dexp (rlImzl——w(z}+3log(1+Iz|2)) sup exp(—u(w)) for all zeC.

[w| <1
Proof Choose ye C*(R2) which satisfies 0 < y < 1, y(2) = 1 for [z} € 1/2
and yx{z) = Ofor{z| = 1 and let B:= sup,.c|8x(z}. Then we have (A the Lebesgue
measure on R* = Q)

i

C

2

exp(—2u(z)) di(z) € B?

Oy (2)

sup exp(—2u(z)} |

lz| €1 ljz=s|zjs1

= B*2nlog2 sup exp(—2u(w)).

[w|<1
By Hormander [10], 4.4.2, this implies the existence of ve C?(R?) Wlmh
satisfies Jv(z) = (1/2)Jy(z) for zeC and

[o(z)>exp{— 2u(z))
c (1+12*?

13/2%| dA(z)

di(z) < B*nlog2 sup exp(—2u(w)).

lwl=1
Then the function I
Fi 2z 2(2)~zu(z)

is in C®(R* and satisfies JF = Jy—zdv =0 as well as F(0) = y(0) = 1.
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Moreover, with A:= (max(mBz, nexp(w(l))))-” > we get from (%)

2 1/2
(.f dA(z))
c
1 1/2
+.(7texp (E w(l)))

since #(0) < 0. By the properties of o, this estimate and standard arguments
imply the desired estimate for F.

F(z)cxp(-rﬂm z| +'}]c~(u(z)—3log(1 -+ Izlz))

< (B*m)'? sup exp(—u(w))

wi<1

< A sup exp(—u(w)),

Iw|=1

2.4, LemMa, For each weight function o there exists LeN so that for each
keN there exists B > 0 so that for each O < r < 1/2 the following holds: If there
is an entire function F with F(0) = | which satisfies for some M > 0O the estimate

1
{x) |Fiz)| < Mexp (rl!mzl»«i‘:‘w(z)) Jor all zeC

then there exists e &, (R) satigfying

(1) Oy sl, P)=0for x< Yix)=1for xz=vr,
‘ 1
2) sup sup [Y(x)| exp (»—-»:—- m*(Zij)) < BM?.
xeR JeNg ‘ 2Lk
Proof By [4], 1.3, we can choose LeN and y, >0 so that
e*(y)—y 2 Lo*(y/L)—-L  for all y =y,

Now fix keN and 0 < r < 1/2 and an entire function F which satisfies (¥} and
F(0)=1. By the theorem of Paley-Wiener there exists feC*(R) with

“supp f = [—r, r] so that

()= @i | SO .

bl 41

Since w satisfies 1.1(), we can choose. D, depending on @ and k, so that

for all { = 0.

1
(] jl QM AL
log (1 413 21\',”)(!) -

Then [4], 3.3(a), in connection with () implies

o

1
!f|2,"-supsupi/”’(sc}iexp(-w~ o™ ’?k;) _f I iexp( ***** tu(t))dt

xeR JeNg

M | ’ ‘ M D o dit _ M)JJ
sgy ) bxp(-—ﬁgw(lodfgé;cﬂ § 172" 7 £

- gy liva)
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Next note that g:=Ref is in Z,(R) and satisfies suppg < [ —r, r],
[7.g(x)dx = 1 and ||g]» < (M/2)®. Therefore h:=g? is in @;y(R) by [4], 44,
and the proof of [4], 4.4, shows-that there exists E, depending on L and k, so
that

]2 < Ellgl 3, = £ M Ee.
Now 0 < r < 1/2 implies

= § oae <( 0ad (] 1y < | wgae.

ind s

Next we define ¥: R—R by

x

Y(x):= j h{tydr)™" [ h(s)ds.

=

Then  satisfies
0"<~lf’l"€ 1: Suppl/":[*"r: OO[! 110|[r, CO[:E I:

|t ()] H h(s)ds| < 2r max}lh(x)! < max jh(x)],

xe[—-r.r xe[—r.¥]
[P0 < hY7V(x)]  for jeN.

Since ¢@*(mj)fm = @*(m(j~1))/m for all jeN, meN, we get from this with
B:=1Ee2?

Il2ee < Jhllzoe < M2 Ee” = BM2.

2.5. LEMMA. Let w be a strong weight function which is concave and satisfies
w(0)=0. For T> 1 we define w,: R—[0, ol by

w(?) - =T
Dt T (T
O H{ 2(T) 2 _“’é )T-l-co(T) fll<T

Then there exists D >0 so that for all T> 1 we have

i‘:fﬁ Pop(x+i) < Eg_)
Proof. Note that
0l Py ()= | o (et t)de = TS 9 ds
3y A Eer 16 x)2+1 o'p(s) ds.

Let C be the constant from 1.7(1), Depending on the relation between

x and T; we will cut the real line into three or four intervals and give different '
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estimates for each one. Luckily, the first two, of these intervals can be treated in
the same way for all x. Since w is an even function, it suffices to consider x > 0.

T gmx st x QL w (s) = ) (S)
" C!)"'(S) dS = g
quj(.9—~x)2+1 ! .j.(s+x)2+1 P T—
_ ols)” w(S) ( )+ w(T)
s < < ,
$ * I 7 “7

where C = C(1+ 1/m(1)).
The second interval that has to be considered is [—T, T]. Note that
o' (T) < w(T)/T since e is concave.

T §—x = ¢ w'(T) (T TTE P ix
s e = dt
S oo = J oy teadi=— 1 5
T—x
=2 (:Q(H— <log(t? + 1)~ arctam)
T -T—x
=cu;T)<2T+fl gji — arctan(T~x)—arctan(T+x))
X (T~xP+1 «'(T)
= 200/ (T) 4 21 arc tan(T— x) —arc tan(T+ x)).
2w'(T) &‘ZT ' (T) 1o g(Tl-x) T (c.‘rcl'm(T X)—arc an( +x))
Thus we have
Togex w(T) , (me)2+1
OB e N R S‘(ZJ”‘)“'T"*' oDl ot

The first term on the right hand side of (1) has correct size. The second one is
negative and will be used to cancel another term in certain cases.
With a:= max(T, 2x) we have

B g DUm’(s) “w'(s) w(@)+1 w(T)
------ ds £ 2 | —=ds € 2C < 2C .
@) y(t; x)zmi 1 i(s)ds 'E.s'—-xds i s a tr
Case 2x = 'ln this case a==T and (2) completes the proof.
Case 2x 2 1% Then (2) gives the right estimate for
O T
j (‘, :;ai"‘r i (f.?'[ (S) ds.

To treat the remaining interval, we have to consider two subcases.
Subcase x < T
2x a % — ' 241
g § x ' (T) x4+ _
ETETye e ds £ o'(T) dsx og .
esum o ) o) M= 7 TRl
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Together with (1) this gives

2x S X

_j.T(S—x)2+1m
w(T) o'(T) x*+1 x (T—x)*+1
< 6?*7(1°gm*(1‘ T)“g_“—(m)m)
T T 1—x/TY +1/T*
£69(F2+9;_1((;-—1)10g( YN+ )

(Lex/ TV +1/T?
Note that for a, b, ¢ >0 the inequality b > a implies (a+¢)(b+¢)~! > a/b.
This implies

(s)ds

(1—x/TY+1T* 1-x/T
(L+x/TV+1/T> " L+x/T

Thus we have with C,:= supp<e<q2{—Elogd)

I os—x w(T)

. w'(T) [ x 1—x/T
_jT(S__x)2+1w (5)ds < 6—717;~+—2 (?_l)iogl%—x/’l"
T (T
sﬁ%-)#‘%—) (%—1>log(1—-;i>+(1m%)1og(1+%§))
o(T)  o'(T) ‘

Subcase T < x: As o is concave, o' is decreasing, hence’

o s—x E o g—x i s—x
- m d _ —_ Y '
i(s_x2+lwr(3) s i(S%x)2+1w(s)ds+ i (WSWx)z_’_lcu(s)ds
x §—X x §—x
é / e r - .
o (x)i(smx)2+1ds+w(x) £ (s-—x)2——u+lds
: = os—x . o) x4 1
=0 ds =
w(x)i(s"wx)wl s =glos oy
! 2
\w(T)lo x*+1

PR

If T<x/2, then x—T 2> x/2 and (x*+ 1)/{(T—x)*+1) < 4, which completes
the proof in this case. If, on the other hand, we have x/2 < T < x, then we get
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using (1)
e
AN AT PO 1
_IT'(S—JC)2+1 )
" i )2 2
:gG(HE:P)-%W{F)(—)_C—;log(T x)z—i-l log x*+1
1 2 \2T TP(T4x)P+1 (T—x)*+1
w(T) m’('[‘)( x* 41 x (T—x)? 41
ol T Bl ) 14 o o I 0
T 2 B 1T Og(T+x)2+1>
w(T)
A et
J T

This concliedes the proofl of the lemma.

2.6, DEFNITIoN. For w as in 2.5 and T > 1 let o, be defined as in 2.5. Then
we define A, C—R by

Pz
T

if Imz =0,

if Imz <0,

Note that by the symmetry properties of @, and of the Poisson kernel, ;. is
continuous on C. »

2.7. LEMMA. For ¢ as in 2.5 there exist E, F, G > 0 so that for all T > 1 and
all zeC we have

E ' hy(2)~Fa(T} € o(2) € he(2) + 6.
Proof First we note that

(1 w(t)—o{T) < w(t) S @) for all teR and all T> 1.
The first inequality follows from the definition of wy and w'(T) < cwo(T)/T. The
second one is a consequence of the fact that the convex function @, ([0, 77 and
the concave function « have the same derivative at T,

Next denote by h the function which we get if we replace @y in 2.6 by w.
Then (1) and the propertics of the Poisson kernel imply
(2) hp(z)~w(T) < hiz) € hy(z)  for all zeC and all T > L.
Now nate that w(0) = 0 and the concavity of @ imply that e is subadditive on
R (see e.g. Bjorck [2], 1.2.1) and hence (x4 —o{x)| € wl() for all xeR,
seR. Consequently, we have

(3) P48 P, () s w(l) for all z6C, se[—1,1].
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Furthermore, we get for 0 <y <1
PGt~ Pl =L T - di— ()
@ ® m L (t— x)2+y
o _ @ t—
2 Flel-etly v § et
Ty (E—X)"+Y n o, (E—x)+y
= P,(iy) < max P,(iy)=:Q.
a€ysl

Since P, {z+iy)— P,(z) is the harmonic extension of x = P, (x + iy} — P, (x), this
implies

&) P (z+iy)~P,(z) <20 for all zeC and ye[—1, 1]
Now (4) and (3) imply that for G:= 20 +w(l) we have
(5) P z+w)—P,(w) < G for all z, weC with jw| <1

Next we recall from 1.7 that there exists D > 1 so that

(6) w(z) < P,(z) < D(w(z)-+1) for all zeC.

From (6), (5) and (2) we now get for zeC with Imz =0
0(z) € P,(2) € P,(z+1)+ G =z} + G < he(2) + G-

Since the same arguments apply to Imz < 0, we have

) o) Sh@+G.

This proves the second inequality in our claim. On. the other hand, (6), (2) and
(5) give for all zeC

1+w(z) = D™ P, (z} = D™ H{h(z) - G) 2 D™ {hy(z) - w(T)~G).
Therchre we can find F, depending only on w, so that
| D™ h(z)-Fo(T) < w(z) for all zeC.

2.8. LEMMA. Let o be a strong weight function which is concave and satisfies
®(0) = 0. Then for each veN there exist meN, M >0 and 0 < ry, < 1/2 such

that for each 0<r <r, there exists g,,eC®(R) which has the following
properties:

1 O0<g,<1, gu)=0for x<—r, g, 00)=1for x2r,
‘ . 1
2 sup sup |g¥(x)| exp ( = en (p*(mj)) < Mexp (lw*(vr))-
. xeR JeMNo m ¥

Proof. Denote by 4, L, D, E, F, G the constants from Lemmata 2.3, 24,
25 and 2.7. Without restriction we can assume that L, D, E and F
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are natural numbers. Then for veN let ki= (2EF+D)veN and m:= 4Lk
‘= 4L(2EF + D)v. Next choose 0 < r, < 1/2 50 that the equation w()/t = rok/D
has a solution ¢ > 1. Then fix 0 <r < r, and choose T = T(k, r) > 1 so that

rk
3 T
(3) ofT) = T%.
Now define u,,: C—R by
. 1 )
u’v.r(z) = TIIH'IZ|-—E hr(z)_E

Note that Lemma 2.7 implies for all zeC

s (2) < rllmz~ (e,
@

EF
-y, (2) £ —7[Imz| +§w(z) +-!~€—~60(T) +%.

Next observe that u,, is subharmonic in the open upper and lower half plane
and that by the definition of h, and Lemma 2.5 we get from (3)

10, . 18 . Do) _
—E ay h'l'(x) - kay PO)T(x+ l) k T

Therefore we have for each ge@(C) which satisfies g = 0

e () 49) 1) =2 ] (r—mh (x)) (x> 0

which proves that u, , is subharmonic on C. From Lemma 2.3 and (4) we get
then the existence of an entire function F,, wh1ch satisfies F v,(0} =} and

for all xeR.

|F, (z} < Aexp (rilmz|——a)(z)+3log(1+|z|2)) sup exp( Uy (W)

i1

for all ze C. From this, (4) and L.1(y) we get the existence of C = C(v) such that
for all zeC

[y p(2)] € C(v)exp (rllmzl —m1~ w( )) exp (%}z oJ(T)).

Hence Lemma 2.4 implies the existence of B(v) >0 and g,,€ C*(R) which
satisfies (1) and
1 ) . 2EF
(5)  supsup|g¥l(x)|exp —me(p*(4Llcj) < B(W)C(v)*exp m’vcm—w(t) .
. xR faNp 4_L(’ : ‘ ‘
Now note that the definitions of w* and of T = T'(k, r) give

W r) 3 0(T) =T = o)~ ) - co(T)(_n,-l’-g).

& — Studiz Mathemaiica 99.2
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Hence our choice of k implies

D (2EF+D)v—Dv 2EF

1 1 :

— [ = T .
(§) vw*(vr)zw(T‘)(y‘ k) o(T) T e
From this and (5) together with our choice of m we get (2) if we let
M = B(3C(»)>.

Proof of Proposition 2.2. For neN let v:= 16n. For this v choose
meN, M >0 and 0 < r, < 1/2 according to Lemma 2.8, Then fix 0 <r <y,
define s:= r/16 and choose g,, so that the conditions 2.8(1) and 2.8(2) hold
with r replaced by s. Then define

gv.s(x‘l"}%r) for x <0,
f;:,r(x) = 17
gv,s("”x"”1sr) for x= 0,

and note that by 2.8(2) we have

1 1
supsup | 9(x)| exp (— - qo*(mj)) < Mexp (; w* (vs))

xel jeN
16 vs 1
¥ ) = — ¥
= Mexp( " @ (16)) Mexp(nw (nr)).

Hence 2.2(2) is satisfied. From 2.8(1) it follows easily that also 2.2(1) holds.

2.9. Remark. Note that the following is implied by combining 2.8(4) with
2.8(6): There exist 4, E, GeN, depending only on @, so that [or each veN
there exists 0 < ry, < 1/2 so that for each 0 < r < r; there exists a subharmonic
function u,, on C so that we have for all zeC

E 1 G 1
——a(z)——a*(r)——< g ———)(2).
r|Imz| vw(z) L@ (vr)' . u,(z) < r[Imz| Ava)(z)
Because of @(0) =0 this gives
— Lot - <u,,0) :
v v

and this fower bound is essential for our purposes. The following consideration

shows that this lower bound is optimal to a certain extent: Whenever

u,, satisfies the given upper estimate, then the subaveraging property of
u,, implies for each g > 0

an In ]

. 2 1
o i - : e L
w0 < o g y,(ee")dt = = £ erlsint]dt—za(e) = —or—r-w(e).

Taking the infimum over g > 0, this and v = Ak give

1 2kr 1 24
L e = — X .
1, ,(0) e ( - ) = (ﬂ vr)l
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3. The extension theorem for the classes &,. In this section, we
characterize those Whitney jets on closed subsets of RY which are restrictions
of functions in &, (R"),  a strong weight function. To do this, we use the idea
of proof of Bruna [5] together with the main result of the previous section.

3,1. DEFINITION. Let 4 5% @ be a closed subset of RY. A jet on A4 is a family
F= (f")m,,gEC(A)Ny. For a jet F on A and for x, ye A, zeRY, meN, and
xeN§ with |} <m define

TrRE:= Y, —E=xP ),
#i<m B
REFLG) = fG)— T 5 PO—.
im+ﬂ|ﬁ!nﬁ-

F is called a Whitney jet if it satisfies '

IRTF), ()] = o(lx— ")

3.2, DEFINITION, Let @ be a weight function and let A4 # @ be a closed
subset of RY. A Whitney jet F = (f*),evy on 4 is called an w-Whitney jet of
Roumieu type if the following holds: For each compact set K < A there exist
meN and M > 0 such that

for all meN; and || < m as [x—y|—>0.

(1) sup sup | f*(x}|exp (—% fp*(rnlml)) <M,

xeK asNY

(@) for each leN,, each xeNy with jof <1 and all x, yeK

TR R 1 o

By &(4) we denote the linear space of all w-Whitney jets of Roumieu type .
on A

(R F) 0N < M

3.3. Remark. For each weight function o and each closed set A < RY the
restriction map @4: f+(f | Aty maps (,y(RY) into &g {A).

For a singleton A, condition 3.2(2) is empty. Moreover, E_&onet, Meis_c an:d
Taylor 3], 3.8 (see 1.7), shows that in this case g, 15 surjcctiye if and qnly ifwis
a sirony weight function. To show that for each strong weight _func}vlon w, the
map @0 & o(RY) = @y(A) is surjective for gach closed set 4 in RV, we need
some preparation.

34. Lemma. Let @ be a weight function. Then for each meN there exists
0 <5, <1 such that for each 0 <s <s, we have

f 1
‘supJ«; exp (-«-:;(p*(mj)) = exp (__ o* (BmS)).

JaNo § m
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Proof First note that we can find a > 1 and a weight function x with
%|[0, 17 = 0 so that x|[a, co[ = @|[@, co[. This implies the existence ofs, >0
so that for all 0 < s < s, we have w*(s) = «*(s). Hence we can assume that
o satisfies ][0, 1] = 0, which implies ¢** = ¢ by 1.2(b). Now fix meN and
choose 0 < 5, < (3¢%)7! so that

w*(ms) = sup{w(t)—mts) for all 0 <5< s,

izl

Then we get for 0 < $ < 3

1 | 1
ook = el —is )= S o**logt) —t:
mco (ms) sup(mq)(logt) ts) sup(m(p {logt) s)

izl £z 1

= SUp (l sup (ylogt — o* (1) — rs)

tz1 »>0

¥ 1
= sup| sup ~10gt—t3)——€0*(Y))
y>0(l21 (m n

—sun{Z1oa2——Lor ) = 21 ki
—jgl;(mlog pm— (y)) = sup (ziog o etma) ).

Since n! = (n/3)" for all neN, we get from this for 0 < s <5,
! 1 1

SUPJ—jeXP (*—rp*(mj)) = expsup (log(i ') —jlog8~—¢o*(mf)>
jeNg § m JjeNo m

= expsup (log(j+ W —log(j+ 1)——j10_gs——$qo*(mj))

JfeNo

] 1 J+1
= expsup (log (‘1:—) —jlogse—mi;(p*(mj})

JeNo

z2>Q

= expsup (Iog (—;—) ——zlogse———:;rp*(mz))

1
= ¢xXpsup (zlog3—ze—h—_1- qu*(mz)) ;

z>0

z z1 1. z e
= 3 Zlogt S ¥ = — (3
exp 31313 (310g 1% (Bm 3)) exp (m(u (Bms)).

3.5. LemMA, For each weight function w and all a, b, ¢, d > 0 there is neN

im( Zeo* (20 )= coo* - -
l;gl(nco (by) cw (dy)) 0.

Proof. Let n> mai(bd, afc). Then

tim (f o* (g })—cm*(dy)) < lim (3 w*(dy)-—cw*(dy)) —
n o AR

with

yio
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Next we state Bruna's version of Whitney’s cover of the complement of
a compact set in R”, which is convenient also for our purposes (see Bruna [5],
3.2, or Stein [20], Chapter VI).

3.6, LEMMA. Let K # & be a compact subset, of RY. Then there exists
a collection of closed cubes (Q)n with sides parallel to the axes such that

(2) RMK = jen @,

() ;N Q=@ for i#}

(c) diam@; < dist(Q;, K) £ 4diamQ, for all jeN,

(d) let @F denote the cube which has the same center as Q, expanded by 9/8;
then there exist my, Mgy > 0 so that

modiam @, < dist(z, K) € Mydiam@Q;  for all zeQF,

(e) #{jeN: QFf nQF # O} < 12* for each ieN,
(f) there exist m,, M, > 0 so that for i,jeN with QFf N Q% # & we have

m, diam@; < diamQ,; < M, diamQ,.

Now Proposition 2.2, Lemma 3.6, {4], 4.4, [16], 3.3(4), and the arguments
of the proof of Bruna [5], 3.3, show that the following holds:

3.7. LEMMA. Let o be a strong weight function which is concave and satisfies
@(0) = 0. Furthermore, let K # @ be a compact subset of RY and let (Q e and
(Q¥)jex be as in Lemma 3.6. Then we have, in the notation of Lemma 3.6: For each
neN there exist peN, 0 <ry < 1/2, C > 0 and a sequence (@ )yn in @{m)(RN)
which satisfy '

(a) ;20 for all jeN,

(b) supp®; = QF for all jeN,

© Yien®,x) =1 for all xeRM\K,

(d) if dist(Q,, K) < roM7* then

1
sup sup | (x)] exp ( "?P*(Pl“l))

xeRN aeNE ‘ .
N122 noom
£C S ¥ ! diam .
Cexp( - w (lem 2\/1\’ ia Q))

3.8, LEMMA. Let w be a strong weight function, let K # @ be a compact
subset of RY and let F = (")eny be in &0)(K). Then there exist a compact
cube H with K < H, je N und A > 0 so that for each x& K there is f, € D ,(H)
such thai

(1) fio(x)y = f*(x) Jor all ueNf and all xeK,
1 ,
@) supsup sup |/ (y)|exp (-—". *(J |0t|)> £ 4.
xeK yell aeN) J
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Moreover, there exist keN, B >0 and dy >0 so that for all xeNY and all
x, yeK, zeRY with {z—x|+]z—y| < dy we have

® 10~y < Bosp ot Joxp o e He—) ).

Proof. Condition 3.2(1) implies that {(f*(x)).y: x€K} is a bounded
subset of &,({0}) if we endow &,({0}) with its natural inductive limit
topology. Since w is a strong weight function, the map go) oy RY) = &43({0})
is surjective by Bonet, Meise and Taylor [3], 3.8 (see 1.7). Consequently, for
a fixed cube H, with O H, the restriction map

¢: -@{w}(Ho) - éa{w}({o})’ Y (f) = (f(a) (0))15N§ )

is surjective, too. Since both spaces are (DFN)-spaces (see (4], 3.6) each
bounded set in &£,({0}) is the image of a bounded set in D,(H,). From this
we get the existence of a compact cube H in RY with K < H so that there exists
a bounded set @ in 2, (H) such that for each xe K there exists f_ e O satisfying
F®9(x) = f*x) for all xeN}. Obviously, this implies the first part of the
" assertion.

To prove the second one, fix x, ye K, leN and oeN¥ with || < I Then
note that by Malgrange [15], p. 3, we have

TIF(D)—TF@Z= Y l,(z—i)”(RiF)ﬁ(x)-

I
Since F satisfies condition 3.2(2), there exist meN and A4 > 0 so that for all
x, yeK and zeR" we have
R R e
(I+1—|a)!

(T:F— T} F)®¥(z)| < Aexp (% e*(m(l+ l)))

1 _ oyl
gAexp(E(p*(m(l"‘l»)z'”"“'(|Z }C(Lilf—lﬂi))! -

Now note that by [4], 1.4, there exist L > 1 and D > 0 such that
e*(t)—t = Lo*(t/L)—D for all t > 0.
Evaluating at £ = Lm(/+ 1), we get

)l+1—|a¢|

Z— - 1
@) (TIF—TF)*() < AeD(l x(llillz—iicln! exp (m p*(Lm(I+ I))).

On the other hand, Taylor’s formula and (2) imply the existence of 4, > 0 s0
that for each €Ny, aeNy with Jo| <1 and all x=K, zeRY we have

|z_x|l+1~j|rx|

X 1 (s '
(3) Kfe— TeF)?(2) S%mexp(}ﬁ? (J(H-l)))-

icm
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Now choose B > 3max{d,, 4¢°) and veN, v > 2max(j, Lm); then (4) and (5)
give for all IeN,, aeN¥ with |/ <! and all x, yeK, zeR"

)
exp (; o* (-;(lfk 1)))
(jz—x| +]z—y)'**

1
(1+ - |aD| eXp (; tP*(V|O€l)) exp (% QD*(V(I +1~— |CC|)))

because of the convexity of t+—(2/v)p*(z).
Now observe that this and Lemma 3.4 imply (3) by taking the infimum
over L

(2] -+ |z—y)y 1

—f ¥
(=) < B—

=

3.9, TueoreM. For each strong weight function w and each compact set
K # @ in RV the restriction map @g: &y(RY)— &10y(K) is surjective.

Proof. Because of Remark 1.9 we can assume that o is concave and
satisfies @(0) =0. Fix F = (f*y in &,y(K). Then there exist numbers
k,j, A, B, and d, as in 3.8. We let my, M, and m, be as in 3.6 and assume
my, < 1. Because of 3.5, there is neN such that ’

ooN12Y o omy 1 [Tk
(1) g0):= — (NlZz”zﬁEy —3@ m_oy ~—oc as y—0.

We apply Lemma 3.7 with this n to get numbers p, r,, and C and a sequence
(P en In D1y (RY). We may assume p > k. For each ieN, choose x;€ K so that
dist(x;, Q,) = dist(K, 9,). Then for all zeQ} we have by Lemma 3.6

lz—x;| < dist{x;, Q)+ diam @} = dist(K, @) +#diamQ, < 6diamQ,.

On the other hand, dist(z, K) = m,diam@, for ze@F, hence,

2) dist(z, K) < |[z—x| < ;f—dist(z, K} for all zeQF.
]
Now we define
(2 for zekK,
Ja= Y B2 fule) for zeRNK.

i=]

We establish the following claim: There are P 2 k and C, C, > 0 such that for
all xeK and z¢ K with |z—x| < min{m,d,/7, more/(4M,)) we have for all
yeNg

1
© I(f'—-fx)‘”(Z)Iexp(—%w*(l’lwl)) < clexp(—;w* G}‘« |x-z1))

0

+C,exp(g{dist(z, K))).
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To prove this claim, fix xeK, z¢ K satisfying the above inequality and let
peNy¥. Then

4 (=P = % (y) Y, SO =S (e,
BEy B i=1 .
First we estimate the ferm w1th =01 zesupp@ L Q then (2) and m, < 1
imply
Ix — 2|+ |x;— 2| < |x—2z]+6mg Ldist(z, K) < Tmg ' [x—z| <
Therefore 3.8(3) shows that the term with f=0, rnultlphed by

exp(—{1/P)*(Py])). is estimated by the first term on the right hand side of (3)
with C, = B.
Next fix f#0 and choose zZeK with
=, ®P(z) = 0 implies

|z—%| = dist(z, K). Then

E diw)(z)(f "—f = ﬂ) Z)

i=1

Z PN fo /" P+ (L —£)2)

= _;1 SN o —F* P ).

Because of this and |z—x|+[z—Z|
we can apply 3.8(3) to get

S Ut P(6) < Bexp( 0"kt Joxp  — o (X i, K))).
0

On the other hand, if zesupp®,, we have

Tmg Yz —x| €

0"

£ (6my ' + Ddist(z, K) €

4
—|x z <—
M,

and because of diamQ, = Mg 1dlst(z, K), Proposition 3.7(d) vields

122NN |
6) 190 < Cexp( (plﬁl))f»cp( - *(sz”Ng\n;l_M dist(z, K)))

Taking intr.? account that by 3.6(¢) no more than 12*¥ of the &,(z) are nonzero, -
we get estimates for every term in (4) if we combine (5) and (6). We have

Y p<, (1) = 21"l Thus we have shown (3) because, as in the proof of 3.8(4), there
are P>p and C, >0 with

1
C2'*'exp( *(plvl)) < Cyexp (5 rp*U’Ivl)) for all y

Now, given «eNJ, we define

o [
I )_ “{f%z)

dist(Q,, K) < 4diamg, < idlst(z K) <

for ze RMN\K,
for ze K.
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We want to show that f is a C*-function with F@ = f for all xeNj. By
Hestenes [9], Lemma 1, it suffices to show that all f; are continuous. This is
clear near points x¢K, so let x be in K. Then by 3.1 we have for zeX

| 7.(2) F.00] = (REF),(2)] = o(1).
If z¢ K and |x—z| is small enough, then
|Ful) T 000 = | T @ (@ =)
< 7@ 2@ + 12 (@)~ () —+0

where we apply (3), (1), and lim,_,o@*(t) = oo to estimate the first term and the
continuity of £ for the other.

To see that J'is in &, (RY), let neN be as in (1), find g > 0 so that
g(») < 0 for all 0 < y < &, and choose & = min(eq, doo/7, myro/(4M ). For
zeRMK with dist(z, K) < &, we take xe K with |z—x| = dist(z, K). Then for
aeNY, we apply (3) and 3.8(2) io get

@) <1A2@I+TO@ -6
< dexp G(p*man) +Cy+Coem( 3 rp*(Pwn).

as z—x,

For zeK we use 3.8(2) alone. In both cases we see that
|7®(2)| < Cae:{p(l cp*(Ph:l)) for all zeRY with dist{z, K) < &.

This is enough, since for all compact Q < RY the number of indices i with

supp @, n {ze Q| dist(z, K) > ¢} # &

is finite, and all the products &, f,, are in &y (RY).

3.10. COROLLARY. For a weight function o the following assertions are
equivalent:

(1)  For each closed set A+ in RY the restriction map 04 Eay®Y)
= &) (A) s surfective.

N

© () is a strong weight function.

Proof (1) = (i) Choosing A = {0}, this follows [rom Bonet, Meise and
Taylor [3], 3.8 (see 1.7) ‘

(2)=(1). For neN let B,:={xeR"! [xj <n} and By:=0. Then choose
functions ¢, in @D, (RY) such that for each neN we have
suppo, = 'éll'l' 1\Bn—1?

(3} 0=o,<1, Z @,(x) =1 for all xeR".
. =l .
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Next fix a closed set A s ¢ in RY and a Whitney jet F = (f*),enyin & 1(A). For
neN let F, denote the jet (f %| (Bye1\By- 1), Obviously, F, is in
&10)(Bus 1\B,—1). Hence Theorem 3.9 implies the existence of f,e€(RY) so
that gg,, ;.. (/) = F,. Now (3) implies that '

foxe Y o A
n=1

is in-#,(RY). To show that g,(f) = F, we fix x e A. Then there exists a unique
natural number m so that x&B,\B,—,. Because of (3), this implies ¢,(x) =0
for m¢ {m—1, m}. Hence we get

F6) = 3, 005080 = e 109 e (9 0 )

= (@1 (X}F 0u(x) S0(0) = £2). ‘
Similarly it follows that f@(x) = f*(x) for each xeA and each aeN§.

In the classical theory, a simpler description of Whitney jets is possible,
provided the compact set has Whitney’s property (P). To show that the same
holds i our setting, we first recall the definition of property (P) (see Whitney
[21]). '

3.11. DEFINTTION. A closed subset A of RY with A = A has property (P) if
for every compact subset K of A there is a constant C > 0 such that any two
points x and y of K are joined by a rectifiable curve in 4 of length not
exceeding Clx—yl.

3.12. COROLLARY. Let @ be a strong weight function and let A = RY be
closed. Assume that A = A and that A has property (P). Let (f*)any be a family
in C(4)n C*(4) satisfying '

(1 )= (%) for all xed, aecNY,

(2) for each compact set K c A there are meN and M >0 such that

supsup f“(oxp 5 *im | < M.

xeK aeNY
Then there exists ge&,(RY) with g®(x) = [*(x) for all xed, xeNy.

Proof. In view of 3.9 it suffices to show that F = (f*)eny is in &e(4).
Choose a compact K< A4 and keN with K < {xed: |x| <k}. Let
K, ={xeA: x| <k} and let C be the constant belonging to K, in property
(P). Let K, = {xed: |x| <(2C+1)k}, and apply (2) to K, to get meN and
M > 0. Let now x, ye K be given. Then there are sequences (X,)pen 20d {V)nen
in K, tending to x and y respectively. By property (P) there is for fixed ne N
a rectifiable curve g in 4 from x, to y, of length not exceeding C|x,—¥,|.

icm
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Since x,, ¥, € A we may perturb g to a C'-curve o joining x, and y, of length at
most 2C|x,~ v,/ which is parametrized by arc length. Note that o must lie in
K,. Whitney [21], Lemma 3, states that for each leN and each zeN§ with
ES! :

1=l
(L P09 < e (ke =3 7 sap )~

zed

Assuming o(0) = x, and using that ¢ is parametrized by arc length, we have by
the mean value theorem for all ¢ in the domain of ¢

|f=Ge) —f*{a(t)] < Il sup |(grad f*(z), o' (1)) € 2CN %, =y, |S|up sup | f*"*(2).
T y|=1 zeKa
Combining this with (2) we have

14— o)

N 1
i _ 1+ 1 el ok 1 .
R P10 < gy =l T M e (m (ol + )))
Letting n tend to infinity we get 3.2(2) if we apply the procedure used to prove
3.8(4) to swallow the extra factor Q2CNY 19 (1 — ) (+ 1 — )

3.13. Remark. Let (M ).x, be a sequence of positive numbers which has
the following properties (see Komatsu [13]):

M1) M2<M, M, for all peN,
(M2) there exist 4, H>1 with M, < AH" min M M,-, for alt peNN,
0=qsp :
& M, M :
(M3) there exists 4 >0 with D 47l ¢ Ap-—-2 for all peN,
. g=p+1 Mg Mp+l
and define @, [0, o[ =10, o by
y4
' sup logt Mo for t> 0,
Wy ()=S0 Mp
0 for t =0.

Then Meise and Taylor [16], 3.11, shows that .a)M is a strong weight function
for which we have @(mu(Q) =87 (Q) for each open set 2 in RY, where

EMN(Q) = { f e CP(£): for cach K c  compact there is h>0 with
supsup | /@ (| (A M) < oo} ‘

weNY xek
From this and Theorem 3.9 it follows that Theorem 3.1 of Bruna [5] holds,
whenever (M ), satisfies (M1)-({M3). Hence some of the hypotheses in [5],
3.1, are superfluovs. This has been remarked independently also by Chung and
Kim {7].
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‘4. The extension theorem for the classes &,. In this section, we
characterize those Whitney jets on closed subsets of RY which are restrictions
of functions in &, (R"), @ a strong weight function.

4.1, DEFINITION, Let @ be a weight function and let 4 # & be a closed
subset of R¥. A Whitney jet F = (f*hoyy on 4 is called an w-Whitney jet of
Beurling type if the following holds: For each compact set K — A and each
meN there exists M > 0 such that
(1 supsup | f*(x)|exp(—me*(al/m)) < M,

xek aENév

(2) for each IeN,, each xeNJ with j« <! and all x, yeK

|x—~y|”’1 o]’

! W11
I(RxF), () < M mexp (mcp (T))

By S w(A4) we denote the linear space of all @-Whitney jets of Beurling type
on A '

4.2. Remark. For each weight function ® and each closed set 4 < RY the
restriction map g,: f (@) 4wy maps &,)(RY) into &, (A).

For a singleton A, condition 4.1(2) is empty. Moreover, Meise and Taylor
[16], 3.10 (see 1.7), shows that in this case ¢, is surjective if and only if w is
a strong weight function. We will show in the sequel that ¢,: &, RY)
— & )(A) is surjective for each closed set in RY, provided that w is a strong
weight function. To obtain this by a reduction argument from Theorem 3.9, we
prove the following two lemmas.

4.3. LEMMA. Let (M ));on be a sequence of positive numbers and let () oy be
a sequence of differentiable functions on [0, co[ which satisfies for all jeN:

(D) ; is convex and increasing and {0) =0,
i) Wi(0) > a1 (t) for all t> 0,

(i) 1m0 (fr;t) — ;41 (8)) = o0,

(iv) Hm,., , Wi(t) = co for all jeN.

Then there exist a sequence (N )iy of positive numbers and a convex function h:
[0, oo [0, co[ such that .

o h(t);@n}f(a!fj(t)+Mj) for all t >0,

@ B < W, +N, for all t>0 and all jeN,

Proof. It is easy to check that by enlarging the numbers M 7 If necessary,
we can find a strictly increasing sequence (t )y in [0, co[ with t, = 0 so that

(3) m(t)::jgi(r,bj(tHMj)-—- x/tk(;f)+M,c for telty—y, t,l-
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Then we distinguish two cases:

Case 1: There exist 4, B > 0 50 that At+ B = m(z) for all t = 0. Then the
hypotheses imply that we can choose h: t» Az-+B.

Case 2: Not case 1. We claim that in this case we can find a strictly
increasing sequence (1) in N, a sequence (s;)jen, in [0, co[ and a continuous
convex function k: [0, co[ [0, cof satisfying {1) and (2), so that the following
holds:

4) S5o=10 ::;nd 5;6 ty,, —1s nyy,] for all jeN,
) - k@ =m@) '
(6) h(2) = m(tn )+ W, (8 ) (S — tn)

To prove this by induction, we define so:= 0 and n, := 1. Assume that n; and
5,1 have been chosen already. Then define hy: [0, co[ [0, eo[ by

hj(s):: m(tﬂ_lj)+t!’-;lj(tﬂj)(s_tﬂj)
and note that the hypothesis of case 2 implies that
Tii= {5 >ty yls) <mls)}

fDr Sj—l = t-<.. t,,j,

for t,, <t <s,.

is not empty. Hence
s;i=infZ = 1,

and we can choose n;44 so that s;€1t,,, -1, tay. .. Because of (ii), it is clear
that ny.4 > n;. From this choice it is evident that

{m(t) for ;-1 <t
hit —
hit) fort, <t<s;,

< by
8

is continuous and satisfies (5) and (6). To prove the convexity of h, note that for
S1E Yy~ 15 Tnpu ] WE have m(s) = hy(s)), m'-(s)) = W, (s)), and for some & > O,
m(t) > h(z) for 5; <t < s5;4d. Therefore an easy calculus argument shows

Ho(s) = Hi(s) < il (5) < () = Hals)).

The convexity in t,, is clear.
Next note that k satisfies {1) by construction. To prove (2), fix /e N and
jeN so that [ < n;. Then (5) and (3} give

h(t) = m(t) < ¥ )+ M,
For te[t,, s;] we get (assuming s; > t,) from (6) and (3)
Y t)+M,, = hy(t) = h(1)  and Wt )+ M, 2 () + M,

Therefore (i) implies y,(t)-+M, = h(p) for all te[t,,, s;]. Consequently, #,(f)
+M, 2 h(t) for all ¢&[t,, t,,,,] whenever n,> . Therefore we can choose
N; > M, so that (2) holds.

for all tels;, t,..]-
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44. LeMMma. Let o be a strong weight function and assume that h:
[0, co[ [0, co[ satisfies w = o(h). Then there exists a strong weight function
g 50 that o = o{g) and o = o(h).
Proof. Since w is a strong weight function, 1.7(3) implies the existence of
K >1 so that
lim sup w{Kt)/o(t) < K.

i—rao -

Next note that 1.1(y) and the hypothesis imply fim,., , A(z) = co. Therefore we
can define inductively a sequence (x e in [0, cof with x; =0 and {x,) =0
which has the following properties:

o)) ]9 16:(?2 dt < (n+1)73,

2 Xpt1 = Kx,,

(3} OXprq) 2 2T 0(x), 1<i<gn,
(4) h(x) = n*o(x) for all x = x,.

Then we define o: [0, co[ = [0, oo by

n

o(x):= noXx)— 3. wfx)

i=1

for xe[x,, Xy+1l. .

Chbviously, ¢ is continuous and satisfies 1.1(5). Moreover, for n> 2 and
x€&[x,, x,+1[ We have

%) o(x) = (n— i M) o(x) > (n— i 27" (x) = (h—2)w(x)
i=1 .

=1 w(x)
and hence

|
w(x) sma(x) for all xe[x,, x,+:[ and n= 2.

This proves w = o(c) and consequently ¢ satisfies 1.1{y). From (4) and the
definition of ¢ we get

1
a(x) < no(x) < ;t—h(x) for all x » x,,

and hence o = a(h).
Next choose ¢ >0 and NeN so that
6) - oK)jet) < K—e  for all 12 xy,

fix x> x5 and distinguish the following two cases:
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Case 1: x, € x < Kx < X4, for an appropriate n > N. Then (5) and (6)
give
- a(Kx)—6(x) = n(w(Kx)—o(x) < n((K—go@x)—o(x)
n

< nK —e—Dao(x) < ;1_—2(K—3—1)J(x).

Case 2: x, < X < X,41 < Kx for an appropriate n = N. Then {2) implies

- KX € Xpt2e Therefore (5) and (6) give

o(Kx)—a(x) = (n+ Deo(Kx)— o (%, 1 1) — no(x)
<(n+ lj(w(Kx)——cu(x)) < %(K-e— Do (x).

Altogether, this proves that
N " lim sup o(Kx)/o(x) < K—¢ < K.

X~ o
Since it is no restriction to assume K 3 2, this implies that o satisfies 1.1{x).
Now note that (1) implies that o satisfies 1.1(5) (see the proof of Braun, Meise
and Taylor [4], 1.6). Hence (7) shows that o is a strong weight function which
has all the desired propetties. ,

4.5. TugoreM. For each strong weight function o and each compact set
K+« @ in RN the restriction map g &)RY)— &) (K) is surjective.

Proof, Fix a compact set K # @ in RY and fix F = (/)eny it €)(K)-
For neN, let
a,:= sup sup|f*(x)},

lej=n xeK

(n+1—|af)!

bo:=0, by4y:=sup sup KR"F)HU’NW’

|e] €n x,yekK,x#y
and define g: [0, w[—+R by
g{t):=logmax(a,, b,, 1) for n<t<n+l.

Since (* is increasing and since F is in &, (K), we get from 4.1 the existence of
a sequence (M e in [0, co[ so that

(1) g(t) < jo*(t/)+M;

Now define ¥ : t+—jo*(t/j) and note that w.lo.g, we can assume that ¢ is C*
with lim, -, ¢'(t) = oo. Then (¢*)' = (¢')"*, and (i )av satisfies the hypotheses
of Lemma 4.3, Therefore, (1) implies the existence of a convex function
h: [0, o[~ [0, co[ and of a sequence (N)).n SO that

2 g <h < inf(i;+N).
JeN

for all t=0, jeN.
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From this and the definition of ; we get for cach je N
3) h*(x) 2 jo**{x)—N; = jo{x)—~N,.

Now define 2 t+ h*(max(0, logt)) and note that by (3) we have for all jeN
and all 121

@t} =

—

1 1
pllon) < (1 og ) = 10+,

S

This proves o = o(f). Therefore, Lemma 4.4 implies the existence of a strong
weight function ¢ and of 4]0, ool so that ;

(4) o = 0(0) < fHA.
Hence, we have
Y(x):i=c(e) < f(e)+A=h*x)+4 for all x 0.

Therefore, (2) implies g < b = i** << * 4 A. From this and from the definition
of g it follows that F is in &,(K). Since ¢ is a strong weight fanction, Theorem
3.9 gives the existence of f €&, (R") with gx(f) = F. This proves the theorem,
since (4) together with [4], 3.9 and 4.5, implies &,(RY) @ &,y (RY).

and ¢

4.6, CoroLLARY. For a weight function « the following assertions are
equivalent:

(1) For each closed set A#@ in RY, the restriction map ¢, &R
~+ & (A} is surjective.

(2}  is a strong weight function.

"Proof. (1) = (2). Choosing 4 = {0}, this follows from Meise and Taylor
[16], 3.10 (see 1.7).

(2)=(1). This follows from Theorem 4.5 by the same arguments which
were used in the proof of Corollary 3.10.

The following corollary is the analogue to 3.12 for the Beurling case.

4.7. CoroLLARY, Let w be a strong weight function and let A <= RY be
closed. Assume that A = A and that A has property (P) (see 3.11). Let (f"),eny be
a family in C(A)n C*(A) satisfying

(1) FHx) = (f9)x)

(2)  for each compact set K < A and each meN there is M > 0 such that

for all xe A, meN},

sup sup If“(x)lexp( g (m|m|))

xekK aeND

Then there exists ge &, RY) with g9 (x) = f*(x) for all xe 4, aeNJ.
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4.8. Remark. For a sequence (M ) pen, Satisfying (M1)-(M3), define w,, as
in 3.13. Then Meise and Taylor [16], 3.11, shows that &,,,,(@) = &¥)(Q) for
each open set Q in RY, where

MR (Q): = { fe C*(Q): for each K = @ compact and each h > 0:
sup sup | @) (R M ,) " < o).

weNY xek

Since w,, is a strong weight function, Cerollary 4.6 implies that Théoréme 1.3.3
of Kantor [12] bolds for @ = R”, whenever (M ppen, Satisfies (M1)—(M3). Note
that Kantor [12] states Théoréme 1.3.3 for sequences (M ) en, satisfying only
(M1) and (M3). By Petzsche [18], 3.5 and L1, and also by Meise and Taylor
[16], 3.10, his statement is not correct.

Note that an easy modification of the proof of 4.4 together with the idea of
proof of Braun, Meise and Taylor [4], 1.9, shows the following:

49, LemMma. Let w be a weight function, h;: [0, co[ [0, oo so that
w = olh)) for all jeN. Then there exists a weight function ¢ with © = o(g) and
o= ofh) for all jeN.

From this one derives as in the proof of 4.5:

4.10. COROLLARY. For each weight function w, each open subset 2 of RY and
each fe&,(Q) there is a weight function o with w = o(0) and fe8»(Q).
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