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Computing summing norms and type constants on few vectors
by
5. L. SZARER* (Cleveland, O,

Abstract, We show that the (Guaussian) type p and cotype g constants of an n~dimensional
Banach space ean be computed, up to a universal (i.e. independent of the space, p or q) constant, on
just nt vectors. The same holds for the {g, 2)-summing norms of rank n operators. This unifies the
results of N. Tomczak-Jaegermann and H. Kénig. In the case of the l-summing norm of an
operator defined on an #.dimensional Banach space we have a similar result for nlogn vectors,

In the local theory of Banach spaces the concepts of type and cotype of
a space and that of a p-summing operator are of primary importance. In this
note we present several results concerning computation of the constants
associated with these concepts, in the case when some information about the
dimension of the space or rank of the operator is available. Our first two
results, concerning the (Gaussian) type p and cotype g consiants of an
n-dimensional Banach space and the (g, 2)-summing norms of rank n opera-
tors, unify the work of N. Tomezak-Jaegermann [TJ1] and H. Koénig [Kdn];
the third deals with the l-summing norm of an operator defined on an
n-dimensional Banach space. In addition to the two papers mentioned above,
our approach relies on the methods of [BLM], [BT1], [BT2] and especially
fTali. ‘
Recall that a Banach space X is said to be of (Gaussian) type p (resp. cotype
q) iff there is a constant K > 0 such that, for any finite sequence (x ) of elements
of X,

™) (E||EV,;XJ||’)” ‘<K (Z Ix ) (resp. > K 'l(Z I8,

where y,'s are independent N (0 1) Gaussian random varlables and K stands for

the expecled value. The smallest constant K which works in the above is called
the (Gaussian) type p (resp. cotype g) constant of X, and denoted by T,(X) (resp.
C,(X)). If we consider only sequences (x) of length not exceeding n, we denote
the corresponding quantities by T2(X) aml C(X) respectively. We then have
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TuEOREM 1. There exists a universal constant C such that whenever E is
a finite-dimensional Banach space, say dimE =n, and p=1[1,2] (resp.
gef2, «]l), then

TE) < CT{(E)  (resp. C,(E) < CCY(E)).

Let us remark here that the “operator version™ of Theorem 1 also holds
with the same proof (type p and cotype g constants of an operator u are defined
by replacing x; by ux; at the “lower sides” of the inequalities in (1)). In another
direction, with the Rademacher type and cotype defined by replacing y's by r/'s
(the Rademacher functions) in (1), the “type part” of Theorem 1 extends to the
new setting since the ratio beween the corresponding constants is bounded by
universal constants from above and below. For the cotype, the situation is
somewhat more complicated; see [K-T] or [TJ2], §25, for details.

Theorem 1 follows in a standard way (we indicate the argument at the end
of the proof of the theorem) from the following fact, which is of independent
interest. Again, we recall some notation. An operator u: X —»Y is called
(p. q)-summing iff there is a constant K > 0 such that, for any finite sequence
(x;) of elements of X,

(2) (TP < Ksup{(T1f pef'e: fe x>, 1f1 <1}

The smallest constant K which works is called the (p, g)-summing norm of u and
denoted by 7, 4(u); if p = g, we abbreviate these to “p-summing” and “m,(4)”.
As before, if only sequences (x;) of length not exceeding n are taken into
account, we speak of nl”(u} and nl(u). We have

ProposSITION 2. There exists a universal constant C such that whenever
u: XY is a finite rank operator (say ranku =n; X, Y Banach spaces) and
gel2, «ol, then
ﬂq.z(u) = C“gﬁz(@

This was proved for g = 2 in [TJ1] (see [TJ2], § 18, for a proof giving, in
that case, C = 2%/%; our present methods give apparently much worse cons-
tants) and, for g > 2, with C depending on g, in [Kon].

For the l-sumiming norm we have a similar, somewhat weaker result.

THEOREM 3. There exists a universal constant C such that whenever E is

a finite-dimensional Banach space, say dim E = n, and u is an operator from
E into another Banach space, then, for some m < nlogn, we have

7y (1) < Cal™ ().

In fact, in the assertion of Theorem 3 one can replace nlogn by f*n, where
B=sup{K(v): veZ(l%, E), |o| <1}; in particular, p<K(E) and
B < Cly, Cq(E)) for ge[2, o) (see the remarks at the end of the proof of
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Theorem 3; K(:) denotes here the K-convexity constant of the space or
operator, see any of the references mentioned below for definitions). We do not
know if the logn factor is necessary. We do point out, however, that the
hypothesis “dim E = n” cannot be replaced by the weaker one “rank u = n”, as
shown by T. Figiel and A. Pelczynski [Pel]. The number of vectors one may
need in that case is, in general, exponential in the rank. To our knowledge, no
better estimates were available until now also in our more restrictive setting, or
even for the identity operator on a general n-dimensional space (cf also
[KTI]).

We use the standard notation from the local theory of Banach spaces as can
be found e.g. in [M-8] or [TJ2]. In particular, { TJ2] contains most of the facts
we quote in this paper by referring to the original source; [Pi3] may be
consulted for results concerning factorization of operators. Let us only mention
the following:. by |'i we denote the Fuclidean norm on R* (and also the
cardinality of a set); (e;); << is the standard unit vector basis in R*. For
Banach spaces E, F, &#(E, F) is the space of bounded linear operators from -
E to F, usually endowed with the operator norm; if E =[] and F =1I, we
denote that norm by |- ||,-,, 0x by |- If—I'| to emphasize the dimensions.
We concentrate on the case of real spaces; however, the results and, with some
minor modifications, the arguments carry over to the complex case. The letters
C, ¢, ¢, etc. are reserved for universal numerical constants, whose exact values
may, however, vary throughout the paper.

Proposition 2 (and hence Theorem 1) will follow “easily from the following
fact.

LemMa 4. Let n, N be positive integers and A an nx N matrix with
|Alzaz = |A: =B8]l < 1. Let A, be the matrix obtained from A by nor-
malizing the column vectors (in 13). Then there exists o < {1, ..., N} satisfying

(i) chs(4)* < lo} < hs(A)* (< n),
(i) |4 P, zme <7,

where ¢ >0 is a universal numerical constant and P, is the (orthogonal)
projection of R" onto span{e;: jea}. Moreover, if (W)i<i<wns Yicien W= 1,05
a sequence of weights, one can additionally require that

(i) Y er w;ldej™? 2 c.

We first show how to derive Proposition 2 (and Theorem 1) from the
lemma,

Proof of Proposition 2. Observe first that the (g, 2)-summing norm of
u may be as well defined via

(3) Tg,2(4) = sup {(jZ:N fludell l1)”‘1}

with the supremum taken over all A: 1§ >X, Al <1, and all NeN (resp.
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© with N fixed for z(}(). By a standard argument (see [T12], §§11, 18), it is
enough to consider the case of X ==15. Choose: N and A: 1§ jl'ﬁ(:X),
4| < 1, for which the supremum on the right hand side of (3) is achieved (this
is possible, by [TJ2], §18, with N < n?; in fact, for our purposes it would be
enough to consider N and A for which the expression from (3) is e.g.
2= i, .(w). Set, for i< N,
w, = [|ude||/m,2 ()
and apply Lemma 4. Identifying the obtained o with {1, ..., k}, k= |o| € n, we
get from (iii)
em 2@ < Y lude|tldel 2 < Y, [udefflde] = ), |ud, ¢
ish i<h i<k

and so, substituting c4, P, for 4 in (3) we get
7,200 < "R () < 073 Al (),
as required.

Proof of Theorem 1. We use the following observation from [TJ1]. For
a Banach space X, neN, pe[l, 2] and ge[2, o], one has

TO(X) = sup {alh(u): we L®, X), 1w) < 1}
CH(X) = sup{i(w): ve L5, X), (xIL*(*) < 1},

where, for ue #(3, X), *
) = (B 3, vyeif)

and, for an ideal norm « on #(E, F), o* is the dual (in trace duality) norm on
Z(F, E); E and y;'s have the same meaning as i (1). From this, Proposition 2,
and the “defining formulae” (1) and (2), Theorem 1 readily follows.

Proof of Lemma 4. We start by taking care of some “trivial” cases. First,

(if w; e, ™ is large (e.g. > 27*) for some j, one forces (iii) by adjoining j to any

o satisfying (i) and (i), and adjusting the constant ¢ if necessary. In particular, if

hs(d) is small (e.g. < 4), we must be in the situation as above; then, in fact, the
choice of o = {j} works. This means that we may as well assume that

) wilde| 2 <27* for all j< N, hs(4)?>2°,

Forje{l, ..., N}, set x, = Ae, (the ith column of 4), g, = |x,|™*, &; = |x,*
and let &,,..., &y be independent (0, 1)-valued “selectors” with E&; =4,
(defined on some probability space (£2, #), E stands for the expected value).
Consider the random set ©=t(w)={j: {(w)=1}={1,..., N}. Then (4
implies that
(5) - P(Ehs(4)? < It < 3hs(4)%) > 3/4, P} wilde]|™? = 1/2) > 3/4.

e
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For a sequence of scalars o = (x;) denote by M, the diagonal matrix with
a/s on the diagonal; then P, = M, and A, = AM,. We are going to ensure first
the conditions (i) and (ii). Consider the quantity

Q=E|(AP)2y =E|MgA*(3.,.
We have
Z lujCijjs wl: uell, ul < 1}

157SN

=Emax{ﬁ;ﬂ#;(ﬁ;-%ﬂ(% wy|+

= Emax {(x)+(x*)}.
Now, by the Cauchy-Schwarz inequality,

(xx) < (2 p26DM2( T [Cx;, udl2)2 = hs(4)|d*u] < hs(A).
IsN 1€N

Z .ujajl<xj’ u>|: uEl':'z, |ui < 1}

1€j€N

On the other hand,
Emax {(x)} < @rEmax{ ¥ y;u;(&;—8)I<x;, wdl: Jul < 1},
PRt ,

where /s are independent (also of £;s) N(0, 1) Gaussian random variables;
this follows from the fact that if Z;'s are mean zero, independent vector random

variables, then
E||Z;,Zj|| < @n)'PE(Ty,Z)-
J

Combining the estimates and repeating the argument used above to estimate
(*+) we obtain
6) Q< @DVEmax{ ¥ 1ul<xy, wh: ot < 1}+(1+2m) ) hs(4).

JSN
Now, by the Slepian’s lemma (say, in the version due to Fernique [Fer]; or see
[{M-8] or [Gro]) applied, for fixed (¢;), to the processes

X = Y ylopéix, ) and Y (o) = Y yio)pé(x; u),
<N €N

the first term on the right hand side of (6) does not exceed
@mM2Emax{ Y yu,&<x; ut |l < 1}
JEN

= (2")”2E|1§N TJ“JCJ’C1| < (2m)'P(ELE, |j;N y,,ujfijF)l/Z
= QMY E, ¥ i &ix )M = 2n)'12hs(A),
JE€N .

which sh.ows that _
Q=E|(A P} (1 +(Sﬂ)”2)h8(z4)-
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Consequently, setting C, = 4(1+(8n)*/%), we conclude that
7 P(I(A, Py*] 241 < Cohs(4)) > 3/4.

Now, for any given © (= {j: £;(w} = 1}), by the “little” Grothendieck Theorem
(applied in the same context in the proof of Thm. 1.2 in [BT1] or in [Kas]),
(4, P)* “well factors” through a diagonal operator acting from I§ into 1. More
precisely, there exists a sequence o= (4);<nE€ RY, |« <1, such that
(A, P)* = M A*=M,B with B, < (mf2)'? | Mgy A*|2-1. In” other
words,

My Mg, A% 3oz < (/22 | My A* ]| 201

Now, if ¢ satisfies simultaneously the conditions from (5) and {7 (which

happens with probability > 1/2), we can pass to a subset o = {jet: u;
< (2/lD**} = 7, lo] = [€l/2 = khs(4)*, for which

14y Pyllzes = 1M Py M- 1 My, A% |2 < (2/hs(A))(1/2)!72 - Cohs(4) < 2°;

this clearly implies the first two statements of the lemma. We note in passing
that we could as well use the Bernoulli-Rademacher random variables instead
of the Gaussian ones and, in place of the Slepian’s lemma, the comparison
theorem for Rademacher processes from [L-T] {the latter is simpler, but less
known than the former one); this would in fact allow us to improve the
constants somewhat.

To obtain (jii), we first show (using virtually the same argument as above}
that

I{Mwlf‘zu’EA*Hz-fl < (1-{—(87!)1"2), :

and so, if C; = 4(1+(8n)}'/?), then
®) - P(IMopinyzeA* as < Cy) > 3.

Consequently, for any 1 (ie. &) satisfying the condition from (8), there exists
a sequence « = ¢(r)eRY, o < 1, such that
“Ma"iMw”z,uzfA*HZ'*l g (n/z)uzcl'
Again, pass to a subset oo = {jer: a(wj?u)"t €2} < 1; then
12 Y a?z4 Y wui=43% wldel™?
Jet\ap Jet\oo Jet\ag
and so, if ¢ additionally satisfies (5), it follows that
Y wildef™? > 1/4.
Jevo
Now replacing ¢ by 6o, and passing if necessary (to conform to (ii)) to
a twice as small subset still satisfying (iil), we get the assertionm,

Let us mention here, without proof, the following variant of Lemma 4,
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which is also a “rectangular” version of Theorem 1.1 from [BT2] (or
a “weighted” version of Theorem 2 from [Lun))

PROPOSITION 5. In the notation of Lemma 4 set 6, = ZJSijlAe_,.F and let
8 =max{dy, n/N}. Then there exists ¢ = {1,..., N} satisfving
(i) lo| < AN,
(@) [APgz-2 < 82,
(111) Ziﬁﬂ Wi Z 051
where ¢ > 0 is a universal numerical constant.

We now pass to the proof of Theorem 3. We need the following “weighted
version” of the Theorem from [Tal] (which was, in turn, an “improved”
Theorem 1.2 from [BLMJ])

LemMma 6. Let n, N be positive integers, E an n-dimensional Banach space,
Ae L%, B), Al €1, and (W)ycisns 2a<jenw; = 1, a sequence of weights.
Then there exists o < {1, ..., N} and scalars (), satisfying

(@) la] < B*n,

(i) ”Zlea’ tzNiAeiH < ¢~ P maxg,lt| for any scalars ()i,

(iii) Ziea Wil 2 G
where c}> 0 is a universal numerical constant and f = sup{K(v): ve £ (%, E),
o] <1}

Once Lemma 6 is proved, Theorem 3 follows immediately. Indeed, the
following variant of (3) is just a rephrasing of the definition (2) for the
1-summing norm:

©) 7y () = sup{ } [ude;i}

JEN

with the supremum taken over all 4: I¥ > E, |A] <1, and all NeN (resp.
with N fixed for n{"(u)). We then argue as in the proof of Proposition 2, with

Lemma 6 and (9) playing the role of Lemma 4 and (3). One just needs to

observe that, for any E, the quantity 8 does not exceed ¢, (1 +logn)*/2; this is
implied by the fact that any ve £ (i, E) factors through an n-dimensional
quotient of ¥, hence v* factors through an n-dimensional subspace of Y, and
for such subspaces, as is known e.g. from [Pil], the K-convexity constant is
< ¢y{l +logn)*/2. As far as the remarks following the statement of Theorem
3 are concerned, one clearly has f§ < K(E); the fact that § < C(q, C,(B)) for
qe[2, ) follows from [Pi2], Theorem 10.

For the proof of Lemma 6 we need the following fact well known to
specialists (recall that for = (f), M, is the diagonal matrix with B/s on the
diagonal).

Lemma 7. Let n < N be positive integers and let F be an n-dimensional

subspace of I (or any L,-space). Then there exists o = (¢} € B, |« < 1, such that
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7y (My-1iy olp) < (20)12,

where iy 5: I 1§ is the formal identity. Consequently, there exists v < {1, ...,
N}, Iz = 3N, such that
My (Poiy 2 |6) < (8n/N)1/2.

The first inequality is essentially the result of Lewis [Lew], for p = 1; the
subset 7 can be defined by v = {j: |of < (4/N)'?}, cf. also Lemma 4.5 from
[BLM].

Proof of Lemma 6. The argument is very similar to that of [Tal].
Roughly speaking, having an operator A: Iy —»E, |4 <1, NeN arbitrary,
we want to replace it by a “related” operator A,: 1% —FE, |4,]| < ¢!, with
m “not too big” and A, still “sufficiently large” in the sense of (iii); in [Tal] and
[BLLM] a very similar problem was considered, with (iii) replaced by the
requirement that A, be “nearly a quotient map”. The proof is based on an
iteration procedure: in each step we reduce the dimension of If by a fixed
_ factor (say, < 3/4), while increasing the norm and decreasing the weight from
(i) only marginally. More precisely, we have

CrLaM. In the notation of Lemma 6, there exist scalars {u);<n with
w€{0, 1, 2} and |{i: p; # O} < 3N such that {ii) and (i) hold with ¢™' < 1+
2*B(n/NY'* and ¢ = 1—10N~Y2 respectively (and, say, o = {i: u, # 0}).

Sinee it is clear that, in view of the exponential decrease of N’s correspond-
ing to successive steps, one can iterate the procedure from the Claim as long as
1+2*B(m/N)/? remains bounded, Lemma 6 follows. To prove the Claim, we
choose first 1,, 7, = {1,..., N}, such that |t 2 3N for i=1, 2 and

(10) lwi < 4/N
(11) (P:211 eranA)

where iy 5: I¥ - 1§ is the formal identity. It is clear that one can achieve (10);
(11) follows from Lemma 7. _

‘We now set T=1,n7, and y, =1 for u,ér For iet we choose u's at
random to be 0 or 2; ie. we consider (u,).. to be a sequence of independent
random variables with @(y, = 0) = P(u, = 2) = 1/2. Then clearly

12 Plfiet: =0} 24N 2172
while, on the other hand,
(13) P(Y wip; > Y wi— 10N~ 12) > 3/4,

ier et
The latter inequality follows' from the fact that the sequence (u;—1) has
Bernoulli distribution (ie. the same as the Rademacher functions r;), from the
well known estimate

for iet,,

(8n/N)'2,
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PY ez

ig&m

%) < oxp(—2/(4mll(c)1%))

and from (10). Thus it remains to show that the variant of (i) required by the
Claim holds with sufficiently large probability. We have, as in the proof of
Lemma 4,

Emax{|| ¥,
. 1<TEN

<Emax{ 3 ml{Ade, u)|: uek, |u| <1}
15IEN

tilu‘iAeiH: t=(t)ely, th, <1}

<EBmax{ § (—10K4*u, ed{+ ¥ [Cd*u, e)l: uek, |u] <1}
1SIEN _ LEigN
< Emax{y [{A*y, eDlrs uek, jull < 1}+1

igt

£ 14 (/) P Emax {J [<A*u, ey ueE, |ul| < 1}

fet

< 1+(n/2) 2 E| |Z nidey] < 1+((/E[Ly,Ae i)
fet fer

= 1+(rc/2 V21 Aly, o r) < L+ (/22 1(Aiy, . Po),

where J(-) was defined in the proof of Theorem 1 and iy o ¥ ¥ is the formal
identity. Consider the canonical factorization 4 = Adq, where g: I¥, - IY fker A
is the quotient map. By [DMT], Lemma 1, one has

I(Apr,iz.m) = rl(‘qqprgiz.m) S nZ((qiz.w‘Ptz)*) TZ(‘I) = WZ(Ptzii,ZLSIJ.A*) TZ(‘;I)
< ﬂz(Ptzil,ZlmnA")K(A) Cz(ranA*) < (SH/N)U:ZB

by (11) and, say, [Pi2], Prop. 3(v) {or see'any of the general references
mentioned after the statement of Theorem 3). Consequently,

Plmax{]| T tmdelfi: t=@)el, tl, <1}
1RIEN

< 1+4(n/2)'7 B(8n/N)2) > 3/4,
This, together with (12) and (13), proves the Claim, hence Lemma 6, and
concludes the proof of Theorem 3.

Acknowledgment. The author thanks Nicole Tomczak—]acgcrmann for
helpful discussions.
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Every Radon-Nikodym Corson compact space is Eberlein compact
by

L ORIMUELA (Murcia), W. SCHACHERMAYER (Linz)
and M, VALDIVIA (Valencia)

Absteact, We prove the result announced in the title. The Bapach space version of this
topological result reads as follows: A Banach space E whose duad unit ball is a weak* Corson
compact and which is GSG (i.e, there is an Asplund space X and a continuous linear operator from
X into E with dense range) is weakly compactly generated. We also analyze a relevant example of
M. Talagrand and obtain solutions to three problems posed by I. Namioka.

1. Introduction, A compact topological space is called an Eberlein compact if
it is homeomorphic to a weakly compact subset of some Banach space and is
called Radon-Nikodym compact if it is homeomorphic to a weak™ compact
subset of the dual of an Asplund space. By the factorization result of [DFJP]
every Eberlein compact space is homeomorphic to a weakly compact subset of
a reflexive Banach space, therefore an Eberlein compact space is a Radon—
Nikodym compact space. (For definitions and unexplained notation we refer to
the end of the introduction.)

To see that these two notions are different, observe that for a compact
scattered space K the Banach space C(K) is Asplund as the dual C(K)* equals
I'(K) and therefore has RNP. Hence K is a Radon-Nikodym compact space.
For example the ordinal interval [0, @] is a Radon-Nikodym compact but
fails to be Eberlein (by Eberlein's theorem). Using the idea of dentability
L. Namioka gave a topological characterization of Radon-Nikodym compacta
[N] as those compact spaces which admit a lower semicontinuous fragmenting
metric (see below). This gives rise to the notion of fragmented compacta ([JR],
[N] where the lower semicontinuity assumption is dropped and we obtain the
following chain of implications:

Eberlein compact = Radon~Nikodym compact = fragmented compact.

We shall prove in this paper that the second implication above also fails to
be an equivalence.

1980 Mathematics Subject Classification: Primary 46B22.
Key words and phrases: Eberlein compact, Radon-Nikedym compact, Corson compact,
fragmentability, Asplund spaces. '



