icm

STUDIA MATHEMATICA 98 (1) (1991)

Boundary estimates for derivatives of harmonic functions
by

FRANK BEATROUS (Piitsburgh, Penn.)

Abstract. Boundary I? estimates are obtained for maximal functions of gradients of harmonic
functions in terms of I# norms of derivatives with respect to a fixed transverse vector field. As an
application, it is shown that, for functions of several complex variables, pluriharmonic conjugatjon
is 4 continuous operation on H* for 0 < p < 0.

1. Introduction. It is well known that if u is & harmonic function in the unit
disk such that a nontangential maximat function of u is an I¥ function on the
unit circle, then u is the real part of a holomorphic function in the Hardy class
H? on the unit disk. For 1 < p < oo, this is equivalent to a classical result of
M. Riesz [6], and for 0 < p < 11t is due to Burkholder, Gundy, and Silverstein
[2]. Higher dimensional analogues of this result in the setting of a half-space
may be found in [7] and [5]. In this paper, we obtain an analogue for domains
in (real) Euclidean space of arbitrary dimension.

We begin with a reformulation of the conjugation result in the disk which
will be meaningful in the higher dimensional setting. Let X denote the radial
vector field in the disk defined by

0
oy’
Then the above result in the disk is easily seen to be equivalent to the
following: If u is a harmonic function in the disk such that a nontangential
maximal function of Xu is an I? function on the unit circle, then any
nontangential maximal functions of du/dx and du/dy are also I¥ functions on
the unit circle. This formulation has a natural analogue for domains in R in
which the radial vector field X is replaced by a smooth vector field which is
everywhere transverse to the boundary. Indeed, this higher dimensional
analogue is the principal result of this paper (Theorem (3.43)).

The half-space analogue of our main result is well known, and amounts to
the boundedness of the Riesz transforms on I¥ when 1 < p < oo, and on HF

ad
X =x—
xﬁx+y
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when 0 < p < L. (See [5] and [7]) We shall draw heavily on ideas from [5]
and [7], but in our setting the arguments are complicated by the fact that
differentiation with respect to a transverse field does not preserve harmonicity.

Results analogous to ours with volume I¥ norms have been obtained
previously by Detraz [4] and by Boas and Straube [1]. The case considered
here is more delicate than the volume case.

The paper is organized as follows. In Section 2, we collect some definitions
and recall some well-known results concerning maximal functions and area
integrals. In Section 3 we prove a series of lemmas, culminating in our main
result (Theorem (343)). Finally, in Section 4 we give an application (o
pluriharmonic conjugation, extending a result of Stout [10],

‘Througheut the paper, we shall use the symbol C to denote various positive
constants which are independent of the relevant parameters in the expression in
which they occur.

2. Preliminaries. Throughout this paper, D will denote a fixed bounded
domain in R with C? boundary, and X will denote a C' vector field in
a neighborhood of 8D which is everywhere transverse to 8D. More precisely,
D is assumed to be a bounded set in RY of the form D = {xeR": ¢ (x) < 0}
where ¢ is a function on R with dg # 0 on D = {x e R¥: ¢ (x) = 0}. The
vector field X is assumed to be of the form X = Ya ; 9y where each coefficient a i
is a C* function in a neighborhood of 4D, and Xg (x) % O for every x ¢ 8D. We
shall denote by & the Euclidean surface measure on 4D, and we denote the
norm in If (8D; do) by || ||,- Also, for any function « on a set K, we let
flull g = sup {Ju(x)|: xeK]}.

For1 <j < N, we shall denote partial differentiation with respect to the jth
variable in R by §;. Similarly, for any multi-index o = (xy, ..., xy), we let
9" = 8%'... 9% For any nonnegative integer k and any C* function u, ‘we shall
denote by Z*u the vector [%1], where « varies over all multi-indices of weight
at most k.

We choose and fix a neighborhood U of @D and a ¢! diffeomorphism

&: U~eDx [—2,2] with the following properties:

@) 271 (6D x(0,2) = DU and ¢ (9D x[—2,0)) = U\D;
(ii) @ (x) = (x,0) for any xeéD;
(iti) in each connected component of U the vector field ®, X 1s a constant

multiple of 8/d, where ¢ denotes the second coordinate of a point in
ODx[—2,2]

For any x = @D and any a > 0, we denote by F,(x) the truncated cone in
- dD % (0,1] defined by I (x) = {(y, e 8D x (0, 1]: |x—y| < ar}, and we denote
the preimage of I (x) under & by I (x). For any fanction. u on Dn"ff, we shall
denote the function uod~* on 4D x (0, 2] by ii, and we shall denote the product

measure do X dt on 3D x (0,2] by dV. Finally, we let U, = ¢! [2D x(—1,1)],
and K = D\U,,
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It will be convenient to have a defining function for D which is harmonic
near 8D. We choose a point x, €int K, and denote by ¢ the Green function for
D with singularity x,. Thus, & is harmonic in D\{x,} and & (x, t) is comparable
with £ on ¢D x (0, 1].

For any function 4 on DU, and any a > 0, we define the nontangential
maxinal function of u by

N u(x) = sup {lu(y)l: yel,(x)}

whenever xe 0D, Thus, N,u is a lower semicontinuous function on 8D. We
define the radial maximaol function by

Nou(x) = sup {|i#(x, )] 0 <t < 1}

for x&@D, If u is continuously differentiable on UnD, then we define the
Littlewood—Paley g-function by

gu (x) = [!) Jii (x, % ¢ dt]*2.

For q > 0, we denote the g-area integral by
SPu)=[§ WP e "do(y)de]?

Fatx)

where, once again, x € D. In all of the above notations, we shall often drop the
subscript a when the aperture is 1. We shall also denote the classical area
integral $¢ u by the simpler notation §, v. We will use the above operators for
both scalar and vector-valued functions, When wu is vector-valued, [u| is to be
interpreted as the Euclidean norm of w. ‘

We will need to compare I? (D) norms of each of the above quantities.
These comparisons are facilitated by the fact that finiteness of ||N,u|[, and
I8, ull, is independent of the aperture a.

(2.1) Lemma. Lei 0< p< co, and let ab > 0. There: are constants
C=Clab,p) and C' = C (ab,p) such that

() IN,ull, < C IN,ull, for every function u on D;
(i) 1S¥ ull, < C' IS ull, for cvery measurable function u on D.

For functions in half-spaces, parts {i) and (ii) of the above lemma appear in
[5, p. 166] and [3, p. 3097 respectively. The proof in the present comtext is
identical to those appearing in {S] and [3] and will be omitted.

We are now in a position to define the harmonic Hardy spaces on the
domain D. For 0 < p. < oo, we define H? = H? (D) to consist of all harmonic
functions on D such that N, ue I (0D) for some (and hence every) ¢ > 0. With
the “norm” defined by

lledlgre = |INyulls
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HP is a Banach space when 1 < p < oo, and a quasi-Banach space when
0 < p < 1. Of course, in view of Lemma (2.1), the choice of the aperture 1 in the
definition of the H” (quasi-)norm is only a convenience, and any other aperture
will give rise to an equivalent {quasi-)norm. In the case | < p < o0, H” is the
space of Poisson integrals of functions in £ (8D) (see Chapter 1 of [9] and the
references given there). It should be noted before proceeding that, as a con-
sequence of Lemma (2.1}, the Hardy spaces H” (D) are independent of the
choice of the transverse vector field X and the diffeomorphism &, and that any
other choice would lead to an equivalent (quasi-)norm on H? (D).

The principal interest in the Lusin and Littlewood-Paley functions is that
they can be used to characterize H” (DY.

(2.2) Lemma. Let D be any bounded domain in RN with C* boundary. Then for
u harmonic on D, the following conditions are equivalent:
(1) ue H” (D);
(ii) g (ZuyeI? (8D);
(ii1) S(Du)e 7 (2D).

Moreover, the (quasi-Jnorms on HP (D) defined by [INullp, llg (@), and ||S @,
are eguivalent.

With D replaced by a half-space, Lemma (2.2) may be found in [7] in the
case 1 < p < oo and in [5] in the case 0 < p < 2. The above formulation does
not seem to appear explicitly in the literature, but the techniques of [7] and [5]
may be easily adapted to the present situation, so we will omit the proof.

3. Estimates for derivatives of harmonic functions. In this section, we prave
our main result, Theorem (343), on H” norms of gradients of harmonic
functions. We split the proof into a series of lemmas. The first resuit provides
a pointwise estimate for area integrals of gradients in terms of area integrals of
transverse derivatives.

(3.1) LemmA. Let k be a nonnegative integer, and suppose that the partial
derivatives of the coefficients of X up to order k—1 satisfy a Lipschitz condition
of order 1 > 0. For any 0 < a < b, and any ¢ >0, there is a constant C,

depending on a, b, q and k, such that for any harmonic function u on D, and any
xedD, ' .

SE(@* 1) (x) < CTSIP (X" u) () + 12 uf ]

Proof The proof proceeds along the same lines as the proof of the
analogous result for differentiation in the half-line direction in a half-space (see
[8, pp. 213-216], but is complicated by the fact that differentiation with
respect to X does not preserve harmonicity.

We first prove the inequality

(32) S (X7 1) () < o LS (X1 ) ()4 SI120 (25 1 () | 91 ]
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for any nonnegative integer i < k and any 0 < a < b. The lemma wil! follow
from (3.2) by a simple inductive argument,

Forz=¢"'(x,7)and w = ¢~ (y,1) in U with |z—w| < gz, we have, since
¢ is a diffeomorphism,

(3.3) [x—yi+|t—1] < ¢, e,
where ¢ is a constant depending only on @ and thus
(34) (=)t <t < (e g)r.

It follows that if (x, 1) & I, (x,) for some x,& 0D, and if (3, 1) is as above with
0<s<eil, then

g+, 8
[y—xol € [Xx=Xg| +Hlx—y| < ar+e, 81 < T_El;t'
™t

We choose and fix 0 < ¢ < 7" sufficiently small that (a-+ ¢ 8)(1—c,8) < bso
that, with {x,7) and (y, ¢} as above,
(3.5 [y —x| < bt.

For any (x,7) = @ {z) € dD x(0, 1], let B(x,7) = {weRY: jw~z| < e}, and lét
B(x,71) = ®#[B(x,7)]. 1t thus follows that B(x,1) < I',(x,)UK whenever
(JC, T) € Iﬁ‘a (x())' .

We next fix a boundary point, which we assume for simplicity to be the
origin, and let (x,t)&f,(0). Then for 1 <j< N,

1 .
(3.6) [X‘Oju]'" (x, 1) = -j'01[X‘EJju]"‘(x, 'J:)d”c—}-[}l”('.3J-u]~ (x, 1)

1
= C X" 3ul™ () de+[ X1 0, u]™ (x, 1).
3
For any fixed (x,7)e ", (0), let L denote the constant coefficient differential
operator obtained by freezing the coefficients of Xi*' at &1 (x,7). Then
L commutes with each @,, and Lu is harmonic in D, so it follows that

[[x*! aul”™ (x, )| =

Loyu(@ " (. ) = [8; Lu(@~" (x, 7))

& N(;‘z r [L‘H|ZdV
Tt
, C _
< N(:z [ AXT Tl dVboygy | =X Y av,
T

Bt}

But since i+ 1 is at most k, the coefficients of X*** satisfy a Lipschitz condition
of order #, so the integrand in the last integral on the right is bounded by
a constant multiple of =®{%'*! u|?, which yields the estimate :
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) C ; C i
X2 8] ()P < g | TN AV ey § 12TV

Btx,1) B(x,7)

Since the Jacobian of @ is bounded, the integrals on the right hanq side may be
replaced by the corresponding integrals over the regions B (x, t)_ in D % (0,2).
But in view of (3.4} and (3.5), B(x, 1) is contained in the strip

S, ={(»t)edDx(0,2): |yl <btand (1—¢, 7 <t < (l+¢; 81},
where ¢, is as in (3.3), and therefore

) c ~ C . i ~
[X 1 0,u} (x,9)* < w3 Jlextu] P dV—%;m;é‘ I[2***u]~|? aP
§y =

= II (’E]+IZ (T).
Combining this estimate with (3.6) yields

1
ILX* 8,17 (1) < C [ (1 @2+ L (M%) do + 197 ull]
T
Squaring both sides, multiplying by t#~V, and integrating over F(0) gives

2 1 1

3D SPX oW < C[y [ ([ 1) duf? de+112' 7 ullf].
Jj=10 t

The two integrals on the right of (3.7) can be estimated by Hardy’s inequality.

Letting y, denote the characteristic function of the strip §,n I, (0), we have

1 1 1 x 1 . .
j‘tq—l (J‘ I1 (’c)ll?‘d'l:)z di < %Itq-l-lh (t) dt = Cj[ﬁiT—”E j‘ ][X"H u]"|2dth
[} 0 S,

11 . o .
<C jm I ||:X|:+1u]~|2 dth'l"“@l-!-lu“]Z(il

L0 5enFy(0)

[t 1 3 , .
=CllFw=l  ux) I[X‘“u]”(x,T)IZdU(XJdetHI@‘“ulli:l

{ O [ 11}

I~ 3T dt . .
< C| | |z I0X )™ (x, o) dVix, 0 + |99 i}
LEy(or eze b !

< C[ | 7 ¥EX™ 1 ul” (x, 1)1 dP(x, 1) +12 L 3]

F5i0)

= C[(S¥ X" w) O +112' " ulik].
Here ¢, = (1+c¢; 87! and ¢y =(I'—c,&)™" with ¢; as in (3.3). The same
technique may be used to estimate the second integral on the right in (3.7). The
result is :

et (1, (2 P de < CSE™ (@1 ) O+ ulE].
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Inserting these last two estimates into (3.7) gives (3.2).

Applying (3.2) inductively, with a and b replaced by suitable intermediate
values, gives

SP (XD ) (0) < Cup,g [SE (XM u) (0)+ SE+20 (D54 0) (0) + 11wl ]
whenever 0 < a < b and i+j < k, and, in particular,
(3.8) S (2*u)(0) < Copp, [SI (A% 1) (O)+ SF 0 (F* ) (0) + || Z* ulc].

Let 0<a<b, and let r be a positive integer. Choose a<ay < a,
< ... < @u-y = b By applying (3.8) with ¢ and b replaced by a, and ¢, for
0<i<r—1, we obtain '

r—1
SEND* u)(0) < Copar[ 3 8B HM (X% (0) -+ SHT 2 (2% ) (0) + 12 ul ]
=0

But each term in the sum on the right is dominated by S{# (X* 1) (0), so, since
r is at our disposal, it follows that for any M > O,

(3.9) S (* W (0) < Cupgne [SI? (X* 1) (0)+ S5 (@ 1) (0) + || 2* wil].

For any (x, t) € [, the radius of the ball B(x, 1) is comparable with t, so we
have

| B u (@™ e D) < Cem N [ v G N |y dPi, o).
Bix,t) Bix,1)

Since, by (3.4), t is comparable with ¢ in E(x,f), it follows that
| (@7 (kB < e § R e aP ()
B

(x,1)
K Cop [t 279840 u (0))% + £~ 2 ||ul ] -
Multiplying by ¢~¥*2*¥*9*1 4nd integrating over I, (0) gives
(3.10) ST (G 4 (0) € Capg (S50 1 (0} + |lule)

whenever 0 < a < b. For any 0 < a < b, choose b’ between a and b. Applying
(3.9) with b replaced by b and M = 2k+1, and (3.10} with a replaced by »’
gives

(3.11) ST (" ) () K o [T (X* ) (O)+ SE2 4 0+ 12* | 1.

But since u can be recovered from X*u by k-fold integration, the second term
on the right of (3.11) can be absorbed by the first and the last, and the lemma is
proved.

(3.12) CorovLrary. With X and k as above, there is a constant C such that for
any harmonic function u on D

g(D*u) < C[S(X*up+||Z* uli].
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Proof The case k = 0 is proved exactly as in the case of a half-space. (See

[8, p. 90].) But applying the case k = O to the components of %*u gives
g (2" w) < C{S(Z* )+ 2" ully)
and the result follows from Lemma (3.1).

(3.13) Lemma. Let X and k be as in Lemma (3.1). For any 0 < g < b there is
a constant C such that for any harmonic function u on D and any xedD

N, @2 u) (x) < CIN, (X* ) () + 127 ulli].

Proof. We fix a point 8D, which we assume is the origin. For (x, ) e [, (0}
we have

11 1
(3.14) [Z " ) =Cf[... | [X*Z**'u]™ (v, 1) dr,...dr,+&

toy Tiem 1

where & = & (x,t) satisfies |§] € C||2**ul. For any fixed x and =, let
Licy denote the constant coefficient operator obtained by freezing the
coefficients of X* at ¢! (x, 7). Then, letting B (x, t) be as in the proof of Lemma
(3.1),

~ - C
|[Xk GFH u]” (x,7)| = |[D*** Lz u]™ (x, 7 < Y ”L(x,t) ““ﬂ(x.r)

C
< ) [_HXk e,y + Ly — X*) tl ey -

But the coefficients of X* are Lipschitz of order #, so we obtain
(3.15) [[X* 1 u]™ (6l < CLe* 7 |X  tllgge, + 175741 |95 U] e ]
For 0 << 1 and a >0, let '

IR0 = {neli(x): t>a}, IP(x) =01 [V x)].

Then for (x,z}ef,(0) and t <1< 1, we have B(x,1) c '™ (0)u K, where
0<a<1and « depends only on @ and b. Thus, letting

| N () (<) = sup {lo (2): ze I (),
it follows from (3,15) that
IEX* 241 u]™ (x, 9 < Cap [e74 7 N, (XF20) (0) 4775101 N (9% 1) (0)].

Inserting this estimate in

—

3.14) and evaluating the resulting integral gives

=10

(3.16) L2 " ul™ (x, 0 < [N, (X* ) (0) +27 N§™ (D u) (0) + |2 u ]

and hence, since t is comparable with §,
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BA7) N, (62 ) (0) S Ca [N} (X*0) (0)4+ N, (5" B* ) (0)+ |97 .

To complete the proof, we must argue that the second term on the right of
(3.17) can be absorbed by the first and the last. The argument which led to
(3.16) gives, for any (x,t)el,(0) and any b > a, the estimate

IL9* u]™ (x, )] < Cap [log (1/6) Ny (X5 1) (0)+ £ NPV (5 1) (0) + |27 ul| ]
from which it follows that, for any f > 0,
N, (OF @ u)(0) < Cupp [N, (XFw) (0)+ N, (677 2% ) (0) + |22+ 1 w1
Iteration of this last estimate gives, for any M > 0,
N (37 2" u) (0) € Cpopmr [N, (X* 1) (0)+ N, (8 2% u) (0)+(1 %%~ u| 1.
On the other hand, we also have the elementary inequalities
Ny (& G4 1) 0) < Capp (N (0)+ )
for any 0 < a < b, and
N,ou(0) < N, (X*0) (O)+C|F** .
Combining these last three inequalities gives
N, @ 2%u)(0) € Copp [N, (X* ) (0)+ || 2% u)l4].
which, in view of (3.17), completes the proof.

The remainder of this section will be devoted to demonstrating that the I7
norms of area integrals of gradients are dominated by I norms of maximal
functions of transverse derivatives. We will consider separately the cases
0<p<2 p=2 and 2 < p < o0. We begin with the simplest case, p = 2.

(3.18) LemMmA. Let k be a nonnegative integer, and assume that the vector
field X is of class C***. There is a constant C such that ||S(2***u)||,
< C(IN (X*u)liy +12%* ully) for any harmonic function u on D.

Proof There is no loss of generality in assuming that u is real-valued and
it will be convenient to do so. By Lemma (3.1), it suffices to estimate
IS (¥ X*u)||,. We have

FSWX wdo= [ [ [[VX*uly ] t* ¥ dP(y, 1) do (x)
an ap I'x)

1
= [ [ fx(x=yD IV X*u]™ (v, 01 2~ de do () do ()
anan o

where y, denotes the characteristic function of the interval (0, ¢]. Integrating out
the variable x yields

FSPXtufde<C| }|[VX"u]” (v, OI* £ dt do (v).
5D

an
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It will be convenient to extend X to be a C*** vector field in a neighborhood of
D which vanishes in a neighborhood of the singularity of é. (Recall that é was
chosen to be a Green function for D)) Thus

j (S(7X*u)de < CIIPX uP6aV=C lim [ IPX*u?sav

D =0+ Dy
where D, = Ku®~ ! [0D x(g, 1]]. Using the identity
(3.19) AU = 2|FUE+204U,
we _obtain
(320) [ (S(ZX*u)do

an

< C[lim sup | j A ((X* wy?) 6dV|+_HX"u| |4X*u| 8 dV].

g=+0Q*
But by Green’s Formula,
}' i ((X" u)z) &dV = j a, ((X" u)z) ddo,+ j" (X*u)?0,6do,,
Da

aDg D¢
where de, is the Euclidean volume element on ¢D,, and 9, denotes. outward
normal differentiation along 8D, Thus

| A(X* ) edy| < c[j Ny (X*u) Ny ((ZF+* u) )da+j( o (XFu)da].
Dy

It follows from Lemma (3.13) that
(3.21) | 4(x*w?)éav|<C[ j (N (
D,
As for the second term on the right of (3.20), note that, since u is harmonic,

AX*y = (A, X*]u, where [4, X*] denotes the commutator of the operators
4 and X* which is of order k+1. It thus follows that

(322)  [1X*ul|4X*ulddV
n

WP do+ 12 ulk].

< C[f Jlfx*u]~

an o

<C [j No (X*u) Ny (02* ' w) do + (j2**1 ““ﬂ
D

(%, HEL* T u]™ (x, o) £ dt do () + 1"+ ullg]

< C[ [ (N(X*w)f do-+ (2% ullg + 12" ufig].
ap

Inserting (3.21) and (3.22) into (3.20) gives
IS (@** wll, < COIN (X* )il +127 ull, ],

with J = max {1, 2k}. This is the required estimate if k > 0. On the other hand,
if k=0, and if |[Null, < oo, then u is the Poisson integral of a function in
"I7 (8D), and therefore the last term on the right of the above inequality can be
absorbed into the first, and again the required estimate obtains.
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(3.23) LEMMA. Assume that X is of class C***. If u is harmonic in D, and if
N{(X*u)eI? (8D) for some 0 < p < 2 then S{%** ' u)e )P (2D) and

15 (2% wll, < C, [IN (X* wll, + 127 ul].

Proof As in the proof of Lemma (3.18), it will be convenient to a%ume
that u is real-valued. By Lemma (3.1), it suffices to estimate ||S (V X* u)ll -
will estimate the distribution function of S(FX*u) using a tcchmque oi
Fefferman and Stein [5, pp. 162-163]. Let a > 1. Then according to Lemma
(2.1), N,(X*uw)e I? (0D), and ||N, (X*u)l|, < C,|IN (X*w)},. Fix « >0, and let
E=FE,={xedD: N,(X*uy<a}and F =F, —DD\E lxc-zaD N, (X*u) > ).
Then E is closed by the lower semicontinuity of N, (X*u). Let R =R,
= | J{I'(x): xeE} and R = ¢[R]. It follows from Fubini’s Theorem that

@324 J(SFX*w)?do < C[I[PX*u]*PtdP < C [P X*ul? 34V
E R R

We will estimate the integral on the right by applying Green’s Formula in
a sequence of piecewise smooth domains which approximate R from within.
Choose a sequence @; of C? functions on 2D such that the tangential gradients
of the /s are bounded uniformly in j and a, and such that ¢, decreases to
@ (%) = dist (x, E) as j — 00, (The existence of such a sequence follows from the
fact that ¢ is Lipschitz of order 1) Let R, = {(x,NeR: ¢t > ¢;(x)}. By (3.24)
and the identity (3.19),

(325 [(S(FPX*w)?de < Clim [ |V X*u*5dV

E Joo Ry
= Clim [ [ 40X w218 dV=2 [ (X*uw) 4 (X*u) § V]
Jo Ry R;
< C[lim ‘;up|j' AQX*w?)6dVi+ f |X*ul |4 (X*w)|dav].
o

But Green’s Formula gives
(326)  JA[X*wlodV= [ o, [(X*w?]dda;— | (X*1)*2, 8 do,
R Ry T ARy
where o, denotes the surface measure on R, and 0, denotes the outer normal
derivative on @R;. To estimate thesc intograls, we split AR, into three pieces
AR, = BjwB} LB
where (!)[B,} < abx (1}, @[Bf]l < Ex(0,1), and ¢ [B}] < Fx(O 1). We will
denote the image of B} under ¢ by B
We will now esumate the first term on the right of (3.
we have the pointwise estimate _
(3.27) 18, (X w16 < C|X*ul|d 2" o,
from which it follows trivially that
(3.28) o, [(X*u*] éda)|
Bj

26). For the integrand,

< @ ullg.
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For the integral over B?, note that, in view of the fact that the functions ¢;
which define the regions R; have uniformly bounded derivatives, we bave
dé; (x,t) < Cdo (x) along E}uﬁj‘, where dé is obtained by pulling back the
measure do; by @ '. Moreover, by Lemma (3.13) w have

(3:29) N9 1) < C, [N, (XFu)+ 1122 ull].

so (3.27) implies

(3.30) I[3, (X*1)* 817 (¢, 0] € CIN(X* W) ()] N (6 2" ) (x)
< C[IN,(X*u) ()P +127* ull].

Thus we have the estimate ‘
(331) 1] 8, [(X*w)6do) < C[JIN, (X*w)]? do +1|2%* ull%)
BY E

= C[[to{xeE: N (X*u) > 1}dt+||2* ulE].
0

For the integral over B3, note that for any x e R we have, by (3.27) and (3.29),
18, [X* 0] (9] 8 %) < C, [sup (N, (X* w2 + 1192 ullE] < C.[o* +112* ullZ]
E

S0
(3.32) |f 8, [(X*u)? b6 do| < C, [o® o (F)+ 12 ufI].
5

Combining the three estimates (3.28), (3.31), and (3.32) gives an estimate for the
first integral on the right of (3.26):
(3.33) | &0(X*u] ddo)|

aRy
< C,[[to{xeE: N (X*u) > t}di+a? o (Fy+|2" ullk],
o

where J = max {2k, 1}. A similar argument shows that the right hand side of
(3.33) also dominates the remaining integral on the right of (3.26), and we thus
have .

(3.34)  limsup|{ 4 [(X*uw)?] 8aV|

jew Ry
o
< C[fto{xeE: N, (X*u) >t} dt-+a® o (F)+|127 ulk].
o

We now turn our attention to the last term on the right of (3.25). Since u is
harmonic, |AX*u| = |[4, X*]u| € C|Z**! u|. (Here [4, X*] denotes the com-
mutator of A4 and X*)) Thus, letting y denote the characteristic function of R, we
have
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(335  [IX*ul|d(X*uw)|sdV< C [1X*u| (G54 ) § dV
R R

) |
< Ca{)gx(x, DILX* 1™ (x, 0 LD 4]~ (x, 8)| § (x, 2) dt dor (x)
< C[£ (No X ) Ny (8 2*+1 wdo+ | o do + || 9% ufl}]

:

< CIINVX*w? do-ta? o 1)+ ul]

= C[g to{xel: N (X*u)(x) > t} dt+o? o (F)+1|9% u||F].

Inserting (3.34) and (3.35) into (3.25) gives

JJE(S(VX"u))Z doe < C, [(j;tcr{xEE: N (X*u) > 1} dt+oc2cr(F)+||£@’u||;3‘(].

By Chebyshev's Inequality, it follows that
c{xeE: S(FX*u) > o}
1 a
B C[U(F)+&-5Itd{er: N, (X*u) > 1} dr+_15”-@1u”?(:|-
0 o

But since the ri’;cght hand side trivially dominates & (F), it in fact bounds
oc{xedD: S(FX : ) > a}. On the other hand, we also have the trivial estimate
o{xedD: S(FX*u) > a} < ¢(8D) < oo, and so letting M = (|2 uj|, we have

[ (8P xFwydo = T«x”"lo{xeﬁD: SFX*u) > a}do = ?—;-T
L] o M

g (D) °°
<~——--—p MI+C [ o™ o {N, X u> a} da
0

@ P °
+C [ (1o {N, X" u> ) dtdu+C 19" ull} | 0"~ da
o0 0 A

=4

" [+¢]
< CLI” ule+ N, Xrullfs < § o (N, X*u > 6} | 023 do d]
o] H
. |
= C[uzﬂ e+ N, X ulls 45— [ 072 0 N, X > ) dt:‘
By o'

o,
= C [n@’ w5 IV, X ullﬂp]-

This proves the lemma in the case k > 0. But when k = 0 the first term on the

right Of. the above inequality can be absorbed by the second, since u is
harmonic, and so the proof is complete.

5 — Smdin Mathamat foan P01
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: (3.36) LEMMA. Let k be a nonnegative integer, and assume that the vector field
X is of class C***. Forany 2 <p < @© there is a constant C,, such that for any

harmonic function u on D
1S2** ull, < C, [INX* ull, + 19 ull]-

Proof When k = 0, the result is contained in Lemma (2.2). We shall show
that the case k > 1 also follows from Lemma (2.2) via a duality argument (cf.
[7, pp- 455-458]). As in the proof of Lemma (3.18), it will be convenient to
assume that u is real-valued and that the vector field X is defined in a full
neighborhood of D and vanishes in a neighborhood of the singularity of 4. By
Lemma (3.1), it suffices to prove

1S (X*** w)llne < CIN (X u)llzs +i122* ull g

- We have

WS (XFH @12 = [(SX* 9Pl = sUP | (S(xX*" ) p do
an

where the supremum is taken over all nonnegative functions ¢ in If(8D)
satisfying [|@ll, < 1 with 1/g+2/p = 1. We begin with the elementary estimate

j‘ (SXk+1 u)z (de — .[ j‘ |[Xk+1 u]~|2 2N d]’}(P (x) da (x)
an oD F(x)

1
= [ ] JIX*ul™ 3, 0P @ () 1 (x—y) 2% de do (y) do (x)

épep 0
where ¥, denotes the characteristic function of the interval [0, t]. But, letting
P(z,x) denote the Poisson kernel of D on Dxé&D, we have t* ¥y (Ix—y)
< CP(@7* (y,0), x). Letting v denote the Poisson integral of ¢, it thus follows
that ‘
3370 [ X" 'uteds

an-

_ 1 _
<C [ I ul™ 0u 0 § @) P(@7! (31, x) do (x) tdi da (y)
2D

8D 0

< C X uPusdV< ClIVX uPvéaV
n D

i

C [ (44 ((X* w2 0) =V (X w3 Po—v (X*u) 4 (X w) 5 AV
D

< C|J A(XF P 0) 3dV]+C [1X*u| |V X 0l [Po] 84V
D D

+C X u[v|[4, X ul & aV.
B

Here we have used the identity
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IPUPRV=3%A(U?V)—1U? 4V—F (U - PV--UVAU.

The first term on the right of (3.37) may be estimated by applying Green’s
Formula in the approximating domains D, = {&~'(x,¢): t > ¢} wK, and
letting e =07 to obtain ’

(3.38) |1_[A ((Xk u)z u)5dV; £ C J‘ [N, (Xk u)]2 (NO 24N, (5]71))) do
aD
+aj;)No(Xk“)No((SVX"u)NUUdG.

Slnce. No(dFv) € C{Nv+|lvllg), it follows from Hélder’s Inequality that the
!'lrst integral on the right is majorized by ||N, (X* )| ||Nv}|,. For the last term
in (:.’:.38), note that by Lemma (3.13), N, (6P X*u) < C(N (.Xg" u) +[|2% ullg), so
again by Holder’s Inequality, the last integral is majorized by {||N (le‘ ;&)H‘;
+112%* ullZ) INy oll,. Since » is the Poisson integral of ¢, it follows thajé
INvll, < Clloll, < C, so it follows from (3.38) that

(3.39) | £ A((X*u)*v) 6 dV] < CIN (X* w)lZ -+ 127 uliZ].

The second term on the right of (3.37) is more delicate. We have
[ 1%l [P X ul [P o] 5V |
b

<C[ | X" {2 u]™|I7u] "] e dP+ 1125 uliE]

2D ¥ (0,1]
1
<C a}; N“.(Xk u) (£ I[Z*** ul™ (x, 1)* t de)*? (T[ ILF o™ (x, 02 t de}? do (x)
: 5 ‘

+C [P ull
=C [BL No (X*u) g (2" u)g (Vo) do+]|Z** * ullk].

By Hélder’s Inequality, the integral on the right is dominated by ||N, (X* u

xlg (@*** ), lig (7, avd by Lemma (2.2), llg (o), < C|INo]l, i”c:qum e
In addition, by Corollary (3.12), |lg (%*** w)||, is dominated by (i$ (X"”‘I1 w|
+||2**  ul|y, and, trivially, the radial maximal function is dominated by em§
nontangential maximal function, so we oblain

(3.40) [ )X*u| |PX*u] P05 dV
D

< CLIN G wll, 115 (X wll, N (X il (1277wl +112** ullR].

Estimat@on of the last integral in (3.37) is straightforward: passing to the
radial maximal fonction and integrating over 8D gives

(3.41) :{ IX* | v |[4, X< u|ddV
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j' No(X*u) N, vNO(é Dy do+C |2 ullk
£C[ j +E|~92k uliZ) (N v) do -+ |25 k]

<C [IIN(X"u)llpHI@”‘ ullg]-
Inserting (3.39)-(3.41) into (3.37) and taking the supremum over ¢ gives
(S (X% w2 < COIN X2+ N (X u)l, I8 (X7 il + (1227 k],
from which we conclude ‘
(3.42) IS (X** 1 w)ll, < C LIV (X w)il,+ 119" ullg]

for any harmonic function u such that [|S(X*** )|, <

To complete the proof, we must argue that §(X +1 )EE’(F)D) whenever
N(X* e I? (D). Since aD is compact, it suffices to verify that §(X**'u) is
locally in I? (@D), which can be deduced from (3.42) by the following simple
device. Fix x, e 8D, and choose a small neighborhood W of x, such that the
outward normal v to 8D at x,, is transverse at each point of 8D W, Next,
choose a domain D, with C* boundary with Dy < D and with 6D,ndD < W,
and choose a vector field X, in a neighborhood of 2D, which is everywhere
transverse to 8D, and which agrees with X near x,. Let N° and S° be the
nontangential maximal and area integral operators respectively on D,. For any
function U on D, we let U,(x)= U(x—ev). Assume that # is a harmonic
function on D with ||N (X* u)ll < o0. Then for ¢ > 0 sufficiently small, u, is

harmonic in a neighborhood of DO, and, by (3.42),

11S° (X8** ullLaone < C, LING (X6 u)lenong -+ 4k, ]

where K, is some compact subset of D,. If the aperture-a is sufficiently large,
then it follows easily from the Monotone Convergence Theorem that the right
hand side of the above ingquality converges as ¢—0 to the analogous
expression with u, replaced by u, which is necessarily finite in view of the
finiteness of [N (X*w))|,. It thus follows from Fatow’s Lemma that

IS0 (X&** W|Leang < 0.

Since X, agrees with X in a neighborhood of x,, it follows that (S (X*"! w)) is
integrable in a neighborhood of x,. Thus, we have shown that (S(X**! w))* is
locally integrable on aD. Since 2D is compact, it follows that § (X*** u) € I? (2D),
and the proof is complete.

We are now prepared to formulate and prove our main result,

(3.43) THEOREM. Let D be a bounded domain in RY with C? boundary, and let
X bea C**! vector field in a neighborhood of 8D. Let u be a harmonic function on
D such that N (X*u)eI?(éD) for some 0 < p < coc. Then N (2*u)eI? (D).
Moreover, there is a positive constant C and a compact subset K, of D such that
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IN (@ u)ll, < CLIN X u)ll, + el ]
for every harmonic function u on D.
Proof. By Lemmas (3.18), (3.23), and (3.36), S(@*"' u)e I? (2D) and
(3.44) IS (2** wll, < COIN (X*u)ll,+112* ullg].

Thus, since all the components of £*** y are harmonic, it follows from Lemma
(2.2) that ¢*ue H? (D) for every multi-index o« with |«| < k, and that

IN (& w)ll, < ClIS (@ & ull,.
Combining this estimate with (3.44) gives
IN(Z* )], < C LIV (X* )}, + 127 ull].
But if K, is any compact subset of D containing K in its interior, then
2% ullx < Cllullk,
for any harmonic function # on D, so the result follows.

There is also a local version of Theorem (3.43), which we will need in the
next section.

(3.45) CoROLLARY. Let D be a domain in RY with C* boundary, and let V and
V, be neighborhoods of 0 € 0D with V,, € V. Let k be a nonnegative integer, and let
X, be a C*™1 vector field on Vwhich is transverse to 8D at each point of 3D A V.
Then for any harmonic function u on DV such that N (X§u)e I (@D V) for
some 0 < p < w0, we have N (2* u) e IF (8D " V,). Moreover, there is a compact
subset K, of VD such that :

(D" ullLoan v < C.(”Xk tllpe@p A vyt |1ullo)

for every harmonic function u on DNV

Proof Choose an open set ¥, with V, € ¥V, € ¥, and a bounded domain D
with C* boundary such that Dy < DV, and 0 8D, V, < dD. Choose also
a C*"1 vector field X, in a neighborhood of 8D, such that X' is everywhere
transverse to 0D, and such that X, agrees with X, in a neighboorhood of
@D V. Tt is clear that our hypothesis implies that N9 (X% w)e I7 (3D), where
N® is a nontangential maximal operator for the domain Dy, and that

||N0 (Xt u Wllpn@ng < C[IIN (X Whlze@ennp )+ uliz],

where L is some fixed compact subset of VD, Thus applying Theorem (3.43)
in the domain I, gives the desired result.

4. Pluriharmonic conjugation. In this section, we show that, for C? domains
in C", pluriharmonic conjugation is a continuous operation on H” for
0<p< o0 In the case 1 < p < oo, this result is due to Stout |'10], with
a different proof.
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(4.1) THEOREM. Let D be a bounded, connected open set in C" with C?
boundary which contains the origin, and let f be a holomorphic function in D such
that Refe H? (D) for some 0 < p < co. Then fe H? (D), and

INAll, < C, LIN Ref)ll, + [Tm £ 0]

Proof Let {eéD, and by a unitary change of coordinates, assume that
8/dx, is the outward umit normal at {. (Here the coordinates in C" are
7; = x;+iy; for 1 € < n) By integrating f with respect to z,, we can find
a neighborhood V of { and a holomorphic function F on FAD such that
8F/0z, = fand such that for any compact set L in D there is a compact set L' in
D such that

(4.2) C NIFlnr < CHLf

with a constant C independent of f. Thus, if 4 = Re F, then, by the Cauchy~
Riemann equations,

By shrinking ¥, we may assume that 8/0x, is transverse to 2D in ¥, so if V} is
a neighborhood of { with ¥, € V, it follows from Corollary (3.45) that

IN (I f)l|eramonm S C [IN (Re Loy nomy + 1 Flixs]
< CIIN (Ref)||mwmam+||f|lr{6]

where K, is some compact subset of DV, and Kj is as in (4.2). Since aD is
compact, it follows that '

IN (I )], < CLIN Ref)ll,+ 1/ llx.]

for some compact subset K, of D). But since Ref is harmonic on D, it follows
that

I[Re fllg, < ClIN (Refll,
and thus

@3) N m ), < COIN Ref)l,+|[Tm fllx,]
< CLIN Ref)li,+tm f (O)f + [m f~Tm £ (O] x, ]-

Let K, be a compact subset of D with connected interior containing K, u {0} in
its interior. Then

m f—~TImf Ok, < ClI¥ (Imf)lx, = ClIF(Re g,

But since Ref is harmonic in D, the last term on the right is bounded by
a constant multiple of {|N (Ref)||,, so the theorem follows from (4.3).
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Added in proof (November 1990). It has been pointed out to me by J, Bruna that Théorem (4.1)
on pluriharmonic conjugation can also be deduced directly from the area integral characterization

- of H?. I{ f = u+iv is holomorphic on D and ue H2(D), then S(Vu)e I (3D). But it follows from the

Cauchy—Rmmann equations that S(Fs) = §(Pu), and so ve HP (D).



