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Renormalizations of Banach and
locally convex algebras
by
ANTONIO FERNANDEZ (Sevilla) and VLADIMIR MULLER (Prague)*

Abstract. Let (B, |-]|) be a normed algebra and A its subalgebra, If|-| is an algebra norm on
A equivalent to the restriction of ||| to A, then |-| can be extended to an algebra norm on
B equivalent to {-|. This generalizes the result of Lindberg [3] for commutative algebras. An
analogous statement is also proved for locally convex algebras. As a corollary this gives an
affirmative answer to a problem of Zelazko [4]: The topology of a locally convex algebra B with
unit ¢ can always be given by a submultiplicative system of seminorms |-, satisfying le|, = 1
for all o.

1. Normed algebras. Let 4, B be normed aigebras and f: A—>B an
isomorphic embedding. We prove that B can be renormed in such a way that
f will become isometric. This means that the concepts of isomorphic and
isometric extensions coincide. This resnlt was known for commutative normed
algebras [3]. '

TuroreM 1. Let (B, || |) be a normed algebra and A its subalgera. Suppose
that || is an algebra norm on A satisfying

alal < ||all < Bla] for all acA,

where 0 < o < 1 < B. Then there exists an algebra norm || on B such that
lall’ = la| for all ac A, and '

(/BB < |bll < BlUbI"  Sor all beB.

Proof. We may suppose that B has a unit e which belongs to A4 and
le| = el = 1. If either of these conditions is not satisfied we consider the
unitizations B, = {b+A: beB, 1eC} and 4, ={a+i: ae4, 1eC} € B,
with naturally defined algebraic operations and the norms [|b+A4llp,
= bl y+]4l and Ja+A, = lal,+ 1Al .

For beB define g(b) = sup{|ab|: ae 4, la| < 1}. Clearly g(b) > bl and
g(b) < Bl sup{llal: ac 4, lal <1} < Blbl.
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For by, b,eB we have
q(b, b,) =sup{|lab, b,|: ac4, |a| < 1}
< {lb, | sup{llab,||: ac A, Jal <1} = fib,] q(by) <

Hence ¢ is a submultiplicative norm on B equlvalent to H Il
Let ayeA, |a,l =1, beB. Then

q(b,)q(by).

qla, b) = sup{aa,b|: acA, |al < 1}
< sup{|ab|: ac4, la < 1} < g(b)

so g(ab) < ia!'q(b) for every aed and beB.
Define further p(b) = sup{g{bc): ceB, gl <
g(bc) < p®) g(c) for b, ceB, and for by, b,eB

pibyb,) = sup{q(b, b,c): ceB, glc) < 1}
< 1} = p(b,) p(b,).

1} for be B. This means

< p(by)sup{g(b, c): ceB, glc)

Let gqeA, Then
p(a) = sup {g{ac): ceB, q(C) < 1}
< sup{lalq(c): ceB, ql0) <1} <al
For beB we have
p(b) = sup{g(be): ce B, glc) < 1}
< sup{flbcl: ceB, qlc) < 1}
< bl sup{icfi: ceB, qlc) 6_1} < plIblt and
p(d) = q(b)/q(e) = |IbIl/B. '

Finally, put |b|" = inf {ja|+(B/e) p(b—a): acA}.
Let b,, b,eB and a,, a;eA. Then

by boll” = Y@ ay +a,(by— a)+ (b; —a;) 4y +(b; — a,) (b, ~ )
<{a, oy +(B/m) pLay by —ag) + (b, —ay) ay +(b; —a,) by —a3)]
< layi |+ (B/o) play) p(b, —a,) +(Bled plb, —ay) plas)
+(8/2) plb, —a;) plb, —a5)
< [lay|+ (/) p(b; —a)] [Jaal +(8/) p(b, — a,)]

and, by passing to the infimum, ||by b,|| < |bi|" b,
Also ||la|\ €|a] and, for all aye A,

laol +(B/) pa—ao) 2 lagl +(1/0) |a—ao||

Hence ||all’ = 4| for every acA.

= |agl+la—ae| = lal.
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Further [b]" < (B/a) p(b) < (B*/0) [IbY and
lal +(Bfx) plb—a) = (1/B) fall +(1/a) | b —al
= (1/B) |b] for all beB. =

Remark. The first part of the proof (the existence of an equivalent norm
p on B satisfying p(a) < |a} for all ae A} is a consequence of a general result in
(2], p. 18. Here we repeat the argument for the sake of convenience.

The problem of extending norms in the case of matrix algebras was
studied also in [1], Theorems 3.1.3 and 3.1.4. The proof given there contains
some similar ideas.

= (/B sl
ie. B’

2. Locally convex algebras. Let A be a locally convex algebra. Then the
topology of A can be given by means of a system {]-|,: «el} of seminorms.
Without loss of generality we can assume that this system satisfies the following
properties:

{1} For every acl there exists fel such that [xy|
(2) For each finite set {«,, ..
for all i=1,...,

« < [x|p ¥y for all x, ye d.
., tt,} = I there exists e such that [x],, < [x],
n and xeA.

If the system of seminorms defining the topology of A4 satisfies (1) and (2)
then a seminorm |- on A is continuous if and only if there exists an index ael
and a constant C such that |xj < C|x|, for all xe 4. For further details in the
theory of locally convex algebras we refer to [5]. '

THEOREM 2. Let B be a locally convex algebra and A'its subalgebra. Let
{|-l,: ael} be a system of seminorms on A satisfying (1) and (2) which defines the
topology of A inherited from B. Then there exists a system of seminorms
{I"l: BeK} in B satisfying (1) and (2) which defines the topology of B and such
that for every fe K the restriction of ||+ |3 to A belongs to the system {|-|,: aeI}
(ie. there exists ael such that lal, = llally for all acA).

Proof. Let ||||4, feJ, be the system of all continuJs seminorms in B.
The restrictions of the seminorms |-|l;, feJ, to A define the same topology as
the seminorms |-|,, « € I, therefore for every feJ there exist ael and a constant
k(f, ¢} such that fal, < k(8, o)lal, for all ae 4, and for every axe there exists
yeJ such that |a|, < [laf, for all ae 4.

Congider the set

K = {(OC, rG)
For (z, f)eK define the seminorm ||z, on B by
Bz = inf{lal,+|b—all,: asA}.

|agl, and, for ag A,

elxJ: |a|, < llall, for all acA}.

Let aged. Clearly |aglli <

|al,~+ Hao“a“a 2z lal,+|ap—al, = lacl..
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Therefore ||alys = ial, for all ae A. Further, bl <
is a continuous seminorm on B.

Let BeJ. Then there exist Acl and a constant k(f, 1) = 1 such that
lall, < k(8. Alal; for all ge A. Also, there exists yeJ such that |al, = |a|, for
all ae A and [|b], > [ibli; for all beB. Let ac 4, beB. Then

lal,+ b —all, = (1/k(B, 2) lallz+b~al s = (1/k(B, D) [b],,

therefore b5, = (1/k(B, 2))b], and the systemn K defines the topology of B.
It remains to prove that K satisfies conditions (1) and (2). Let b,, b,€ B,
a;,a,6A and (¢, f)e K. Then

by by =aya;+a,{b,—a)+(b, —ag)a,+(b,

b, for all be B, ie. ||*[l5

a,)(by;~a,) and

—ay) (b —aay+
—aylg, +1b

by ballep < lay ayl,+ llay (b,
< layly, |a2|a1 + ety ”ﬁ‘l by
-+ Ibe—ChHﬂ, “bz_az“gl
< layly, {asl,, + 5By, o) [ayly, ”bz_azﬂﬁl
+k(By, =) “bl—al”ﬁ!, @], + by _511“;31 ”bz“‘az”m
< |a1|a-, |a2|m1+ |a1|u2 22 _azﬁ,eﬁ‘ by —a, “,12 |a21a2
+ by —ayllg, 12— azlly,
= [ayl, + by —aylly,] Hasl,, + 10, —a;ly,]

where «, €l is a seminorm satisfying

(bl_al) (bz”az)“n

1y llg, lasllg,

la, al, < layl,laxl,, for all a;, a,e 4,

B, eJ satisfies
161 bally < b 1, 121,
a,el and k(f,, o,) > 0 satisfy

for all b,, b,€B,

< KBy, an)layl,,

ety ]ay = 18t]ay na1“ﬁ1 for all a, A4,

and fi,eJ satisfies
max {1, k(B,, a}} b, ], <
layl,, < ”01”13;
Taking the infimum over all a,, a,€ 4 we obtain

1y bylles <

15yl g,
for all a, e A.

for all b;eB and

‘lbltlﬂ!zﬂz ibznazﬂzs
hence (1) is satisfied.
Let oy, ...,a,el, By, ...,

laly, < llalls,

B,eJ satisfy
{aeAd, i=1,..., n).

icm

Renormalizations of Bunach algebras 241

Then there exists ae I such that la,, < lal, (aeA4, i=1,...,n) and feJ such
that |b||,, < Ibll; (beB,i=1,..., n) and |al, < {a||, for all ae A. Then clearly
{x, f)e K satisfies condition ¢2) for the n-tuple (x;, 8,),..., (g, )eK. =

COROLLARY. Let B be a locally convex algebra with unit e. Then there exists
a system K of seminorms on B defining the topology of B such that |ie|, = 1 for
all e K.

Proof. Consider the subalgebra 4 = {le: AeC}. The topology of A is
determined by one seminorm |ie| = |4 By the preceding theorem there exists
a system of seminorms {||-|;: € K} on B satisfying (1) and (2) which defines
the topology of B and satisfies ||lef, =1 for all xeK. =

If 4 is a metrizable locally convex algebra, then its topology can be given
by a countable system of seminorms ||,, n=1,2, ..., such that

{|a|n < s

fa, asl, < laylnsslaslner

(3)

for all a, a,, a,ed, n=1,2, ...

The following result is the analogue of Theorem 2 for metrizable locally
convex algebras.

THEOREM 3. Let B a metrizable locally convex algebra, A its subalgebra, and
let |"l,n=1,2, ..., be a system of seminorms on A which defines the topology of
A inherited from B and satisfies (3). Then there exist seminorms |-,
n=1,2,..., on B defining the topology of B which satisfy (3) and {|la|l, =
{agA, n=1,2,..) where f: N>N is an increasing function.

Proof Let {p:n=1,2,...

alrm)

} be a countable system of continuous

" seminorms on B defining the topology of B. We define seminorms |||, [|-lln,

n=1,2,..., on B and the value of f(n) by induction on =
Put f{1) = 1, and choose a continuous seminorm |[-; on B such that
lal, = |al, for all ac A. Define |-[1 by (1 = inf{la|, + |b—all,: acA}.
Suppose that we have already defined continuous seminorms |-,
k=1,... n, on B, the values 1 =f(1) < ... < f{n), and let

1blL = inf{lal g+ [b—all: aed}, beB, k=1,...,n

Choose a continuous seminorm g, on B satisfying
ilb‘l b?.”n € qn(bl) er(bz)

Find f(n+1) > f(n) and a constant C, such that

(by, b,EB).

g () € Clal sy for all aeA.
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Further, find a continuous seminorm |-{,+; on B such that

[Blin+z = bl (beB),
lala+s 2 ldlrm+ 1) (aed),
1bllsss > max{l, C,}q,b) (beB),
[Blin+1 2 Pt 1(d) (beB).

Put
1BlG 1 = inf{|al s 1y + |b—alass: a€ A}

Clearly ||b|,+, = b, for all beB and n=1,2,... Let by, b,eB and

a,,0,A. Then
1By bslln < lag aglpm+ by ba—ay asll,
< |aylro+1 12zl oy 1+ @y By~ as)ll
+li(by —ay)a, [+ b, —a) (by— )i,
< aylpnt 1 1@alpn+ 1+ Gl 4u(by — 62)
+ by — 1) 4u{a}+ 2, (b1 — 1) 4, (b — 1)
€ 1yl rs+ 1 182l prat o 183 s 13 102 — @ llns s
10 =y lne 1 1@al poe 1y + 1By — @y lne 1 Bz — o llas 1
= [laylfe 1y + 1By — &y lw 1) L@al ety + Hby—azlluss].
Hence (b b, < 1By lhvs [B2llha-

It is a matter of routine to prove that |al;, = |a|;m (2€ A4, neN) and that
the seminorms [|-||5, n =1, 2, ..., define the topology of B. =
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Some remarks on the uniform
approximation property in Banach spaces
by
VANIA MASCIONI (Ztrich)

Abstract, We prove that if a Banach space X has the uniform approximation property with
uniformity funciion ky(n, K) = O(#) {for some constant K), then X* has weak type 2. Further, as
an application of our method, we also show that the uniformity function of L, (2 < p < o0} cannot
be O(n¥2) for any ¢ < p.

1. Introduction. Given a Banach space X, a finite-dimensional subspace
E of X and a constant K =1, let

ky(E, K) = inf{rank T T: X =X, |T|| < K, Té = for all ecE},
ky(n, K) = sup{ky(E, K): E< X, dimE =n}, neN,

X has the bounded approximation property (B.A.P.) if there is a K such that
ky(E, K) < oo for every finite-dimensional sabspace E of X, X has the uniform
approximation property (U.A.P)if there is a K such that k,(n, K) < oo for each
neN. ky(n, X} is called the uniformity function of X.

The U.A.P. was introduced by Pelczynski and Rosenthal in the paper
[17], where they proved that all L, (1 < p < o0) have it. More precisely, in [17]
we can find the estimate k; (n, 1+¢} = O((n/e)™) for some constant ¢ (this was
proved using an argument due to Kwapien)

Recently, Figiel, Johnson and Schechtman [4] proved that for pe {1, w0}
an upper exponential estimate is optimal in the sense that, in this case,
ky,(n, K) = exp[8{K)n], where 6(K) is a constant depending only on K. On the
other hand, trivially, we always have k; (n, K) = n, and so it is conjectured in
[4, 8] that, Tor | < p # 2 < o0, there exist constants K = K(p) and « = «(p, K)
such that k; (n, K) = O(n"). Lower bounds for k;_(n, K)(I € p < ) are not
known (see [4] for the case p== o), but in Section 3 we will see that
ky,(n, K) 5% O(n¥*) for all K and all 2< g < p <'cc.

In Section 2 we will give some characterizations of U.A.P, and, in Section
3, we will prove that, if ky{n, K) = O(n™), X has weak cotype 2o and X™* has
finite cotype. A stronger result holds if « = 1:in this case X is even K-convex
and thus, since X has weak cotype 2, X* has weak type 2. This fact may be
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