

236

References

- [1] R. R. Coifman and G. Weiss, Analyse Harmonique Non-commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin 1971.
- [2] J. Cygan, Subadditivity of homogeneous norms on certain nilpotent Lie groups, Proc. Amer. Math. Soc. 83 (1981), 69-70.
- [3] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY Pł. Grunwaldzki 2/4, 50-384 Wrocław, Poland

> Received March 3, 1989 Revised version July 17, 1989

(2544)

STUDIA MATHEMATICA, T. XCVI (1990)

Renormalizations of Banach and locally convex algebras

by

ANTONIO FERNÁNDEZ (Sevilla) and VLADIMÍR MÜLLER (Prague)*

Abstract. Let $(B, \|\cdot\|)$ be a normed algebra and A its subalgebra. If $|\cdot|$ is an algebra norm on A equivalent to the restriction of $\|\cdot\|$ to A, then $|\cdot|$ can be extended to an algebra norm on B equivalent to $\|\cdot\|$. This generalizes the result of Lindberg [3] for commutative algebras. An analogous statement is also proved for locally convex algebras. As a corollary this gives an affirmative answer to a problem of Zelazko [4]: The topology of a locally convex algebra B with unit e can always be given by a submultiplicative system of seminorms $|\cdot|_{\alpha}$ satisfying $|e|_{\alpha} = 1$ for all α .

1. Normed algebras. Let A, B be normed algebras and $f: A \rightarrow B$ an isomorphic embedding. We prove that B can be renormed in such a way that f will become isometric. This means that the concepts of isomorphic and isometric extensions coincide. This result was known for commutative normed algebras [3].

THEOREM 1. Let $(B, \|\cdot\|)$ be a normed algebra and A its subalgera. Suppose that $|\cdot|$ is an algebra norm on A satisfying

$$\alpha |a| \leq ||a|| \leq \beta |a|$$
 for all $a \in A$,

where $0 < \alpha \le 1 \le \beta$. Then there exists an algebra norm $\|\cdot\|'$ on B such that $\|a\|' = |a|$ for all $a \in A$, and

$$(\alpha/\beta^2) \|b\|' \leqslant \|b\| \leqslant \beta \|b\|'$$
 for all $b \in B$.

Proof. We may suppose that B has a unit e which belongs to A and |e| = ||e|| = 1. If either of these conditions is not satisfied we consider the unitizations $B_1 = \{b + \lambda \colon b \in B, \ \lambda \in \mathbb{C}\}$ and $A_1 = \{a + \lambda \colon a \in A, \ \lambda \in \mathbb{C}\} \subseteq B_1$ with naturally defined algebraic operations and the norms $||b + \lambda||_{B_1} = ||b||_{B} + |\lambda|$ and $|a + \lambda|_{A_1} = |a|_{A} + |\lambda|$.

For $b \in B$ define $q(b) = \sup\{\|ab\| : a \in A, |a| \le 1\}$. Clearly $q(b) \ge \|b\|$ and $q(b) \le \|b\| \sup\{\|a\| : a \in A, |a| \le 1\} \le \beta \|b\|$.

¹⁹⁸⁰ Mathematics Subject Classification: Primary 46H10.

^{*} The second author has been supported by a grant of the Spanish Ministry of Education and Science.

Renormalizations of Banach algebras

239

For $b_1, b_2 \in B$ we have

$$\begin{aligned} q(b_1 \, b_2) &= \sup \{ \|ab_1 \, b_2\| \colon \, a \in A, \ |a| \leqslant 1 \} \\ &\leq \|b_2\| \sup \{ \|ab_1\| \colon \, a \in A, \ |a| \leqslant 1 \} = \|b_2\| \, q(b_1) \leqslant q(b_1) \, q(b_2). \end{aligned}$$

Hence q is a submultiplicative norm on B equivalent to $\|\cdot\|$.

Let $a_0 \in A$, $|a_0| = 1$, $b \in B$. Then

$$q(a_0 b) = \sup\{\|aa_0 b\|: a \in A, |a| \le 1\}$$

\$\leq \sup\{\|ab\|: a \in A, |a| \leq 1\} \leq q(b)\$

so $q(ab) \leq |a| q(b)$ for every $a \in A$ and $b \in B$.

Define further $p(b) = \sup\{q(bc): c \in B, q(c) \le 1\}$ for $b \in B$. This means $q(bc) \le p(b) q(c)$ for $b, c \in B$, and for $b_1, b_2 \in B$

$$p(b_1 b_2) = \sup\{q(b_1 b_2 c): c \in B, q(c) \le 1\}$$

$$\le p(b_1) \sup\{q(b_2 c): c \in B, q(c) \le 1\} = p(b_1) p(b_2).$$

Let $a \in A$. Then

$$p(a) = \sup \{ q(ac) : c \in B, \ q(c) \le 1 \}$$

\$\le \sup \{ |a| \ q(c) : c \in B, \ q(c) \le 1 \} \le |a|.

For $b \in B$ we have

$$\begin{split} p(b) &= \sup \big\{ q(bc) \colon \ c \in B, \ q(c) \leqslant 1 \big\} \\ &\leqslant \sup \big\{ \beta \, \|bc\| \colon \ c \in B, \ q(c) \leqslant 1 \big\} \\ &\leqslant \beta \, \|b\| \, \sup \big\{ \|c\| \colon \ c \in B, \ q(c) \leqslant 1 \big\} \leqslant \beta \, \|b\| \quad \text{and} \\ p(b) &\geqslant q(b)/q(e) \geqslant \|b\|/\beta. \end{split}$$

Finally, put $||b||' = \inf\{|a| + (\beta/\alpha)p(b-a): a \in A\}$. Let $b_1, b_2 \in B$ and $a_1, a_2 \in A$. Then

$$\begin{split} \|b_1 \, b_2\|' &= \|a_1 \, a_2 + a_1 (b_2 - a_2) + (b_1 - a_1) \, a_2 + (b_1 - a_1) (b_2 - a_2)\|' \\ &\leqslant |a_1 \, a_2| + (\beta/\alpha) \, p \left[a_1 (b_2 - a_2) + (b_1 - a_1) \, a_2 + (b_1 - a_1) \, (b_2 - a_2)\right] \\ &\leqslant |a_1| \, |a_2| + (\beta/\alpha) \, p(a_1) \, p(b_2 - a_2) + (\beta/\alpha) \, p(b_1 - a_1) \, p(a_2) \\ &+ (\beta/\alpha) \, p(b_1 - a_1) \, p(b_2 - a_2) \\ &\leqslant \left\lceil |a_1| + (\beta/\alpha) \, p(b_1 - a_1)\right\rceil \, \left\lceil |a_2| + (\beta/\alpha) \, p(b_2 - a_2)\right\rceil \end{split}$$

and, by passing to the infimum, $||b_1b_2||' \le ||b_1||' ||b_2||'$. Also $||a||' \le |a|$ and, for all $a_0 \in A$,

$$|a_0| + (\beta/\alpha) p(a - a_0) \ge |a_0| + (1/\alpha) ||a - a_0|| \ge |a_0| + |a - a_0| \ge |a|.$$

Hence ||a||' = |a| for every $a \in A$.

Further $||b||' \le (\beta/\alpha) p(b) \le (\beta^2/\alpha) ||b||$ and

$$|a| + (\beta/\alpha) p(b-a) \ge (1/\beta) ||a|| + (1/\alpha) ||b-a|| \ge (1/\beta) ||b||,$$

i.e. $||b||' \ge (1/\beta) ||b||$ for all $b \in B$.

Remark. The first part of the proof (the existence of an equivalent norm p on B satisfying $p(a) \leq |a|$ for all $a \in A$) is a consequence of a general result in [2], p. 18. Here we repeat the argument for the sake of convenience.

The problem of extending norms in the case of matrix algebras was studied also in [1], Theorems 3.1.3 and 3.1.4. The proof given there contains some similar ideas.

- 2. Locally convex algebras. Let A be a locally convex algebra. Then the topology of A can be given by means of a system $\{|\cdot|_{\alpha}: \alpha \in I\}$ of seminorms. Without loss of generality we can assume that this system satisfies the following properties:
- (1) For every $\alpha \in I$ there exists $\beta \in I$ such that $|xy|_{\alpha} \leq |x|_{\beta} |y|_{\beta}$ for all $x, y \in A$.
- (2) For each finite set $\{\alpha_1, \ldots, \alpha_n\} \subset I$ there exists $\beta \in I$ such that $|x|_{\alpha_i} \leq |x|_{\beta}$ for all $i = 1, \ldots, n$ and $x \in A$.

If the system of seminorms defining the topology of A satisfies (1) and (2) then a seminorm $\|\cdot\|$ on A is continuous if and only if there exists an index $\alpha \in I$ and a constant C such that $\|x\| \le C|x|_{\alpha}$ for all $x \in A$. For further details in the theory of locally convex algebras we refer to [5].

THEOREM 2. Let B be a locally convex algebra and A its subalgebra. Let $\{|\cdot|_{\alpha}: \alpha \in I\}$ be a system of seminorms on A satisfying (1) and (2) which defines the topology of A inherited from B. Then there exists a system of seminorms $\{\|\cdot\|'_{\beta}: \beta \in K\}$ in B satisfying (1) and (2) which defines the topology of B and such that for every $\beta \in K$ the restriction of $\|\cdot\|'_{\beta}$ to A belongs to the system $\{|\cdot|_{\alpha}: \alpha \in I\}$ (i.e. there exists $\alpha \in I$ such that $|a|_{\alpha} = \|a\|'_{\beta}$ for all $a \in A$).

Proof. Let $\|\cdot\|_{\beta}$, $\beta \in J$, be the system of all continuous seminorms in B. The restrictions of the seminorms $\|\cdot\|_{\beta}$, $\beta \in J$, to A define the same topology as the seminorms $\|\cdot\|_{\alpha}$, $\alpha \in I$, therefore for every $\beta \in J$ there exist $\alpha \in I$ and a constant $k(\beta, \alpha)$ such that $\|a\|_{\beta} \leq k(\beta, \alpha)|a|_{\alpha}$ for all $a \in A$, and for every $\alpha \in I$ there exists $\gamma \in J$ such that $\|a\|_{\alpha} \leq \|a\|_{\gamma}$ for all $a \in A$.

Consider the set

$$K = \{(\alpha, \beta) \in I \times J : |a|_{\alpha} \le ||a||_{\beta} \text{ for all } a \in A\}.$$

For $(\alpha, \beta) \in K$ define the seminorm $\|\cdot\|'_{\alpha\beta}$ on B by

$$||b||'_{\alpha\beta} = \inf\{|a|_{\alpha} + ||b-a||_{\beta}: a \in A\}.$$

Let $a_0 \in A$. Clearly $||a_0||'_{\alpha\beta} \leq |a_0|_{\alpha}$ and, for $a \in A$,

$$|a|_{\alpha} + ||a_0 - a||_{\beta} \ge |a|_{\alpha} + |a_0 - a|_{\alpha} \ge |a_0|_{\alpha}.$$

Therefore $||a||'_{\alpha\beta} = |a|_{\alpha}$ for all $a \in A$. Further, $||b||'_{\alpha\beta} \le ||b||_{\beta}$ for all $b \in B$, i.e. $||\cdot||'_{\alpha\beta}$ is a continuous seminorm on B.

Let $\beta \in J$. Then there exist $\lambda \in I$ and a constant $k(\beta, \lambda) \geqslant 1$ such that $\|a\|_{\beta} \leqslant k(\beta, \lambda) |a|_{\lambda}$ for all $a \in A$. Also, there exists $\gamma \in J$ such that $\|a\|_{\gamma} \geqslant |a|_{\lambda}$ for all $a \in A$ and $\|b\|_{\gamma} \geqslant \|b\|_{\beta}$ for all $b \in B$. Let $a \in A$, $b \in B$. Then

$$|a|_1 + ||b-a||_2 \ge (1/k(\beta, \lambda)) ||a||_{\beta} + ||b-a||_{\beta} \ge (1/k(\beta, \lambda)) ||b||_{\beta},$$

therefore $||b||'_{\lambda\gamma} \ge (1/k(\beta, \lambda)) ||b||_{\beta}$ and the system K defines the topology of B. It remains to prove that K satisfies conditions (1) and (2). Let $b_1, b_2 \in B$, $a_1, a_2 \in A$ and $(\alpha, \beta) \in K$. Then

$$\begin{split} b_1 \, b_2 &= a_1 \, a_2 + a_1 (b_2 - a_2) + (b_1 - a_1) a_2 + (b_1 - a_1) (b_2 - a_2) \quad \text{and} \\ \|b_1 \, b_2\|_{\alpha\beta}' \leqslant |a_1 \, a_2|_{\alpha} + \|a_1 (b_2 - a_2) + (b_1 - a_1) a_2 + (b_1 - a_1) (b_2 - a_2)\|_{\beta} \\ &\leqslant |a_1|_{\alpha_1} |a_2|_{\alpha_1} + \|a_1\|_{\beta_1} \|b_2 - a_2\|_{\beta_1} + \|b_1 - a_1\|_{\beta_1} \|a_2\|_{\beta_1} \\ &+ \|b_1 - a_1\|_{\beta_1} \|b_2 - a_2\|_{\beta_1} \\ &\leqslant |a_1|_{\alpha_2} |a_2|_{\alpha_2} + k(\beta_1, \, \alpha_2) \, |a_1|_{\alpha_2} \|b_2 - a_2\|_{\beta_1} \\ &+ k(\beta_1, \, \alpha_2) \, \|b_1 - a_1\|_{\beta_1} |a_2|_{\alpha_2} + \|b_1 - a_1\|_{\beta_1} \|b_2 - a_2\|_{\beta_1} \\ &\leqslant |a_1|_{\alpha_2} |a_2|_{\alpha_2} + |a_1|_{\alpha_2} \|b_2 - a_2\|_{\beta_2} + \|b_1 - a_1\|_{\beta_2} |a_2|_{\alpha_2} \\ &+ \|b_1 - a_1\|_{\beta_2} \|b_2 - a_2\|_{\beta_2} \\ &= [|a_1|_{\alpha_2} + \|b_1 - a_1\|_{\beta_2}] \, [|a_2|_{\alpha_2} + \|b_2 - a_2\|_{\beta_2}] \end{split}$$

where $\alpha_1 \in I$ is a seminorm satisfying

$$|a_1 a_2|_{\alpha} \le |a_1|_{\alpha_1} |a_2|_{\alpha_1}$$
 for all $a_1, a_2 \in A$,

 $\beta_1 \in J$ satisfies

$$||b_1 b_2||_{\beta} \le ||b_1||_{\beta_1} ||b_2||_{\beta_1}$$
 for all $b_1, b_2 \in B$,

 $\alpha_2 \in I$ and $k(\beta_1, \alpha_2) > 0$ satisfy

$$|a_1|_{\alpha_1} \leqslant |a_1|_{\alpha_2}$$
, $||a_1||_{\beta_1} \leqslant k(\beta_1, \alpha_2)|a_1|_{\alpha_2}$ for all $a_1 \in A$,

and $\beta_2 \in J$ satisfies

$$\max\{1, k(\beta_1, \alpha_2)\} \|b_1\|_{\beta_1} \le \|b_1\|_{\beta_2}$$
 for all $b_1 \in B$ and $|a_1|_{\alpha_2} \le \|a_1\|_{\beta_2}$ for all $a_1 \in A$.

Taking the infimum over all $a_1, a_2 \in A$ we obtain

$$\|b_1 \, b_2\|'_{\alpha\beta} \leqslant \|b_1\|'_{\alpha_2\beta_2} \|b_2\|'_{\alpha_2\beta_2},$$

hence (1) is satisfied.

Let
$$\alpha_1, \ldots, \alpha_n \in I$$
, $\beta_1, \ldots, \beta_n \in J$ satisfy
$$|a|_{\alpha_i} \leqslant ||a||_{\beta_i} \quad (a \in A, i = 1, \ldots, n).$$

Then there exists $\alpha \in I$ such that $|a|_{\alpha_i} \leq |a|_{\alpha}$ $(a \in A, i = 1, ..., n)$ and $\beta \in J$ such that $||b||_{\beta_i} \leq ||b||_{\beta}$ $(b \in B, i = 1, ..., n)$ and $|a|_{\alpha} \leq ||a||_{\beta}$ for all $a \in A$. Then clearly $(\alpha, \beta) \in K$ satisfies condition (2) for the *n*-tuple $(\alpha_1, \beta_1), ..., (\alpha_n, \beta_n) \in K$.

COROLLARY. Let B be a locally convex algebra with unit e. Then there exists a system K of seminorms on B defining the topology of B such that $||e||_{\alpha}' = 1$ for all $\alpha \in K$.

Proof. Consider the subalgebra $A = \{\lambda e : \lambda \in \mathbb{C}\}$. The topology of A is determined by one seminorm $|\lambda e| = |\lambda|$. By the preceding theorem there exists a system of seminorms $\{\|\cdot\|'_{\alpha}: \alpha \in K\}$ on B satisfying (1) and (2) which defines the topology of B and satisfies $\|e\|'_{\alpha} = 1$ for all $\alpha \in K$.

If A is a metrizable locally convex algebra, then its topology can be given by a countable system of seminorms $|\cdot|_n$, n = 1, 2, ..., such that

(3)
$$\begin{cases} |a|_n \leqslant |a|_{n+1} \\ |a_1 a_2|_n \leqslant |a_1|_{n+1} |a_2|_{n+1} \end{cases} \text{ for all } a, a_1, a_2 \in A, n = 1, 2, \dots$$

The following result is the analogue of Theorem 2 for metrizable locally convex algebras.

THEOREM 3. Let B a metrizable locally convex algebra, A its subalgebra, and let $|\cdot|_n$, $n=1,2,\ldots$, be a system of seminorms on A which defines the topology of A inherited from B and satisfies (3). Then there exist seminorms $\|\cdot\|'_n$, $n=1,2,\ldots$, on B defining the topology of B which satisfy (3) and $\|a\|'_n=|a|_{f(n)}$ ($a\in A$, $n=1,2,\ldots$) where $f\colon \mathbf{N}\to\mathbf{N}$ is an increasing function.

Proof. Let $\{p_n: n=1, 2, ...\}$ be a countable system of continuous seminorms on B defining the topology of B. We define seminorms $\|\cdot\|_n$, $\|\cdot\|_n$, n=1, 2, ..., on B and the value of f(n) by induction on n.

Put f(1) = 1, and choose a continuous seminorm $\|\cdot\|_1$ on B such that $\|a\|_1 \ge |a|_1$ for all $a \in A$. Define $\|\cdot\|'_1$ by $\|b\|'_1 = \inf\{|a|_1 + \|b - a\|_1 : a \in A\}$.

Suppose that we have already defined continuous seminorms $\|\cdot\|_k$, $k = 1, \ldots, n$, on B, the values $1 = f(1) < \ldots < f(n)$, and let

$$||b||'_k = \inf\{|a|_{f(k)} + ||b-a||_k : a \in A\}, b \in B, k = 1, ..., n.$$

Choose a continuous seminorm q_n on B satisfying

$$||b_1,b_2||_n \leq q_n(b_1)q_n(b_2)$$
 $(b_1,b_2 \in B).$

Find f(n+1) > f(n) and a constant C_n such that

$$q_n(a) \leqslant C_n |a|_{f(n+1)}$$
 for all $a \in A$.

Further, find a continuous seminorm $\|\cdot\|_{n+1}$ on B such that

$$||b||_{n+1} \geqslant ||b||_n (b \in B),$$

$$||a||_{n+1} \geqslant |a|_{f(n+1)}$$
 $(a \in A),$

$$||b||_{n+1} \geqslant \max\{1, C_n\} q_n(b) \quad (b \in B),$$

$$||b||_{n+1} \geqslant p_{n+1}(b)$$
 $(b \in B).$

Put

$$||b||'_{n+1} = \inf\{|a|_{f(n+1)} + ||b-a||_{n+1} \colon a \in A\}.$$

Clearly $||b||'_{n+1} \ge ||b||'_n$ for all $b \in B$ and n = 1, 2, ... Let $b_1, b_2 \in B$ and $a_1, a_2 \in A$. Then

$$\begin{split} \|b_1 \, b_2\|_n' & \leq |a_1 \, a_2|_{f(n)} + \|b_1 \, b_2 - a_1 \, a_2\|_n \\ & \leq |a_1|_{f(n)+1} \, |a_2|_{f(n)+1} + \|a_1(b_2 - a_2)\|_n \\ & + \|(b_1 - a_1)a_2\|_n + \|(b_1 - a_1)(b_2 - a_2)\|_n \\ & \leq |a_1|_{f(n+1)} \, |a_2|_{f(n+1)} + q_n(a_1) \, q_n(b_2 - a_2) \\ & + q_n(b_1 - a_1) \, q_n(a_2) + q_n(b_1 - a_1) \, q_n(b_2 - a_2) \\ & \leq |a_1|_{f(n+1)} \, |a_2|_{f(n+1)} + |a_1|_{f(n+1)} \, \|b_2 - a_2\|_{n+1} \\ & + \|b_1 - a_1\|_{n+1} \, |a_2|_{f(n+1)} + \|b_1 - a_1\|_{n+1} \, \|b_2 - a_2\|_{n+1} \\ & = \left[|a_1|_{f(n+1)} + \|b_1 - a_1\|_{n+1}\right] \left[|a_2|_{f(n+1)} + \|b_2 - a_2\|_{n+1}\right]. \end{split}$$

Hence $||b_1b_2||'_n \le ||b_1||'_{n+1}||b_2||'_{n+1}$.

It is a matter of routine to prove that $||a||'_n = |a|_{f(n)}$ $(a \in A, n \in \mathbb{N})$ and that the seminorms $||\cdot||'_n$, n = 1, 2, ..., define the topology of B.

References

- [1] G. R. Belitskii and Yu. I. Lyubich, Matrix Norms and their Applications, Naukova Dumka, Kiev 1984 (in Russian).
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973.
- [3] J. A. Lindberg, Extension of algebra norms and applications, Studia Math. 40 (1973), 35-39.
- [4] W. Żelazko, Metric generalizations of Banach algebras, Rozprawy Mat. 47 (1965).
- [5] -, Selected Topics in Topological Algebras, Lecture Notes Ser. 31, Aarhus Univ., 1971.

E. S. INGENIEROS INDUSTRIALES Avd. Reina Mercedes, s/n, 41012 Sevilla, Spain INSTITUTE OF MATHEMATICS CZECHOSLOVAK ACADEMY OF SCIENCES Žitná 25, 11567 Prague, Czechoslovakia

Received March 29, 1989
Revised version July 25, 1989
(2549)

Some remarks on the uniform approximation property in Banach spaces

by

VANIA MASCIONI (Zürich)

Abstract. We prove that if a Banach space X has the uniform approximation property with uniformity function $k_X(n, K) = O(n)$ (for some constant K), then X^* has weak type 2. Further, as an application of our method, we also show that the uniformity function of $L_p(2 cannot be <math>O(n^{g/2})$ for any q < p.

1. Introduction. Given a Banach space X, a finite-dimensional subspace E of X and a constant $K \ge 1$, let

$$k_X(E, K) = \inf \{ \operatorname{rank} T \colon T \colon X \to X, \|T\| \leqslant K, Te = e \text{ for all } e \in E \},$$
$$k_X(n, K) = \sup \{ k_X(E, K) \colon E \subseteq X, \dim E = n \}, \quad n \in \mathbb{N}.$$

X has the bounded approximation property (B.A.P.) if there is a K such that $k_X(E, K) < \infty$ for every finite-dimensional subspace E of X. X has the uniform approximation property (U.A.P.) if there is a K such that $k_X(n, K) < \infty$ for each $n \in \mathbb{N}$. $k_X(n, K)$ is called the uniformity function of X.

The U.A.P. was introduced by Pełczyński and Rosenthal in the paper [17], where they proved that all L_p ($1 \le p \le \infty$) have it. More precisely, in [17] we can find the estimate $k_{L_p}(n, 1+\varepsilon) = O((n/\varepsilon)^{cn})$ for some constant c (this was proved using an argument due to Kwapień).

Recently, Figiel, Johnson and Schechtman [4] proved that for $p \in \{1, \infty\}$ an upper exponential estimate is optimal in the sense that, in this case, $k_{L_p}(n, K) \ge \exp[\delta(K)n]$, where $\delta(K)$ is a constant depending only on K. On the other hand, trivially, we always have $k_{L_2}(n, K) = n$, and so it is conjectured in [4, 8] that, for 1 , there exist constants <math>K = K(p) and $\alpha = \alpha(p, K)$ such that $k_{L_p}(n, K) = O(n^{\alpha})$. Lower bounds for $k_{L_p}(n, K)(1 \le p < \infty)$ are not known (see [4] for the case $p = \infty$), but in Section 3 we will see that $k_{L_p}(n, K) \ne O(n^{q/2})$ for all K and all $2 \le q .$

In Section 2 we will give some characterizations of U.A.P. and, in Section 3, we will prove that, if $k_X(n, K) = O(n^{\alpha})$, X has weak cotype 2α and X^* has finite cotype. A stronger result holds if $\alpha = 1$: in this case X is even K-convex and thus, since X has weak cotype 2, X^* has weak type 2. This fact may be

¹⁹⁸⁵ Mathematics Subject Classification: 46B20, 47D30.