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2. The proof of Theorem 4 implies that the spectrum of T, restricted to
@52y H , is homogeneous for r odd and nonhomogeneous if » is even (r>2).
3 It is still an open question whether a generalized Morse sequence over
a finite abelian group can have maximal spectral multiplicity greater than two.
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A smooth subadditive homogeneous norm
*  on a homogeneous group
by
WALDEMAR HEBISCH and ADAM SIKORA (Wroclaw)

Abstract. We prove that on every homogeneous group there exists a smooth, subadditive and
homogeneous norm.

Introduction. Around 1970 E. M. Stein introduced the notion of a homo-
geneous group. Such a group G admits a homogeneous norm |- |, which for
a v 1 satisfies

Ixyll < v(Ix|+lyl) for all x, yeG.

The group equipped with ||| and the Haar (Lebesgue} measure is a space of
homogeneous type in the sense of [17. A number of estimates become easier if
y =1, ie. if the homogeneous norm is subadditive, so that it gives rise to
a left-invariant metric. It is known that for some homogeneous groups such
a norm exists, e.g for Heisenberg groups and the like [2]. Also for stratified
groups the optimal contrel metric is homogeneous.

- The aim of this note is to show that a homogeneous and subadd1t1ve norm
exists for every homogeneous group and in fact the construction is quite
simple. More information about such norms is supplied by Theorem 2.

The authors are grateful to Andrzej Hulanicki and Tadeusz Pytlik for
their helpful suggestions.

A smooth subadditive homogeneous norm on a2 homogeneous group.
A family of dilations on a nilpotent Lie algebra (7 is a one-parameter group
{8,}:50 (6,08,=8,} of automorphisms of G determined by
5: (?J = Id‘j ej’
where e, ..., e, is a linear basis for G, the d; are real numbers and
d,z...x=d =1 If we put (x,,..., %)= %€, then

B(Xqs -y X)) = (11 %, ..o, 19,
1985 Mathematics Subject Clmszf cation: 22E25 43A85.

Key words and phrases: homogeneous group, homogeneous norm, subadditive and homo-
EENeous norm.
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If we regard G as a Lie group with multiplication given by the Camp-
bell-Hausdorff formula, then the dilations 8, are also automorphisms of the
group structure on G, and the nilpotent group G equipped with these dilations
is called a homogeneous group (cf. [3]).

We are going to show that on every homogeneous group G there exists

a subadditive and homogeneous norm, ie. a function |i-|: G—R* w {0} such
that

@ lxyh < Ix)+1yl- (b) 6, xl = t_HiC‘H,

© lxff =0ex=0, (d) flxfl = fx*,

(6 || is smooth on G—{0}.

The existence of ||| which satisfies (a)}-(€) is equivalent to the existence of a set
A < G which satisfies the following conditions:

(& |} is continuous,

{x) A is open and A is compact,
(8) A is convex, ie. if xe4 and yed, 1 2t2 0, then 6,x5,-,ye4,
() A4 is symmetric, ie. if xe 4, then x 'eA.

In fact, given a set A satisfying (x)}(y), we put
x| =inf{t: &y xeA}.
Now, if |xi <& and [y <&, then d;,xeA, 4, yed and by (B}

01 /e +eny XY = 5ef(e+e')51/a x'éa'/(zﬂ')ai/a'y&'/i,

so |lxy|| < e+¢'. This proves (a). The rest is easy.
The converse is obtained by putting 4 = {xeG: |x| < 1}.
Moreover, we see that the condition

(g} (i) the boundary 94 of 4 is a smooth manifold,
(i) (d/di)d, x|=1 ¢ T84 for every xedA, '

is equivalent to (f).

THEOREM 1. For every homogeneous group G there exisis a set A which
satisfies (x)—{g), hence G admits a norm which satisfies (a}f).

Proof. If G is abelian we put 4 ={x=(x,,..., x): p.x{ < 1}. To see

that A satisfies {§} note that ;> 1, so

(Zlex 1= ¥ P & (S PP+ (1= )
<t xHP+(1—~) (yH)H>.

(=), () and (e) are obvious.

We notice that if G is not abelian, then d, > 2 and e, is in the center of G,
for &,[e;, e;]1={,e; 8,e]]=1"""[e;, ] and we assume that 1 <d; < ...
< d,. By the Campbell-Hausdorff formula we have
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(x1a ey xn)(yla ey yn) =(X1+Y1+P1(x1a veey Xp—1, y]_: LR yn—1)=

ey xn+yn+Pu(x1: LR ] xn—l: yls e yn—l))s

where the P; are polynomials and since e, is in the center of

G ([e,, e;] =0 for 1 < i< n), neither x, nor y, appears in any of the P,
Now we proceed by induction on dim G. Let 4’ be a subset of the quotient

group G' = Gflin{e,} = {X = (x,, ..., x,-1): x,€R} which satisfies («}-{(e) and

I-I” the corresponding norm. There exists a constant C such that

(%) |P,(8,x, 61— ¥)| €2Ct(L—t} for all x, ye4', 05t < 1.

Indeed, since P,(x, 0) = P,(0, y} =0, we see that every monomial in P,

- depends both on x and y; henee, since 4’ is bounded, (*) holds for some C. If

., X._1). We prove that the set
A={xeG: xeA4’ and |x,| < C+f (x|}

satisfies (a)}-(£) too, where C is the constant from (%), feC*®(0,1), /' <0,
<0, =0, fO =1, fO)= ~o0, f(})=0for k=1,2,...

Remark. With f= 0 the construction yields a set 4 which satisfies ()}-(y)
but of course not (&) :

X ==(X;,..., X,), then put % = (x, ..

Proof of (@)(s) for A. (z) and (y) are obvious. To show (f) notice that if
xeAand ye A4, then 6,x-5,_,y = 8,% 8, -, Je A". So, it is sufficient to prove the
following inequality:

[ X, + (L=t y,+ Py(8, X, 81 I < CHf (16,501 7.
Butd,>2, 0<t<1, f"<0, f7<0 and hence, by the definition of 4
|t 3, + {1 = 1) p,+ Po(8, %, 31, )| '
< HCHf(IZIN+T = (C+F (PN +2Ce(1—1)
< C{+2t(1 =+ =)+ of (1) + (A - S (51D
< CHf ()X +A=0iF)) < C+f (18, %6171
(e)(i) is obvious. We first prove (g)(ii) for x = (x, ..., x,) €84 such that |x,| < C.
Then %edA’ and T,04 = T,04'@®Re,. So if (d/dt)d,x,=;eT, 04, then
(d/d)d, x|,=, = (d/dt)J, %|,= € Tr 84", But this contradicts the induction hypo-
thesis. Now, we observe that the set 84 n {xeR": x, > C} is the graph of the
function g(%} = C+f{|lx[) g: A’ =R, and that if v = (v, ..., v,)€ Tz =y M,
where M is the graph of a function g: X >R, XX cR""%, then
v, = (djdt) g(X +1D)|,=0 = Dg(X). Hence if (d/dt)d x|;=;€T 84, where
x = (X, C+f(|%]"), then by the definition of f (/" <0),
0 < d,x, = ((d/d5)6,%,=1) (f (%)) +C)
= (dfdt) (|16, %1") = (d/de) f | %]) =S (NZ]) %] < O
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This contradiction proves (e)(ii) for @4 {xeR™ x,>C}. For
Bd n{xeR™ x, < —C}, (g)(ii) follows by symmetry.

Theorem 2 below exhibits a very simple “convex body”, ie. a set satisfying
(6)-{e), which yields a homogeneous subadditive norm. The proof, however, is
more complicated.

THEOREM 2. Let G be a homogeneous group and x = (X, ..., x,) homo-
geneous coordinates (8,x = (t%x,, ..., t*x,)). There exists ¢ > 0 such that for
r < g the set

A={x: ¥xt <’}

satisfies the conditions (x}~(g). Consequently there is a homogeneous subadditive
norm en G

x| =inf{t: |8,:x] <1}

such that the unit ball {x: |[x|' <1} coincides with the Euclidean ball
fx: Il < 7} (i) = (5x3)H2).

Proof We verify only the condition (f) because the others are satisfied
trivially. Put

V, =lin{e; d; > 2};

i

V, =finfe;: 4, <2},

then G = V,®V, as a linear space. Define (x,, x,) = x; +x,, where x, €V,
x, €V, Slnce 5,[e,, e] =t**%[e, e and d; > 1, it follows that [x, y]& V, for
all x, ye @G, so for x=(x,, x,) and y = (yl,yz) we have

xy = (x+¥, X+, +R(x, ).

Let R,(x, )= R((x;, 0}, (y;,0)) and R, =R~R,. In virtue of the Camp-
bell-Hausdorff formula there is a constant €7 such that for all |x[, |y} < 1

IRy G, < Cy [, yo 11
Hence, by the inequality
ICx, ¥11 < CTllxl Il {[x/1x] =

which is an easy consequence of the bilinearity and antisymmetry of [ , ], we
have for some constant C,

(D IRy (e )< Colloeg | 1yg I fea/ el — 2/ 0|

for all x|, |l¥} <1 Also by the Campbell-Hausdorff formula there is
a constant C' such that for x|, |y] <1

(*) IR, (x, »i

< C' ey b llyall + gl Lyal+ 1,0 2 l)-
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Letv=239,x,+8, -,y +R;(5,x, §; -, y). By the definition 4,
so in virtue of (%)
ol < 22 gl -+ (L1 Ipall + C =D Ux, Iyl + ol [yl + Dl 12l
Now, if we assume that C'(||x;|| 4+ [x 0+ 1y )< 1/2 and 0 1< 1, then
el < 2 e, | +(1—0° Iy, +%t(1—t)ﬂlxgll F1y2l) < x|+ [ y2l

=2foreel,,

and
ol < £ lxaf + (1 —0* 2 + 21 —8){llx, ] + [ v21)
= t]x, )|+ (1= Iyal =3 6L =) (2o + 1y2])-
Therefore [l +3 (1 ~8){Ix,+1y.]) < thxall+ (1 =) ]ly,l| and
@) el (1 +rQ =) < lol® + e — ol () + 12D
< (Iloll +5 20 =) (el + iy 1) < {ellxa | + (=0, 1)

Note that 2(v,, vy) < t(1—0 v, |2+ 4o, 1P/t —1), where (x, ¥) =Y x;¥, is
the scalar product. Hence

B} I+ R, (6, x, 81, 9* <
Observe also that

Jol 2 (L + (L — )+ IR 1P [ +4/(z (1 —2))].

(4) (el 13107 = N+ 2017 + Dl Dyl e/l — v/
Finally, by (1}(4} we have
16, %81~ ¥i* = 18, %, +81- 1 12+ 0+ Ry (8, x, 85— MI*

S (18101 e y4 1 = 18, x4 | 182~ ¥4
|8, %, /118, %, =81 - y1 /181 vl
+ o2 (1 + (L= D)+ IR [ 1+ 4/ (1 —1)]

< (% |+ =2y 1P+ (el A+ (L= Dy 1)
+[1+4/(1—] CTe =) Il 1y ] 10,4l 191 -e 34 |
x||8,x,/18, %, | =81 ¥1/185 —e v ||
~ 18,5, [ 185 = p1 1l 16, %3/18, %, 1 = 81— 9/ 18—l

However, if 5C?||x, |\ {ly,| < 1, then the sum of the last two expressions will be

nonpositive, so

18, %8 . yI? < (elly} + (L= Iy 1P + (ol + (L =2) [l 1)?
< (tllxf +(1 =1 yl}
2

This proves Theorem
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Renormalizations of Banach and
locally convex algebras
by
ANTONIO FERNANDEZ (Sevilla) and VLADIMIR MULLER (Prague)*

Abstract. Let (B, |-]|) be a normed algebra and A its subalgebra, If|-| is an algebra norm on
A equivalent to the restriction of ||| to A, then |-| can be extended to an algebra norm on
B equivalent to {-|. This generalizes the result of Lindberg [3] for commutative algebras. An
analogous statement is also proved for locally convex algebras. As a corollary this gives an
affirmative answer to a problem of Zelazko [4]: The topology of a locally convex algebra B with
unit ¢ can always be given by a submultiplicative system of seminorms |-, satisfying le|, = 1
for all o.

1. Normed algebras. Let 4, B be normed aigebras and f: A—>B an
isomorphic embedding. We prove that B can be renormed in such a way that
f will become isometric. This means that the concepts of isomorphic and
isometric extensions coincide. This resnlt was known for commutative normed
algebras [3]. '

TuroreM 1. Let (B, || |) be a normed algebra and A its subalgera. Suppose
that || is an algebra norm on A satisfying

alal < ||all < Bla] for all acA,

where 0 < o < 1 < B. Then there exists an algebra norm || on B such that
lall’ = la| for all ac A, and '

(/BB < |bll < BlUbI"  Sor all beB.

Proof. We may suppose that B has a unit e which belongs to A4 and
le| = el = 1. If either of these conditions is not satisfied we consider the
unitizations B, = {b+A: beB, 1eC} and 4, ={a+i: ae4, 1eC} € B,
with naturally defined algebraic operations and the norms [|b+A4llp,
= bl y+]4l and Ja+A, = lal,+ 1Al .

For beB define g(b) = sup{|ab|: ae 4, la| < 1}. Clearly g(b) > bl and
g(b) < Bl sup{llal: ac 4, lal <1} < Blbl.
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