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A weighted interpolation problem for analytic fanctions

by
L DARRELYL McPHAIL {Hamilton, Ont)

Abstract. Given a sequence {z,} of complex numbers {jz,l <1, n=1,2,...) let T= T,
denote the linear map sending an analytic function [to the sequence {f{z,)}. Let | € p < oo and lét
o” be in the 4, class of B, Muckenhoupt (or 277 in 4} and w = {w,} a sequence of nonnegative
numbers. We show T'(H) = ["(w} il and only if {z,} satisfies L. Carleson’s condition

Zg— 2y

26 (kz1)

nEk 1 Iy

and there exist posltive constants €y, C, such that C, € w/{lx; e € Co (n2 1) where, for
g, == 1y @0 £, = {0, (1 r), 8,41 —r,))mod2n.

The case va | and we={1} (p=c0) is due to L. Carleson and, later, v =1 and
we {{1-]z,)'} (1 € p < w) to H. S Shapiro and A, L. Shields.

More generally, we characterize the containmonts T(HP(u)} < IP(w), T(H?(v)) = I"(w) in terms
of the action of certain weighted Carleson measures,

1. Introduction. The following interpolation problem was posed by R. C.
Buck Does there exist a sequence of points {z,};>; in the unit disk
={zeC: {z] < 1} having the property that, given an arbitrary bounded
sequenoe of complex numbers {a, }nxy, there exists a bounded analytic function
f on U such that

(1.1) flz)=a, @=1,2..)7

The existence of such a sequence, calied an interpolating sequence, was
established independently by L. Carleson [1], W. Hayman [5] and D. J.
Newman [10]. In fact, Carleson showed that a sequence {z,}i%, in U is an
interpolating sequence if and only if therc exists 6 > 0 such that

(12) [

n¥k

(For a discussion of independent and related results see H. S. Shapiro and A. L.
Shields [13]) '

zk u
zuzk

=6 (k=1,2,...)

1980 Mathematics Subject Classification (1985 Revision): Primary 30E05; Secondary 42B30.



106 J. D. McPhail

In what follows, given a sequence {z,};%; in U, welet T=T yw_ denote

f2nli=1
the linear map sending an analytic function f on U to the sequence of its values
on the z,, namely {f(z,)}%;. In this setting, Carleson’s result says that
T(H™) = I* {equivalently T(H®}=1%) if and only if (1.2) holds.

To state the problem under consideration here, we employ the following
notation. Let 1 < p < o0 and suppose v is a nonnegative measurable function
on T, the unit circle. Define I(v) = {f: T—C: [|f]nm < 0} where

2n
(@m)~* JIf @@ Pdoy i, | < p< oo,
Q

1.3 Lo = '
(1.3) Il £l () oss Sup1./-(ez())z’(ei0)|, p = o0

0<9<2n

We henceforth restrict our attention to those nonnegative functions v such that
v¥ (1 < p < o) satisfies the 4, condition of B. Muckenhoupt (see [9], p. 214) or
v P (l<p<L o, Ip+lfp = ]) satisfies 4,. Observe that these assumptions
coincide when 1 < p < oo and may be summduzed forany p, l < p< oo, by

(1.4) o< ot Le(r) “XIHLP w-1y S CH,

where y; denotes the characteristic function of the arc I, |I} is the length of 1,
and C is a positive constant independent of I. Observe that, for any
p (1€ p=< o), condition (1.4) implies the following doubling condition:

D) x2rlzowr < Dilazllogs

(RI denotes the arc concentric with I, having R times the length of I. The
constant D may be taken as double the constant appearing in condition (1.4).)
This is a2 well-known property of A, weights and will be used repcatedly in the

sequel. With (1.4) in force, any feI?(v) is absolutely integrable on T and we
may define, for 1 < p < oo,

HPv) = {fel(): fin)=0 for n<0}

equipped with the norm || goq = [|*]| Lr(m- (f (1) is the nth Fourier coefficient
of f)

Note that the Poisson extension Pf, of any f eH'v){l <p<
in U and is contained in the usual (unweighted) Hardy space H'(U). If there is

for all arcs [ < T,

for all ares 1 <= T.

no danger of ambiguity we shall denote the Poisson extension of JeH"(v) .

simply by f.
Finally, for a sequence w—{w,,},, ¢ of nonnegative numbers, let I#(w)
denotc the space of sequences a = {a,}x-, satisfying

[£e)

(Z lanwnlp)1/p<m= 1$p< 00,
(1.5) lalpay =< "=*

supia,w,| < o0, P 00

nzl

<o), is analytic

icm
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In this note we consider the following weighted interpolation problem:
Characterize the sequences {z,}%; in U such that T(H?()) = ¥ (w).

A special case of this problem was solved by Shapiro and Shields ([13]): If
v=1 and w,=(1—|z)'" (n> 1) then T(H") = F(w) (in fact, equivalently
T(H = lf’(w)) if and only if (1.2) holds. ' .

While our results parallel those of Shapiro and Shields, a technical
difficulty must be overcome in the case p == 1. The details follow the proof of
Theorem 2.

Acknowledgement. The author would like to thank his supervisor, Prqfes—
sor E. T. Sawyer, for suggesting this problem and for many belpful discussions
during its resolution.

2. Statement of results

THEOREM 1. Let 1 < p < oo and let {z,)%, be a sequence in U and suppose
(1.4) holds. Then T(H*(v)) = #(w) if and only 1f (1.2) holds and there exist positive
constants C,, C, such that
{2.1) C, € w/lxrlleeew < C,
where, for z,=r,e", we set I, =(8,—(1—r

n=12,...)
s 0,+(1—r,)ymod2x.
More generally, we have

THEOREM 2. Let 1 < p < oo and let {z,}=; be a sequence of distinct points
in U and suppose (1.4) holds. Then

(A) T(H? () = I(w) if and only if
(2.2) O {wE: 2, e SIHIP < Cllaglhee
while

(B) T(H*(v)) = IP(w) if and only if

1_|2n| b’ i
(2.3) [Z{[ wo ] : z,e5(D) < Ol pem- oo

Jor all arcs I < T, where

b=T1

k¥®n

for all ares I =T,

z »—zk

i

1—z.2

n=1,2,...),

S(I) = {re”: 0el, 0 < 1—r <min{l, {[}}.

Here, and throughout, C shall denote a positive constant not necessarily

the same at each occurrence.
These results are established with the aid of the following welghted

Carleson measure theorems.

THEOREM 3. Let 1 < p < oo and suppose (1. 4) holds. If i is a positive Borel
measure on U then
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(2.4) [if, [Bf (Pdu(=)]"" < C[f ”Ll’(u;: Jor every feIF(v),

if and only if

(2'5) [ j du‘(z)]lfp “<~ CHXIIILP(U)’
S

Jor all ares I <T.

The substitute result when p = 1 replaces If(v) with H?(v). In this case we
have

THBOREM 4. Suppose u is a positive Borel measure on U and v satisfies A, .
Then

(2.6) g IPf (2)ldu(2) € Clfllniw, for every feH'(v),
if and only if

2.7 [ (@) < Clgglens
S

Jor all ares I T,

3. Proof o_f Theorem 1. Assume, for the moment, Theorem 2.
. N eces:s‘ity. If T{H?(v)) = I*(w) then, by Theorem 2, both (2.2) and (2.3) hold.
gx an arbitrary n = 1. Since z,€ S(I,) and |I,] = 2(1 —|z,|) we have, by (2.2} and
3),

(3.1) ’ Wy < Cllxr, Lo
and

|7,
(3.2) < CHXI,‘"LP'(!:“‘H

w, 0,

respectively. Thus
1 w,
5 = C@“X.r“”w'w-l) by (3.2)

< C by (3.1) and (1.4).

' Heuce‘ 6,2 1/C >0 (for any n = 1), which yields (1.2).

Smee 6, <1 (for all n 2> 1), (3.2) also implies

1w, < Clir,lee-n/1) < Clxr lzow

This inequality combined with (3.1) yields (2.1).
Sufficiency. Assume first that 1 < p < co. From (1.2) it follows that

(3.3) 2ALE z, e85} < O,

(This'implicatiog i d}le to L. Carleson. A simplified and detailed discussion of
the argument given in [13, Theorem 3, may be found in [8], pp. 266-272

by (14).

for all arcs I <= T.

icm
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relative to the upper half-plane) It follows that, for any arc 1,

(3.4) L€ YL z,eS@N}
Ip=4r
< Cl4I by (3.3)
< ).

Then, since every A, weight also satisfies Muckenhoupt’s A,, condition (see, for
example, Lemma 3 of [2]), the. implication (ii}=(iii) of Theorem.3 of [zl
shows that (3.4) holds with the Lebesgue measure |J]| of an interval J replaced
by the vP-measure, |, v(x)Pdx. Noting that I, < 31 whenever z, & S(I) we then
have
(3.3) S U e 2SN < X ltn e
Inc=3J
< Cliyl3owy, for all arcs I < T.

Now (2.2) follows from (2.1) and (3.5) and so, by Theorem 2, T(HP(U)) < IP(w).
(This part of the proof is also valid for p = 1) :

For the reverse inclusion, since (1.2) implies that §, > & > 0 {for alln = 1)
we bave, by (2.1) and (1.4),

1—lz,|

(3.6) < Clyy, Iurw-1y, for every mzz 1.

Since v” satisfying A, is equivalent (I < p < o) to v P satisfying A, (and
hence A,), (3.5 holds with |l [1Zor¢s- 1y Teplacing |- [Ezw- This observation, in
conjunction with (3.6), yields (2.3) and so, by Theorem 2, T(H?(v)) > P(w). (This
part of the proof is also valid for p = oo, that is, p' =1)

It remains to show that T(Hp(v)) < [P(w), in the case p = oo, and that
T(H"(v)): J7(w), in the case p=1. These inclusions are, by Theorem 2,
equivalent to.

3.7 sup{w,: z,€S(} € Cligylgmpy, for all ares I = T,

and

1—
(3.8) Sup{-;—?!: z,,eS(I)} < Cllyllie@-y, for all ares 1 =T,

n

respectively.
Fix an arbitrary arc I = T and recall that I, = 3/ for every n with z, & S(I).
Also fix any n with z,eS(I). :
Regarding (3.7) we have

W, C”X;,,”Lm(p) by (2.1)
€ C”XazHLm(u)
£ Cllgrl ey by (D)

with a constant C independent of n. Thus (3.7) holds.
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Regarding (3.8), since 8, > & >0 we have
ol o L
WyO, Ml
< Cllxy lpwe-y by (1.4)
< Clixarl o1
< Claslpme-1 by (D)

with a constant C independent of n. This yields (3.8) and completes the proof of
Theorem 1.

by (2.1)

4. Proof of the weighted Carleson measure theorems. In this section we
prove Theorems 3 and 4 which are used in Section 5 to prove Theorem 2.

Proof of Theorem 3. Necessity. For an arc f <« T, an elementary
computation yields a constant C, independent of I, for which Py, > C on § (.
Setting f = x,, (2.5) follows from (2.4).

Sufficiency. Using a simple estimate on the Poisson kernel, Holder's
inequality, and conditions {2.5) and (1.4) the inequality

[ IPfE@Pdu(z) < CllSf oy, FeI2(),

e <1/2

is readily obtained. Now suppose |z| > 1/2. The following argument is, in the
case v =1, due to E. M. Stein ([14], p. 236).

Let I"(e") denote the interior of the square whose diagonal has endpoints
z=0 and z=¢", and consider the montangential maximal function

Nf(e") = sup [Pf{(z)|, fel(v).
zel(eit)

To obtain an inequality between distribution functions, momentarily fix A > 0.
Since Nf is lower-semicontinuous, the set {t: Nf{e") > A} may be decomposed
into a disjoint union {JI; of component arcs in T. Suppose there exists z with
|z{ >3 and [Pf(2)i > A If I, denotes the arc centered at z/|z| of length 2(1—|z|)
then we have zeTI'(e") for every tel, and so Nf> A on I_. Thus there exists
4 component arc I; containing I, and also zeS(I,) = S ;). Hence

{zeU: |z| >4, Pf(z] > A} = U S
]
and this, in conjunction with (2.5), yields

duizy<C  §
{uNSflety> 4y

This inequality between distribution functions leads to

v{e™)y? dr.

{zeli[z] > 1/2,]Pfiz)| > 1)

. 2
I PrEPduz) < C g [Nfle"yv(e®)|rdr

{zelit|zi>1/2}
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and the latter expression is bounded by

2n

C ] IMf (p(e)Pdt

since Nf is dominated by the Hardy-Littlewood maximal function M, f (see, fqr
examplé, J. Garcia-Cuerva and J. L. Rubio de Francia [4], p. 109). Since M is
bounded on I#(v) for 1 < p < oo when v? satisfies A, (see [9]), the result
follows.

Proof of Theorem 4. Sufficiency. As noted in the introduction, f E_H o )
(v satisfying A,) implies Pf= Fe H'(U) where H' (U} is the usual unweighted
Hardy space on the disk U. Thus we have (see, for exarpple, Y. Katznelson [7],
p. 85) the canonical factorization F = BG, where B is the. Blaschke product
corresponding to the zeros of F and GeH H{UJ) never vanishes. Then P_f = F
— (BG')G'? = Pg, Py, (where g, and g, are the almost everywhere existing
radial limits of BGY? and G'? respectively). It is easily checked that
g, e H2(0?) and gillmeorn = 1/ 1439 (=1,2) (. [4], p. 108). Thus

[1Bf (2l du(z) = | [Pg,(z)Pg,(2)dp(z)
U U
< [[ Py, () du(2]*? [ ] [Py, () du(n)] "
U U

glder’s inequality. .

> Hi;i?;isng’lfgeoregl 3 with p = 2 and »'#? rf_:plav?ing v {and noting that since
v satisfies A4, it also satisfies 4,) thi(si expresm?n éS” j‘t;cll)undegsbge:gidproduct
' 12 2y and this product equals Hilw .
Cllglli\liléz(:s;i)t”ﬁ%gt (I c:) T and choose a = |ale® e U \.Nith o] = 1/2 aqd such that
I=J,=(p—2n(1-la), o+2n(l— la])). The following lemma provides a func;
tion fe H (1) and a fixed integer n > 1 such that I f Vi < Collrsliniw/Mal
while |f(z)] > C,[/~" on S(J,}. Thus, by (2.6) o

C ™ | du < [ PEIdpa) < Clif e

S{Ja) S(Ja)
. gC, “x‘)’ﬂHL‘(v}A'jnlns
which yields (2.7).

Lemma 1. Fix a=lgle” with <ol <1 and let. J, ={o—2n(1—lal),
@+2n(1—\a))). Then the function g(z) = (1—az)™* satisfies:

@ 1g@| > ClJJ7" on SU,) '

(b) If v* satisfies Ay then | gllg=w < C/l1s,lpw-n: .

(¢) If v satisfies A, and n= 1 is sufficiently large then f=g" satisfies

[z < G, L!XJJ!U(»)/UJ"-
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Proof. A simple estimate yields (a) and (b) follows from the inequality
C
(% + 10 ~ g2+’

To prove (c), choose n such that 2" > D (the constant appearing in condition
(D)) and use the previous estimate for g.

lg{e”) <

|0 ~e] < .

5. Proof of Theorem 2. Part (A). Assume first that 1 < p < oo, Then
T(HP(v)) < P(w) is equivalent to

.

(3.1) (2 Ff(zn)wnlf’)l’” S Clf gy, for every feHP(y).

Since »” satisfies 4, we know (see Hunt, Muckenhoupt and Wheeden [6],
Theorem 1) that the conjugation operator is bounded on IZ(v) and so (5.1)
holds for every f e If(v) (with f interpreted as Pf), whenever it holds for every
feHP(v), and is equivalent to

62 (3 RAedw = (Rl 5 wis, @)

S ClfY Loy for every felf(v).
With du(z) = d[}, wES, (2)] Theorem 3 shows that (52) and (2.2) are
equivalent,

With du(z) as above and p = 1, Theorem 4 shows that (5.1) and (2.2) are
equivalent. : :

When p = o0 we wish to show that T(H*(v)) = I*(w) is equivalent to
Sup{wn: ZHES(I)} S CHXIHL“(U)’

Necessity. Proceeding as in the proof of Theorem 4,let I =T and choose
ael (1/2 < |a| < 1) such that I = J,. By Lemma 1 there exists f & H* (v) with

I laoey < Clisllzike- 1y and such that I/ (@) > ClJI™* on S(J,). Then, for any
z,e8(J,), we have

Wy < Cw| f @)1l € CIS Narmgn Vol < Cllgy, k510,
< by (1.4)

(5.3) for all arcs I = 7.

Clix;.JILm(.,,

with a constant C independent of n. -
Sufficiency. .Wc show |f(z)w, < C|fI H(e)» fOr any n 2 1, Fix any n =1
and let z, =r,e' If r, < 1 the result follows from a simple estimale on the

Poisson kernel, Hilder’s inequality and conditions {14) and (5.3). If r, > 1 we
use the estimate

C(l—rd)

—_ g*_._
Pl S Ty =i

([0, 2n])

icm
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to obtain, for k = 1,

C el

- gl < ——
Pr‘“(e" 0f(e")d | = 22:.-.”"' 2k,

2kp\2K-1L,

(2% lLiw-1ym—z
L Cl fll gy ——Z52
E>={u} |2k1n|

s‘cnf“mﬂ(u)HXZ'CI,‘”IT“}(v)z—k by (1.4)
L CL S googy |21, I oy 275

Thus
f v, < Clf e 2, liepwal 1+ 3 2771

< Cl fllgeoe

This completes the proof of part (A). .

Part (B). The following argument is, in the case v 2= 1, due to Sl'lap1ro and
Shields ([13], p. 517). Let 1 < p < oo and suppose v* (1 < p < co) satisfies 4, or
v™¥ (1 < p < o0) satisfies 4,. T(H"(v)) > P(w) is equivalent to

(5.4)

by (5.3) since z,eS(I).

sup m,(a) < Clla| e, for every aeiP(w),

nzl

where m,(a) = Inf{]| f |l gre: f(z) = @, 1 <k < n}.
Following Shapiro and Shields, set

B,z) =]

j=1

and by = By(z,) (k< n). Let a= {a,}i>;el’(w) and define

z—Z; _ |
]—E-Z, Bnk(z) = Bn_(z) 7—z,

i)

ak 1""212)
3, (2)= T 2 —2F),
) k§1 bnk( Z—=zy

Then f,(2) = B,(z)P,(2) satisfies f,(z) =a, 1 < k < n, and so
m,(a) = inf ”ﬁ."Bng”HP(uj = inf “‘Pn—g”u(u):

© geHP{v) g=H P(n}

since {B,| = 1 on T. Since H”(v) = H® (v™')* (1 < p < c0) a duality relation (see
(2), p- 516, of [13]) gives, for 1 <p < co,

(feH (7Y, Iflare-y = 1}

: d
5.5  m,(@)= sup{ § djn(Z)f(Z)z—;

= sup{

n

Y fﬁku—lzm)f(zk)

k=1

A flamo-y = 1}
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by Cauchy’s integral formula. That (5.5) is also valid in the case p = 1 is the
content of Corcliary 2 of Lemma 2. Thus, since |b,|> ,, we have, for
l€p=<co,

(56)  supm,(a) <

nZ1i

i 4 z
coupd 3 |akwk§-~f5"'i“— = 1}
k=1 . £ Wk

Set W, = (1—|z,|)/(8,w,) and ¥= v~ " (and compare with Lemma 4 of [12]). By
Holder's inequality and (5.6) we obtain

0w

supm,(a) < Cllal iy sup {( Z

nz1 k=

< C”a”IF(WJ

if and only if sup{(Y¥ 1/ @I P [ flaron =1} < C.

This latter inequality holds if and only if T{H" (V))<= (W) and, by
Theorem 2 {A), this is equivalent to (2.3) as desired.

Regarding inequality (5.5) in the case p = 1: Denote by C(T) the collection
of all continuous foctions £ T— C and by .# its conjugate space. Assume for
the moment that both v, ™! are continuous (in addition to v satisfying A,) and
define

Co™ M) ={feC@: |flzew-1y < o0},

where |l denotes the total variation of the measure vdu. Let P{v™ ') denote the
subspace of C(v™") generated by 1, ¢, ¢*®, ... Upon incorporating the above
definitions, the duality argument in [3] (pp. 130-131} establishes, for any
kell(v), the equality

ALY )”F | ey = 1}

= {pedt: |ul < oo},

5.7 inf ||k— g“Ll(ﬂ) = sup{ j.k Z)%L feH®{v™Y), Hf”H"“(v*lj - 1}

geH(n)

with the infimum on the left being -attained.

The few remaining details are devoted to establishing (5.7) when v, »™* are
not assumed continuous. In what follows, let ¢, = 38y~ 1jn1m and set
v, =@,+v (n=1,2,...). Then each v, is continuous and satisfies A4,.

LemMa 2. For any keI (o), lim, | @psk— Kz = 0.

Pro of. Let £>0. Since v satisfies 4, we have PuHV S Cv ac.
(n= ..} for a fixed constant C > 1. Since C(T) is dense in I*(p) (see, for
example W Rudin [11], p. 68] we may choose ¢geC(T) such that

llk—gilLrqy < &/C. That llm,,_mllqon*g gIlLl([,, =0 is immediate, and so, for
sufficiently large n,

icm
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lpark—klpw < loxk—-p,xglloiwm+ @ g —glluiw+ 119 —kllnw

1
< o [@xk—gvd+e+e

= % [lk—gl(@,*v)df +2e < 3s.

COROLLARY 1. For any keI}(v),

inf |k—gllzim < Hminf inf
geH(v)

k=gl L1
n—w gelli(va)

Proof Since each v,
a function g, for which inf g\ [k—glicy, is attained m=1,2, ...
g, = 0,%g,. Then §, eH'(v) and

is continuous {and satisfies A4,), there exists
) Set

k=il < k= @2 klpi + 1@, xk— 0,4 gl 1)

1
s Hk—ﬁﬂn*'k”v(u) t5=

I _[(Wu* !k-—gnDDdO

= k- an*k”Li(v)'*“ [|k g.lv, df.

Thus

inf |k—gllpip < Iminf {k—g, 50
geH(v) n—+o

< liminf | k— cp,t*kllp(,,)-%llmmf?[ik g, v, do

n—w nr o

= lim 1nf2— {lk—g,lv,db

n—+w

by Lemma 2.

CoROLLARY 2. For any kelI(p),

d .
inl k—gllow= SUP{‘ fk(z)f(z)iéli FeH=0™ ), [ flazp-y = 1}-
T

peH ()

Proof. It is clear that, for every fe H®(v™?!) and for every ge H'(v), we
have

[k [z = [ (kiz

T

—g(2)) f(z)dz.

If in addition ||f|gee-n =1, then

);k(z) flz jz

| < [k—glloiw
Ui

follows from Holder’s inequality.
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On the other hand, from Corollary 1 and (5.7) we have

inf |k—gllp < lim mfsup{ Ik(z)f(z)-—

gaH (v) n—co

= sup{
T

d
jk(z)f(z)ﬁ‘: JeH?w™ ), [f lpwp-s = 1}
Cv ae. implies H®@p, Y= H*@™ ) (n=1,2,...).

RGNS, = 1}

since v, <

Now (5.5) in the case p = | follows from Corollary 2 with @, replacing k.
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A multiplier characterization of analytic UMD spaces
by
G. BLOWER (Oxford)

Abstract. We prove that the Banach spaces X for which analytic martingales converge
unconditionally are precisely those for which certain multipliers are bounded on the Hardy space
HL(T).

x

1. Introduction. The purpose of this paper is to characterize the complex
Banach spaces X for which analytic martingales converge unconditionally in
terms of boundedness of certain transiation-invariant operators on the
vector-valued Hardy spaces H(T).

Bourgain [2] and Burkholder {3] have shown that the so-called UMD
Banach spaces X, defined to be those in which Walsh-Paley martingales
converge unconditionally, are precisely those for which the conjugate function
operator is bounded from I%(T) to itself Their methods are based on
transference and we use a refinement of such arguments here.

We remark that the class of Banach spaces for which analytic martingales
converge unconditionally is strictly larger than the class UMD and includes such
spaces as L} {T), which do not even enjoy the Radon-Nikodym property [6].

The rest of this paper is arranged as follows. In the second section we
introduce some basic definitions and provide a formal statement of the result
given in the abstract. We also sketch the proof of the easy half of the theorem.

In the next section we reformulate the problem in probabilistic terms,
following where possible an argument of McConnell [8]. In the penultimate
section we establish the multiplier theorem. Qur argument uses a result of
Edgar [5] which allows us to approximate certain Brownian martingales by
discrete-parameter analytic martingales. In the final section of this papcr we
mention some other properties of analytic UMD spaces.

Garling has introduced a more general class of martingales, termed Hardy
martingales, which may be used to prove renorming theorems {6], It is known
that the Banach spaces for which analytic martingales converge unconditional-
Iy are those for which Hardy martingales converge unconditionally. Indeed,
this follows from the techniques of this paper.
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