assumption on m and n, there exists a homotopy $W: S^{m-1} \times I \times I \to \mathbb{R}^n_0$ between w and $\partial/\partial x_1$ which equals identically $\partial/\partial x_1$ on $S^{m-1} \times \{0, 1\}$. Now, in order to obtain a homotopy with the required properties, it suffices to glue F to $(x, w(y, t))$. One can do it, for example, as follows. Choose a parametrization $\alpha: I \to I \times I$ of the union of three sides of the square, for example

$$\alpha(t) = \begin{cases} (0, 3t) & \text{if } t \leq 1/3, \\ (3t-1, 1) & \text{if } 1/3 \leq t \leq 2/3, \\ (1, 3-3t) & \text{if } 2/3 \leq t. \end{cases}$$

Now the formula for the homotopy can be written as follows:

$$F(x, y, t) = \begin{cases} F(x, (1 + \alpha_2(t)) - 1, \alpha_1(t)) & \text{if } \|y\| \leq (1 + \alpha_2(t))^{-1}, \\ \langle x, W(y, \|y\|, (1 + \alpha_2(t)) - 1, \alpha_1(t)) \rangle & \text{otherwise.} \end{cases}$$

Acknowledgements. I would like to thank Professor Kazimierz Gęba for suggesting the problem and his help during the preparation of this paper. The revised version of the paper was written during my stay as a fellow of the Alexander von Humboldt Foundation at the Max-Planck-Institut für Mathematik in Bonn. I would like to thank them both for their kind hospitality.

References

STUDIA MATHEMATICA, T. XCVI (1990)

An operator on a separable Hilbert space with all polynomials hypercyclic

by

BERNARD BEAUCAY (Paris)

Abstract. We construct an operator T on a separable Hilbert space with one hypercyclic point x_0 and such that for any polynomial p with complex coefficients the point $p(T)x_0$ is also hypercyclic.

Let x_0 be a point in a Banach space E, and let T be a linear operator on E. The orbit of x_0 under T is just the set of iterates

$$F_{x_0} = \{x_0, Tx_0, T^2x_0, \ldots\}.$$

The point x_0 is said to be cyclic for T if the vector space generated by F_{x_0} is dense in E, and hypercyclic if F_{x_0} itself is dense in E.

The invariant subspace problem, solved negatively by P. Enflo in Banach spaces (see P. Enflo [5]) and still unsolved in Hilbert spaces, can of course be rephrased as: Let T be an operator; does there exist (besides 0) a point x_0 which is not cyclic? In Enflo's example, all nonzero points are cyclic.

So one is naturally led to an investigation of the regularity of the orbits of a linear operator. Trying to find points for which the orbit is regular (meaning, for instance, that $\|T^n x_0\| \to \infty$ as $n \to \infty$) was done in our book [4], Chap. 3. Here, conversely, we concentrate on irregular orbits: those of hypercyclic points, and try to construct operators with as many hypercyclic points as possible.

The first result in this direction was obtained by S. Rolewicz [8], who constructed on $L_p(1 \leq p < \infty)$ or c_0 an operator with one hypercyclic point. Of course, its iterates are also hypercyclic, but if one considers for instance $(x_0 + Tx_0)/2$, nothing says that this vector is still hypercyclic. Indeed, the construction can be modified in order to provide also a finite number of such vectors, but only a finite number.

The following question was raised by P. Halmos [6]: can one produce an operator, in a separable Hilbert space, for which the set of hypercyclic points would contain a vector space? We solve this question here. We do not prove that all points are cyclic, so our example might still have invariant subspaces. We do not know if this is the case or not.

Received November 7, 1988
Revised version March 7, 1989
As is the case for the invariant subspace problem, things are more advanced in Banach spaces, and C. Read [7] has produced an example of an operator, on the space l_1, for which all nonzero points are hypercyclic. Previously, an example of an operator with a slightly weaker property, called supercyclicity, was constructed by the author [1] (for every nonzero point x_0, the half-lines generated by the orbit are dense in the whole space). Such operators, of course, have no invariant subspaces.

Our construction originates in the ideas introduced by P. Enflo to construct a Banach space and an operator on it with no nontrivial invariant subspaces [5]. But here we have a Hilbert space setting, and things become harder. A previous result in the same direction, also in a Hilbert space, was obtained by the author in [2], where an operator was constructed with one hypercyclic point and such that for any polynomial p with rational coefficients the point $p(T)x_0$ is also hypercyclic. Going from polynomials with rational coefficients to all polynomials is far from being as trivial as it may seem.

Our result had a preliminary announcement in [3].

Theorem A. There is a separable complex Hilbert space and an operator T on it with a hypercyclic point x_0 such that for any polynomial p with complex coefficients the point $p(T)x_0$ is also hypercyclic.

In fact, our construction provides a much stronger information. We denote by l_2^w the weighted l_2 space defined by:

$$l_2^w = \{(a_i)_{i \geq 0}; \sum_{i \geq 0} (i+1)|a_i|^2 < +\infty\},$$

endowed with the norm $\|(a_i)_{i \geq 0}\|_w = (\sum_{i \geq 0} (i+1)|a_i|^2)^{1/2}$.

Theorem B. There is a separable Hilbert space H, the completion of the polynomials in one variable x for a norm $\| \cdot \| \leq \| \cdot \|_w$, such that multiplication by x is continuous on it and, for this operator, all nonzero elements of l_2^w are hypercyclic.

The construction of this example will occupy the rest of this paper, and will be divided into several steps.

1. **Enumeration of the triples.** We first enumerate the triples $(q_j, q'_j, \varepsilon_j)_{j \geq 1}$, where:

- q_j, q'_j are polynomials with rational coefficients (that is, both real and imaginary parts rational),
- q_j has always "1" as the first nonzero coefficient (the degrees being written in increasing order),
- ε_j is of the form $1/2^l, l \geq 1$.

Doing this enumeration, we require, for all $j \geq 1$:

(a) $\deg q_j < j, \quad \deg q'_j < j$,
(b) $\varepsilon_j \geq 2^{-j}$,
(c) if $n_1 < n_2 < \ldots$ are integers such that

$$q_{n_1} = q_{n_2} = \ldots, \quad q'_{n_1} = q'_{n_2} = \ldots$$

then $\varepsilon_{n_1} > \varepsilon_{n_2} > \ldots$

These requirements can easily be met the following way: in \mathbb{R}^3, we write an enumeration of the polynomials with rational coefficients on the x axis and on the y axis, taking into account condition (a). On the z axis, we put 2^{-j} at $z = i$, for $j = 1, 2, \ldots$. Then, for each k, we enumerate the entire set $\{x+y+z \leq k\}$, before enumerating $\{x+y+z \leq k+1\}$, and we realize this by enumerating the set $\{x+y \leq k\}$ for increasing $k \leq k$.

We consider the norm $\|(a_j)_{j \geq 0}\|_w$ as a norm on the space of polynomials, and if $p = \sum_{j \geq 0} a_j x^j$, we define $|p|_w = (\sum_{j \geq 0} (i+1)|a_j|^2)^{1/2}$.

The space l_2^w thus defined is a Hilbert space, an algebra, and multiplication by x has norm $\sqrt{2}$.

We now define the systems. For every $j \geq 1$, we put

$$\bar{f} = \inf\{f_j; |q_j - q'_j|_w < 1/2, q_j = q_{f_j}, \varepsilon_j = \varepsilon_{f_j}\}.$$

We then say that \bar{f} belongs to the system of the integer \bar{f}. We observe that here all systems are defined at once, and not inductively, contrarily to what we did in [2].

The enumeration of systems will be made with Greek letters, $\nu = 1, 2, \ldots$, so, for every ν, the value of \bar{f} will be a Greek letter, e.g. $\bar{f} = \nu$.

We observe that, by the definition of the systems and the normalization we have chosen, the index of the first nonzero coefficient in q_j depends only on j. We call it m_j if $\bar{f} = \nu$, so we write

$$q_j = x^{m_j} + \ldots + \mu_{m_j} x^{m_j+1} + \ldots$$

We finally introduce the following notations:

$$\theta_j = |q_j|_w, \quad \theta'_j = |q'_j|_w, \quad \theta^*_j = \max \theta_j, \quad \theta'^*_j = \max \theta'_j.$$

Our construction will be totally determined be a sequence of integers $(N_j)_{j \geq 0}$, strictly increasing, which will be chosen by induction. If $\bar{f} = \nu$, we put $l_j = \nu^{N_j}$.

2. **The norm $|\cdot|_{(0)}$.** We define $|\cdot|_{(0)} = |\cdot|_w$. Fix now an integer $n \geq 1$. For any polynomial p, we look at all representations of the form

$$p = r + \sum_{j=1}^n a_j x^l(q_j - q'_j).$$
where \(r \) is a polynomial and the \(a_{j,a} \) are complex numbers \((j = 1, \ldots, n, \alpha \in \mathbb{N})\), and we define

\[
|p|_{2o} = \inf \left\{ |p| + \sum_{v \geq 1} \sum_{a \geq 0} 4^v \varepsilon_v^2 \left(\sum_{j \geq v} a_{j,a} q_{j,v}^2 (\theta_j^2 + 1)^{-1} + \sum_{j = v} a_{j,a} q_{j,v}^2 \right) \right\}
\]

where the infimum is taken over all representations of the form (2).

In order to simplify this expression, we introduce the following notations:

\[
A = \sum_{j = 1}^{n} \sum_{a \geq 0} a_{j,a} x^j (q_j - q_j^*),
\]

\[
[A]_{2o} = \sum_{v \geq 1} \sum_{a \geq 0} 4^v \varepsilon_v^2 \left(\sum_{j \geq v} a_{j,a} q_{j,v}^2 (\theta_j^2 + 1)^{-1} + \sum_{j = v} a_{j,a} q_{j,v}^2 \right).
\]

Quite clearly, we have

\[
|p_1 + p_2|_{2o} \leq |p_1|_{2o} + |p_2|_{2o},
\]

\[
|\lambda p|_{2o} = |\lambda| |p|_{2o} \quad \text{for} \quad \lambda \in \mathbb{C},
\]

and \(p = 0 \) implies \(|p|_{2o} = 0 \). The converse of this implication comes up only at the end of the construction. Despite this fact, we will speak of the “norm” \(|\cdot|_{2o} \), but we keep in mind that it is only a quasi-norm. The following properties of the norm \(|\cdot|_{2o} \) will be used:

Proposition 1. For all \(n \geq 1 \):

(a) \(|\cdot|_{2o} \leq |\cdot|_{o-1} \leq \cdots \leq |\cdot|_{w} \).

(b) \(|q_j - q_j^*|_{2o} \leq \sqrt{2} \varepsilon_j \), \(j = 1, \ldots, n \).

(c) \(|\lambda q|_{2o} = 2^{v} |q|_{2o} \) if \(\lambda = \varepsilon, j \leq n \).

(d) \(|x^v p|_{2o} \leq 2 |p|_{2o} \).

(e) The norm \(|\cdot|_{2o} \) is Hilbertian.

Proof. (a) is obvious, (b) follows from the representation of \(q_j - q_j^* \) with \(r = 0 \) and all \(a_{j,a} = 0 \) except \(a_{j,0} = 1 \). (c) follows from the representation obtained by replacing \(x^v \) by \(x^v x^w \). (d) is obvious.

To see (e), we observe that, for all \(p_1, p_2 \),

\[
2(|p_1|_{2o}^2 + |p_2|_{2o}^2) \geq |p_1 + p_2|_{2o}^2 + |p_1 - p_2|_{2o}^2,
\]

and the converse inequality follows after the change of variables \(u = p_1 + p_2, v = p_1 - p_2 \).

Remark. We could make the norm \(|\cdot|_{2o} \) equivalent (with constants depending on \(n \)) to \(|\cdot|_{w} \) by adding to \([A]_{2o} \) the term \(\sum_{j,v} \sum_{a \geq 0} 4^v \varepsilon_v^2 \). This would change nothing in our construction.

We also need the following obvious

Lemma 2. For all polynomials \(p_1, p_2 \) and every \(\eta, 0 < \eta < 1 \), if \(C \geq (1 - \eta)/\eta \), then

\[
|p_1 + p_2|_{2o}^2 + C |p_2|_{2o}^2 \geq (1 - \eta)|p_1|_{2o}^2.
\]

The proof is left to the reader.

3. Study of \(|\cdot|_{2o} \).

Proposition 3. If the sequence \((N_j)_{j \geq 0} \) grows fast enough, we have

\[
|\cdot|_{2o} \geq 1/2 \quad \text{for every} \quad n \geq 1.
\]

Proof. We know that \(|\cdot|_{w} \leq |\cdot|_{w} = 1 \). Therefore, we can find a representation of 1 of the form (2),

\[
1 = 1 - A + A,
\]

which gives the estimate

\[
\Phi_n^2 = |1 - A|_{2o}^2 + [A]_{2o}^2,
\]

with

\[
\Phi_n^2 \leq 4.
\]

We will show that \(\Phi_n^2 \geq 1/4 \), and this will prove our proposition. In order to do so, we first need control upon the high degree terms (that is, \(\alpha \geq n \)) in \(A \).

Lemma 4. Set for \(\mu \geq 1 \),

\[
K_\mu = 4 \log_2 (2^{4n} (\sqrt{N_n + 1} \sqrt{\theta_n^2} + 1 + \theta_n^2)).
\]

The representation obtained from (4) by keeping in \(A \), for all \(j, k \), only the terms with

\[
\begin{align*}
\alpha &\leq K_{\mu - 1} \quad \text{if} \quad j < \mu, \\
\alpha &\leq K_\mu \quad \text{if} \quad j = \mu,
\end{align*}
\]

gives an estimate \(\Phi_n^2 \) with

\[
\Phi_n^2 \geq 1 - \frac{8^{-\mu}}{1 + 8^{-\mu} \Phi_n^2}.
\]

Proof. Set \(K = K_\mu \). We write

\[
A' = \sum_{j \geq 1} \sum_{a \leq K} a_{j,a} x^j (q_j - q_j^*),
\]

\[
A'' = A - A', \quad I'' = |A''|_{w},
\]

\[
I'' = \sum_{j \geq v} \sum_{a \leq K} a_{j,a} x^j (q_j - q_j^*)|v|.
\]
so $I'' \leq \sum \sum I''_{n}$. We will now estimate I''_{n}:

$$I''_{n} \leq \sum \sum \sqrt{n+1} + (\sum \sum a_{j,n}l_{j}q_{j}x_{j} + |\sum a_{j,n}q_{n}|_{\|w\|}).$$

But $l_{j} = x^{n,j}$, $q_{j} = q_{n}$ if $\bar{j} = n$. So, for $\nu < \mu$,

$$I''_{n} \leq \sum \sum \sqrt{n+1} (\sum \sum \frac{a_{j,n}q_{n}}{x_{j}^{n}+1} + \sum \sum a_{j,n})$$

$$\leq \sum \sum \frac{1}{\nu} (\sum \sum \frac{a_{j,n}q_{n}}{x_{j}^{n}+1} + \sum \sum a_{j,n} + \sum \sum a_{j,n}q_{n})$$

$$\leq 2^{\nu} \sum \sum (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

$$\leq 2^{\nu} \sum \sum (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

$$\leq 2^{\nu} \sum \sum (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

Therefore

$$\sum_{\nu=1}^{\nu} \sum_{\mu=1}^{\mu} I''_{n} \leq 2^{\nu-1} \sum_{\mu=1}^{\mu} (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

$$\leq 2^{\nu} \sum \sum (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

by the choice of $K_{\nu-1}$.

Now, from Lemma 2 with $\eta = 8^{-n}$,

$$|1 - A' - A''|^{2} \leq 8^{n} |A''|^{2} \geq (1 - 8^{-n}) |1 - A''|^{2}$$

and so

$$\sum_{\nu=1}^{\nu} \sum_{\mu=1}^{\mu} I''_{n} \leq 2^{\nu} \sum \sum (\sum \sum a_{j,n}q_{n})^{2} x_{j}^{n} + \sum \sum a_{j,n}q_{n}$$

as stated.

So now, instead of (4), we have a representation

$$1 = 1 - A' + A'''$$

with

$$A''' = \sum_{k=1}^{K_{n+1}} a_{j,n} x^{n,j} q_{j} - q_{n} + \sum_{k=1}^{n} \sum_{l=k} a_{j,n} x^{n,j} l_{j} q_{j} - q_{n}.$$

We put $s_{j} = \sum_{k=1}^{K_{n+1}} a_{j,n} x^{n,j}$ for $\bar{j} < \mu$ and $s_{j} = \sum_{k=1}^{n} a_{j,n} x^{n,j}$ for $\bar{j} = \mu$. For a polynomial $p = \sum c_{j} x^{n,j}$ and $k \in \mathbb{N}$, we put

$$p^{k} = \sum_{j \leq k} c_{j} x^{n,j}, \quad p_{k} = \sum_{j > k} c_{j} x^{n,j}.$$

We write (9) as

$$1 = 1 - \sum_{j < \mu} s_{j} l_{j} (q_{j} - q_{n}) + \sum_{j \geq \mu} s_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j} + A'''.$$

We make the following induction hypothesis: if $G''_{2} \leq 8$, then

$$|\sum_{j < \mu} s_{j} q_{j}|^{2} \leq 8^{-\mu} \quad \text{for} \quad \nu < \mu,$$

and now we prove it for $\nu = \mu$.

Assume that this is false. Then $|\sum_{j < \mu} s_{j} q_{j}|^{2} > 8^{-\mu}$ and therefore

$$|\sum_{j < \mu} s_{j} q_{j}|^{2} > 1/(8^{\mu} \theta_{\nu}).$$

From (6) and Lemma 5 it follows that $G''_{2} \leq 8$. Therefore

$$\sum_{j < \mu} |s_{j} q_{j}|^{2} \leq 8, \quad \sum_{j < \mu} |s_{j} q_{j}|^{2} \leq 2^{\nu+1} 3.\tag{14}$$

Let $D \in \mathbb{N}$. We have, since $\deg q_{n} < \mu$,

$$|\sum_{j < \mu} s_{j} q_{j}|_{D} \leq |q_{n}| \sum_{j < \mu} |s_{j}|_{D}$$

$$< \theta_{\nu} |\sum_{j < \mu} s_{j} l_{j} q_{j} - q_{n}|_{D}$$

$$\leq \theta_{\nu} \sum_{j < \mu} |s_{j} q_{j}|_{D}$$

by a proper choice of $D = D_{\nu}$, independent (of course) of N_{μ}.

Now, put $p_{0} = 1 - \sum_{j < \mu} s_{j} (l_{j} q_{j} - q_{n})$. Applying again Lemma 2 with $\eta = 1/8$, $C = 8$, we get

$$|p_{0} + \sum_{j < \mu} s_{j} q_{j} l_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j}|_{D} + 1/8$$

$$\geq (1 - 1/8) |p_{0} + \sum_{j \geq \mu} s_{j} q_{j} l_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j}|_{D},$$

and therefore

$$G''_{2} \geq 1/8 \geq (1 - 1/8) |p_{0} + \sum_{j < \mu} s_{j} q_{j} l_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j}|_{D}.$$

The degree of p_{0} is at most $K_{n+1} N_{\mu-1} + \mu - 1$. So, if $N_{\mu} > \max (D_{\nu}, K_{n+1} N_{\mu-1} + \mu - 1)$, then

$$|p_{0} + \sum_{j < \mu} s_{j} q_{j} l_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j}|_{D} \geq |p_{0} + \sum_{j < \mu} s_{j} q_{j} l_{j} q_{j} - \sum_{j \geq \mu} s_{j} l_{j} q_{j}|_{D}$$

$$\geq |\sum_{j < \mu} s_{j} l_{j} q_{j} |^{2} = |x^{n,j} | \sum_{j < \mu} s_{j} q_{j} |^{2}.$$
So there is a sequence \((n_j)_{j \geq 0}\) of integers in the enumeration with \(q_{n_j} \to q\) in \(L^2\), \(q_{n_j} = q^j\), \(n_j = i\) for all \(j\). We may finally assume that \(|q_{n_j} - q|_w < 1/2\), so \(n_j \leq n_1\) for \(j \geq 1\). Let \(\|\cdot\|\) denote the operator norm from \(\|\cdot\|\) into itself. By Proposition 5(c), we have

\[
\|q_{n_j}\| \leq 2^{N_{n_1}}.
\]

Therefore

\[
\|q_{n_j} - q\| = \|q_{n_j} - q\| + \|q_{n_j} - q\| \leq \sqrt{2}c/4 + 2^{N_{n_1}} \|q_{n_j} - q\|
\]

and \(q_{n_j} - q \to 0\), so \(\|q_{n_j} - q\| \leq c/2\) for \(j\) large enough, and Theorem 6 is proved.

The fact that \(\|\cdot\|\) is a norm on the space of polynomials follows immediately from Theorem 6 and Proposition 3. Indeed, for every \(p\), there is an \(l\) such that \(\|p\| - 1 < 1/4\), so \(\|p\| > 1/4\), and \(\|p\| \geq \|p\|_w/4\).

Remark. We observe that our construction has the following property, which we may call “central action”:

The \(l_1\) which acts on \(q_j\) (that is, satisfying for instance \(\|l_j(q_j - 1)\| < c\)) depends only on \(j\) and not on \(j\) itself. For instance, for a given \(q\), the same \(x^{n_1}\) satisfies \(\|x^{n_1}q_j - 1\| < 1/2\) if \(|q_j - q|_w < 1/2\).

This property holds because the “systems” are computed with respect to the norm \(\|\cdot\|_w\) and not in the final norm. As we will see, such a simple description is impossible if one wants to construct an operator with all vectors hypercyclic, and, in this respect, our example has the strongest possible property.

Indeed, assume that for every \(\varepsilon > 0\) and every \(q_j\) there is a polynomial \(l\) such that if \(\|q_j - q\| < \varepsilon\), then \(\|l(q_j - q)\| < 2\varepsilon\), and \(\|l\|_{1/2} \leq 2\).

Now, let \(p_n\) be a sequence of almost eigenvalues corresponding to some \(\lambda \in \sigma(T)\). So we have \(\|p_n\| = 1\), and \((x - \lambda)p_n \to 0\). Let \(l_n\) be the polynomials satisfying \(\|l_n p_n - l\| < \varepsilon\). By the previous computation, \(\|l_n\|_{1/2} \leq 2\). But

\[
\|l_n(x - \lambda)p_n - (x - \lambda)\| < \varepsilon \|x - \lambda\|_{1/2}
\]

and since \(\|l_n\|_{1/2}\) is bounded, \(l_n(x - \lambda)p_n \to 0\), thus \(\|x - \lambda\| \leq \varepsilon \|x - \lambda\|_{1/2}\); a contradiction if originally \(\varepsilon\) was chosen small enough.

References

Approximation properties of the partial sums of Fourier series of some almost periodic functions

by

PAULINA FUCH-TABERSKA (Poznań)

Abstract. Two basic classes Q_1 and A_1 of functions almost periodic in the Stepanov sense are considered. For functions of these classes, four approximation theorems concerning the pointwise and uniform convergence of their Fourier series are proved. Also, in the case of uniformly almost periodic functions, an estimate of the order of strong summability of these series is obtained.

1. Preliminaries. Let S be the class of all complex-valued functions almost periodic in the sense of Stepanov ([9], Chap. V). Suppose that the Fourier series of a function $f \in S$ is of the form

$$f(x) \sim \sum_{k=-\infty}^{\infty} A_k e^{i\lambda_k x} \quad \text{with} \quad \lambda_k = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t) e^{-i\lambda_k t} dt$$

and that $0 = \lambda_0 < \lambda_1 < \lambda_k + 1$ if $k \in \mathbb{N} = \{1, 2, \ldots\}$, $\lambda_{k+1} = \infty$, $\lambda_{-k} = -\lambda_k$, $|A_{k+1}| + |A_{-k}| > 0$. Let $\alpha > 0$ and $\beta > 1$ be two fixed numbers. Denote by Q_1 the set of functions of class S_1 bounded on $\mathbb{R} = (-\infty, \infty)$, whose Fourier exponents satisfy the condition

$$\lambda_{k+1} - \lambda_k \geq \alpha \quad (k \in \mathbb{N}),$$

and by A_1 the set of those $f \in S$ for which

$$\lambda_{k+1} \geq \beta \lambda_k \quad (k \in \mathbb{N}).$$

Given any function $f \in S$, consider the following partial sums of series (1):

$$S_n[f](x) = \sum_{\lambda_k \leq \lambda_n} A_k e^{i\lambda_k x} \quad (n \in \mathbb{N}).$$

Introduce the auxiliary function

$$\psi_{\alpha, \lambda}(t) = \frac{2}{\pi(\eta - \lambda)^{1/2}} e^{-2 \sin^{1/2}(\eta - \lambda) t} \sin^{1/2}(\eta + \lambda) t \quad (0 < \lambda < \eta, \ |t| > 0).$$

1980 Mathematics Subject Classification (1985 Revision): Primary 41A25; Secondary 42A75.