On projections on subspaces of codimension one

by

S. ROLEWICZ (Warszawa)

Abstract. Let \((X, \| \cdot \|)\) be a Banach space. Let \(V\) be a subspace of codimension 1. Let
\[\lambda(V, X) = \{ \|P\| : P^2 = P, PX = V \} \]
and let
\[H(X) = \sup \{ \lambda(V, X) : \text{codim } V = 1 \} \]
be the hyperplane projection constant. It is shown that
\[H(p) \leq H(p^2[0, 1]) \leq 2^{2^p-1}. \]

Let \((X, \| \cdot \|)\) be a Banach space. Let \(Y\) be a subspace of \(X\) of codimension one. By \(\lambda(Y, X)\) we denote the infimum of the norms of continuous linear projections \(P\) onto \(Y\):

\[\lambda(Y, X) = \inf \{ \|P\| : P^2 = P, PX = Y \}. \]

The hyperplane projection constant is, by definition, the number

\[H(X) = \sup \{ \lambda(Y, X) : Y \text{ is a subspace of } X \text{ of codimension 1} \}. \]

The aim of the present note is to prove the following

Theorem 1. For all \(1 < p < +\infty\)

\[H(p) \leq 2^{2^{2^p-1}}. \]

This result is better than other known estimates (cf. [1]). However, the proof goes in a different way and is very simple.

In order to prove Theorem 1 we need the following

Proposition 2. Let \(Y_1, Y_2\) be two subspaces of \(X\) of codimension 1. Let
\(T\) be an isometry mapping \(X\) onto itself and such that

\[TY_1 = Y_2. \]

Then

\[\lambda(Y_1, X) = \lambda(Y_2, X). \]

The proof is obvious.

For an arbitrary continuous linear functional \(f\) on \(X\) of norm one we write

\[H_f = \{ x : f(x) = 0 \}. \]
COROLLARY 3. Suppose that \(f, g \) are two continuous linear functionals on \(X \) of norm one. If there is an isometry \(T \) mapping \(X \) onto itself such that \(T^* f = g \), then

\[
\lambda(H_f, X) = \lambda(H_g, X).
\]

COROLLARY 4. Suppose that \((X, \| \|)\) is a reflexive Banach space. Suppose that for arbitrary two continuous linear functionals \(f, g \) on \(X \) of norm one there is an isometry \(T^* \) mapping the conjugate space onto itself and such that \(T^* f = g \). Then for all subspaces \(Y \) of \(X \) of codimension one the numbers \(\lambda(Y, X) \) are equal to each other.

One can construct a nonseparable measure \(\mu \) in such a way that the spaces \(L^p(\Omega, \Sigma, \mu) \) satisfy Corollary 4 (cf. [5], Proposition IX.6.7).

By simple calculations \(\lambda(H_f, X) \) is a Lipschitz function with respect to \(f \).

A consequence is

THEOREM 5 (cf. also [4]). In the space \(L^p(0, 1) \), \(1 < p < +\infty \), for all subspaces \(Y \) of codimension one the numbers \(\lambda(Y, L^p(0, 1)) \) are equal to the hyperplane projection constant \(H(L^p(0, 1)) \).

Proof. For arbitrary \(f, g \in L^p(0, 1)^* = L^p(0, 1) \) of norm one and for an arbitrary \(\epsilon > 0 \) there exist \(h \in L^p(0, 1) \) of norm one and an isometry \(T \) of \(L^p(0, 1) \) onto itself such that

\[
\| T_f h - T_g h \| < \epsilon.
\]

By Proposition 2, \(\lambda(H_f, X) = \lambda(H_h, X) \). The continuity of \(\lambda(H_f, X) \) and (8) together imply that

\[
\lambda(H_f, X) = \lambda(H_g, X). \tag*{\blacksquare}
\]

Theorem 5 and the standard averaging procedure (cf., for instance, [6]) together imply

THEOREM 6. \(H(L^p(0, 1)) = \| P_0 \|_p \), where

\[
P_0 x = x - \frac{1}{|x|} \int_0^1 x(t) \, dt \end{matrix}
\]

and where we denote by \(\| \|_p \) the norm of linear operators acting in \(L^p(0, 1) \).

Proof. By Theorem 5, we can choose as \(Y \) the subspace

\[
Y = \{ x : \frac{1}{0} x(t) \, dt = 0 \}. \tag*{(11)}
\]

In the space \(L^p(0, 1) \) there exists a group of isometries \(T_s \), \(0 \leq s \leq 1 \). Namely, we can take

\[
T_s x(t) = \begin{cases} x(t+s) & \text{if } t+s \leq 1 \\ x(t+s-1) & \text{if } t+s > 1 \end{cases} \quad (0 \leq s \leq 1).
\]

Observe that \(Y \) is invariant with respect to all \(T_s \). Let \(P_0 \) be a projection onto \(Y \) with minimal norm. By the averaging procedure, we find that the operator

\[
P_0 x = \frac{1}{|x|} \int_0^1 T_s P_1 T_s^{-1} x \, ds \tag*{(12)}
\]

is again a projection with minimal norm. It is easy to verify that \(P_0 \) is of the form (10).

We do not know a formula for the norm \(\| P_0 \|_p \). (Added in proof: Recently C. Franchetti has found one.) However, we can estimate this norm as follows:

THEOREM 7.

\[
H(L^p(0, 1)) = \| P_0 \|_p \leq 2^{\frac{1}{2p-1}}. \tag*{(13)}
\]

Proof. Observe that \(\| P_0 \|_1 = \| P_0 \|_2 = 2 \) and \(\| P_0 \|_1 \) is a convex function of \(s \) on the interval \([0, 1]\). This immediately implies (13).

It is not known if \(H(Z) \leq H(X) \) whenever \(Z \) is a subspace of \(X \). However, it is easy to prove

PROPOSITION 8. If \(Z \) is a subspace of \(X \) then

\[
H(X/Z) \leq H(X). \tag*{(14)}
\]

Proof of Theorem 1. Since \(R \) can be represented as a quotient space of \(L^p(0, 1) \), Proposition 8 immediately implies Theorem 1. \(\blacksquare \)

The author would like to express his thanks to Professors P. Mankiewicz and P. Wojtaszczyk for their suggestion to apply the M. Riesz interpolation theorem in the proof of Theorem 7.

References

INSTITUTE FÙRO `MATHEMATyCZY FØS¥KI J ÈKADÊRMY NUK
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES
Wawelska 3, 00-908 Warszawa, Poland

Received December 12, 1988
Revised version August 21, 1988 and February 7, 1989