Of course, the same argument applied to \([0, 1/2]\) forces \(\varphi(1/4) = 1/4\), and applied to \([1/2, 1]\) forces \(\varphi(3/4) = 3/4\), and so on. Likewise, if \(\varphi(-1) \neq -1\), this midpoint argument applied to \([-1, 1]\) won’t give \(\varphi(0) = 0\). So we conclude:

\[
\varphi(x) = x \text{ whenever } x \text{ is dyadic.}
\]

Continuity then finishes off the theorem. ■

References

[8] D. A. Stegenga, Bounded Toeplitz operators on \(H^p\) and applications of the duality between \(H^p\) and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573–589.

DEPARTMENT OF MATHEMATICS
SIBNA COLLEGE
Loudonville, New York 12211, U.S.A.

Received September 25, 1987

STUDIA MATHEMATICA, T. XCVI (1990)

An interpolation theorem with \(A_p\)-weighted \(L^p\) spaces

by

STEVEN BLOOM (Loudonville, N.Y.)

Abstract. If \(T \in T^*\), \(uL^p \to BMO\), for all \(u \in A_1\), then \(T: L^p(w) \to L^p(w)\) whenever \(w \in A_p\), \(1 < p < \infty\).

In 1976, Muckenhoupt and Wheeden introduced the weighted bounded mean oscillation spaces, \(BMO_w\) [6]. On \(\mathbb{R}\), \(f \in BMO_w\) provided

\[
|I|^{-1} \int_I f - I(f) \leq C I(u),
\]

for all intervals \(I\), using the notation \(|I| = \text{Lebesgue measure of } I\) and \(I(f) = \int_I f\). These spaces proved to have more than just an intrinsic interest; they turned out to be the solution spaces to some important singly and doubly weighted norm inequalities [1]. The purpose of this note is to show that these spaces arise as interpolation endpoints for \(L^p(w)\), \(w \in A_p\).

A weight \(w \in A_p\) if

\[
I(w) I[w^{-1/(p-1)}]^{p-1} \leq C \quad \text{for all intervals } I,
\]

when \(p > 1\). \(w \in A_1\) if

\[
I(w) \leq C \text{ess inf } w, \quad \text{for all intervals } I.
\]

The \(A_p\) classes are nested, \(A_p \subset A_q\) if \(q > p\), and a weight belongs to some \(A_p\) class if and only if it satisfies a reverse Hölder inequality:

\[
I[w^{p+\delta}]^{1/(p+\delta)} \leq C I(w), \quad \text{for some } \delta > 0 \text{ and all intervals } I.
\]

The Hardy–Littlewood maximal operator and the Hilbert transform are bounded on \(L^p(w)\) if and only if \(w \in A_p\), \(1 < p < \infty\) [2]. Also any \(w \in A_p\) can be factored into the form \(w = uw^{1-p}\), for some \(u\) and \(v \in A_1\), the Jones’ Factorization Theorem [5].

We will use the sharp maximal function of Fefferman and Stein [4],

\[
f^*(x) = \sup \{|I|^{-1} \int_I f - I(f) : x \in I, I \text{ an interval}\}.
\]

If \(1 < p < \infty\), then \(\|f^*\|_p \approx \|f\|_p\), provided \(\|f\|_p\) is finite.
Let T be a linear operator. We say $T: uL^{\infty} \to \text{BMO}_u$ provided
\[|u|^{-1} \int |T(fu) - I(Tfu)| \leq C(u) \|f\|_u, \]
with C independent of I, and we say $T: L^{p}(u) \to L^{p}(u)$ if
\[\|Tf\|_{L^{p}(u)} \leq C \|f\|_{L^{p}(u)}, \]
for all $f \in L^{p}(u)$.

Theorem. If T is a linear operator with adjoint T^* and if $T, T^*: uL^{\infty} \to \text{BMO}_u$ for all $u \in A_1$, then $T: L^{p}(w) \to L^{q}(w)$ for all $w \in A_p$, $1 < p < \infty$.

Proof. First take $u = 1$, an A_1 weight. This means that T and T^* map L^{∞} into BMO. If $f \in H^2$ and $g \in L^{\infty}$,
\[\|Tg\|_{L^{q}(u)} \leq C \|f\|_{L^{p}(u)}, \]
so the operator
\[u^{-1/2} T(uf^{1/2}) : L^{p} \to L^{p} \]
also.

In the arguments above, we could of course interchange T and T^*. So we have shown: if $1/p + 1/q = 1$ with p near 1 and if u and v belong to A_1, then
\[u^{-1/2} T(uf^{1/2}) : L^{p} \to L^{p} \quad \text{and} \quad v^{2/3 - 1/2} T(u^{1/2}v^{1/2}) : L^{p} \to L^{p}. \]
Let
\[\alpha(t) = t - 1/q, \quad \beta(t) = t - 1/p. \]
So \(\alpha(1/p) = 1 - 2/q, \alpha(1/q) = 0, \beta(1/p) = 0, \text{ and } \beta(1/q) = -1 + 2/q. \) So interpolation gives
\[u^{2/3 - 1/2} T(uf^{1/2}) : L^{p} \to L^{p}, \]
for $1/q \leq t \leq 1/p$. In particular, taking $t = 1/2$ gives $T: L^2(w) \to L^2(w)$ whenever w has the form
\[w = u^{2/3 + 1/2}(x, y) \phi(1/2). \]
Finally, fix $w \in A_2$. By Jones’ Factorization, there exist u and v in A_1 with $w = uv$. By reverse Hölder, we can find a $\delta > 0$ so that u^δ and v^δ are in A_1 whenever $1 \leq \delta \leq 1 + \delta$. In particular, if we choose p sufficiently near 1, we can force $r = 1/(1 - 2/q) \leq 1 + \delta$. But with this r,
\[u^{2s/3 + 1/2}(x, y) v^{2r/(1/2)} = uv^{-1} = w, \]
so $T: L^2(w) \to L^2(w)$.

For exponents other than 2, the argument just given can be modified appropriately, or if one prefers, we can appeal to Rubio de Francia’s Extrapolation Theorem [7], and the proof is complete.

As an application, we derive Hunt, Muckenhoupt and Wheeden’s theorem, that the Hilbert transform $H: L^p(w) \to L^p(w)$ whenever $w \in A_p$ and $1 < p < \infty$. $Hf(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{f(y)}{x - y} \, dy$, so $H^* = -H$. To apply the theorem, we must show that $H: uL^{\infty} \to \text{BMO}_u$ whenever $\in A_1$. It’s well known that $H: L^p \to \text{BMO}$. The point of the theorem is that whatever holds for BMO invariably holds for \text{BMO}$_u$ when $u \in A_1$, and can be proven without so much as a break in style. Yet that minuscule bit of generality lets one interpolate to $L^p(w)$ for all $w \in A_p$.

Let $w \in A_1$. Let’s mimic the old proofs and show $H: uL^{p} \to \text{BMO}_u$. Let $f \in L^{p}$, fix an interval I and put $f_I = f|x_I$ and $f_{2I} = f - f_I$, where $2I$ denotes
the interval concentric with \(I \) of twice the length. Let \(p > 1 \) be near enough to 1 so that reverse Hölder holds for \(u \) with exponent \(p \). Since \(H: L^p \to L^p \), we have
\[
|I|^{-1} \int_I |H(uf_i)(x)| \leq |I|^{-1} \int |H(uf_i)|^p \leq c_1 |I|^{-1} \int |f|^p u^p \leq c_2 \|f\|_\infty \|u\|_\infty \frac{|I|^{-1} \int u^p}{|I|}.
\]
by reverse Hölder,
\[
|I|^{-1} \int_I |H(uf_i)(x)| \leq c_3 \|f\|_\infty \operatorname{ess inf} u, \quad \text{by } A_1,
\]
\[
|I|^{-1} \int_I |H(uf_i)(x)| \leq c_4 \|f\|_\infty \|I(u)\|.
\]
Let \(x_0 \) be the center of \(I \) and \(\delta = |I|/2 \). Then
\[
|H(uf_i)(x) - H(uf_i)(x_0)| = \left| \int_{\mathbb{R}^n} \frac{1}{|x - y|} \frac{1}{|x_0 - y|} u(y)f(y)dy \right|
\]
\[
\leq \|f\|_\infty \delta \int_{\mathbb{R}^n} \frac{1}{|x - y| |x_0 - y|} u(y)dy
\]
\[
\leq c_4 \|f\|_\infty \delta \sum_{n=1}^{\infty} 2^{-n} \delta^{-2} \int_{|x - x_0| < 2^n} u(y)dy
\]
\[
\leq c_5 \|f\|_\infty \sum_{n=1}^{\infty} 2^{-sn} \operatorname{ess inf} u_{|x - x_0| < 2^n}
\]
\[
\leq \frac{1}{2} c_5 \|f\|_\infty \operatorname{ess inf} u \leq \frac{1}{2} c_5 \|f\|_\infty |I(u)|.
\]
Integrating, we have
\[
|I|^{-1} \int_I |Hu(uf_i + uf_i)(x) - Hu(f_i)(x_0)| \leq (c_5 + \frac{1}{2} c_5) \|f\|_\infty |I(u)|,
\]
so that \(Hu(uf_i + uf_i) \in BMO \).

References