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Sharp weights and BMO-preserving homeomorphisms
by

STEVEN BLOOWM (Loudenville, N.Y.)

Abstract. Weighted versions of the Felferman-Stein sharp function inequality hold if and
only if the weight is 4,, . A, weights can be characterized by certain restricted L' inequalities which
yield a new proof of Jones™ characterization of the BMO-preserving homeomorphisms of R'. The
dual homeomorphism problem is also considered.

1. ¥ntroduction. In 1972, Fefferman and Stein published a good-4 in-
equality linking the Hardy—Littlewood maximal function M*f (x) to the sharp
function f¥*(x} [4]. For an interval I = R, we denote by I(f) the average of
JFover L I(f)=I""], f M*fis defined by

M*f (x) = sup{I{|/]: xel}
and f* is given by
F*(x)=sup{I(f~I(f)): xel}.

We also refer to the restricted sharp function f;*(x), where the supremum
above is restricted to intervals I <= J. The good-1 inequality leads to the L?
inequalities: If 1 <p < o,

(1.1) C[IfPdx < Cf(fHYPdx
R R

and 7

(1.2) | Ilf—l(f)!”dt cjm ) dx

for an appropriate class of functions f (for instance feL™R), pp < p)
A nonnegative weight we 4, if it satisfies the condition

(A.) '  w(EYw(D) < CCEAIY

for all measurable E < I, an interval, where C and & are positive constants,
and w(E) denotes [, wl (x) dx. This condition 18 equivalent to the reverse Holder
inequality:

(RH) Iwh? < CI{w)  for all interval > 1,

§ ‘é‘k*ﬁ&'
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See, for.instance [3, 6, 10]. Good-A inequalities are preserved when we change
the measure from dx to w{x)dx, so long as we 4, so (1.1) and (1.2) hold with
dx replaced by w(x)dx. An obvious question arises: Are there other good
weights for (1.1) and (1.2)?

Desmnimion 1.3, Let 1 < p < oo, w is a p-sharp weight if for each interval
I and feI'{),

(1.4) =10 wix)dx < CJUFPxwix)dx,
T I

and also

{1.5) [IfPw < Cl(f*Pw

: R R

for all f'e L*(R) for some p, < p. w is a sharp weight if w is a p-sharp weight for
each | < p < oo (here the constant C may depend on p), and w is a weak-sharp
weight if (1.5) holds for each p.

As remarked above, A, weights are sharp weights. That there are no
others is the main result of Section.2. The principle tool in the proof is Peter
Jones’ characterization of the BMO-preserving homeomorphisms of the real
line as precisely those homeomorphisms whose derivatives are 4, weights [5],
stated below as Lemma 2.5. Suppose F is a space of real-valued functions
- defined on R, and suppose ¢: R—R. We say ¢eHom(F) provided ¢ is
a homeomorphism and whenever feF, fop™'cF also. @ is a dual homeo-
morphism, @ € Hom*(F), if ¢ is a homeomorphism with a derivative a.e., and if
the operator

J—=¢'(x)foe(x)

maps F into F. If F has a dual space F* given through an integral
representation fp f* dx, then a simple change of variables shows that Hom*(F )
- = Hom(F*), and. actually coincides with the differentiable ¢ & Hom(F*),
hence the terminology. These classes are closely related to the pointwise
multipliers of F: @eM(F) if whenever feF, the function ¢(x)f(x) also
belongs to F. For if ¢ e Hom{F)nHom*(F), the composition of the two
operators f — fop ' and [ — ¢'f 0 must map F into F, but this composition
is f—¢f, so that ¢'e M(F).

Jones showed that Hom(BMO) = {¢ differentiable with ¢’ A}, Since
there are no nonconstant pointwise multipliers of BMO(R) 1], the analysis
above suggests that Hom™*(BMO) = Hom(H"), and is trivial. That is correct,
and is derived in Section 4 along with a new proof of Jones’ theorem. Jones’
proof was based on the John--Nirenberg distribution inequality for BMO. Our
proof characterizes Hom*(H") via the atomic decomposition of H*, and should

generalize to other atomic settings, where there is no John-Nirenberg type
inequality.
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Section 3 presents two L*-type characterizations of A_, used in Section 4.
Specifically, if T is an operator which is bounded on each LF(R), 1 < p < c0,
and if we A_, the condition (RH) gives for some p> 1,

71 Tlwyey) < (117 [ Twy,P(x)dx)'? by Hélder’s inequality
T I
< {17 [ Tlwy dx)P < I fwf)? < CI(w).
R 1

Here, as will frequently occur in this paper, C denotes a constant that need not
stay the same from line fo line. The condition derived above,

(1.6) I(T{wy)) < CI(w) for all intervals 1,

completely characterizes 4, when T is either the Hardy-Littlewood maximal
operator M* or the Hilbert transform H,
f
= pv. | ——dy.
Hf () = pv. {3 dy
If I is an interval, 21 will denote the interval concentric with I but of twice
the length, A, weights are always doubling, that is,

w(2I) < Cw(l).

BMO is the space of functions whose sharp function is bounded. We norm
BMO modulo the constants by || llemo = [ f ¥ll,- This space is a Banach
space, and is the dual space to H'. We use two equivalent formulations
of H: H' = {f: R—R: f and Hf e [*(R)}, and also H' is the atomic space:
a is an atom if a is supported in an interval I, ||a| ., < 1/)I], and f[a = 0./ e H' if
there are atoms {a,} and a sequence {A }el' with f =3 1a, The two
corresponding norms,

£l =JifI+|Hf| and

34
| 1l = inf{3|A): f =Y A4, the a’s atoms]
are equivalent. See {2, 4, 10].

2. Sharp weights
Treorem 2.1, The following are equivalent:

(1) w is a doubling weak-sharp weight.

(2) w is a p-sharp weight for some 1 <p < o0,
(3) w is a sharp weight.

4) weA,.

We will establish several preliminary results first.
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LemmMa 2.2, Let w be a p-sharp weight. Then w is not almost everywhere
Zero on any inferval.

Proof Otherwise, we may, aftér a transtation, assume that w is zero
almost everywhere on the interval [k, 6] and that {hw s 0, where & is
substantially smaller than J. Let f(x) =log(1/|x]). So feBMO. If we put
I'=[0, 8], I{f) is much smaller than log(1/k), and so '
o h h
[ =T()Pwdx = ¢ [ (log(1/x)Pwix)dx = c{log(1/B)” | w,
I 0. 0

while
k
JUTywde <1/ lpwo [ w
o}

These force log(1/h) < ¢~ V7| f|lamo, which is absurd as h—0.

0 LEMMA 2.3, Let w be a p-sharp weight. Then on any infinite interval I,
w{l} = oco.

Progf. We give the argument when [ = R. Other cases are similar.
Suppose instead that w(R) < w. For feBMO,

z)Hfl"w < %I [F1Pw < G J (5 *Yw < Cl f o [ w.

R
In particular, if f=n on [0, 1],

1

n? [w < C, | 1B [ w-
[t} R

By Lemma 2.2, {§w # 0. On the other hand, it is easy to construct f, = n on

[o, '1]‘ with compact support and with || Fllemo < 2, leading to a cont-
radiction. = : '

Now put ¢{x) = [ w(t)dt. The previous two lemmas show that o: R->R

15 one-to-one and onto, whenever w is a p-sharp weight. Let & be the operator

Lf(x) = f{p™* (x).

LEMMA 24. Let w be a p-sharp weight, 1 < |
‘ , P <o, and @, D as above.
Then @ is a bounded operator on BMO. Y e

Proof. Fix an interval I'=1[a, b] and let J = @ (I} =
feBMO, ¢ () =[x, B]. For

-1 3 - — ﬂ :
M {Jf(fp D= ()| dy = o [1f (x) =T (Y wix) dx

Sharp weights 5

with the change of variable y = @(x). Using Holder’s inequality, this is
bounded by

(WD) =T W) < CFP (w7 UMW) < CEP 1 f amo-
J J

J(f) is not the usual constant, but, as is quite standard, this implies
_ W= 1@ (N~ TTP (/)] < 2G5 11 f mvo-
Since J was arbitrary, we have [®(Niamo < 2C57 || S omo- =
Lemma 2.5. If & is a bounded operator on BMO, then weA.

This is the hard part of Jones’ Theorem. Actually, Jones established the
equivalences: ¢ e Hom(BMO) iff & is bounded on BMO iff |¢] exists a.e.
and is 4. '

Proof of Theorem 2.1. That (4) implies each of the others follows from
Fefferman-Stein and the nature of good-A inequalities. Obviously (3) implies
(2), and (2) implying (4) was the essence of the last two lemmas. So (2), (3), and
(4) are equivalent and imply (1). We must show that (1) implies any of the
others. To this end, we redo Lemma 2.4 using (1) as hypothesis.

Fix I and assume that {,f =0 and that f is supported m I. So

[IflPwdx = [ |fIPwdx < C, {(F*)VPwdx.
I R R

If xe2l, then f*(x) = f5%(x). Suppose that x¢2I. For convenience, we take
I=[—6/2, 5/2]. Then

s}

§ UMrwdx= 3 ] (f¥P)wlx)dx.

xg2l n=0 2n5g|x|{€ant 15
Now if 2"8 < |x] £ 2" 4, then

fHx = sup J(f-JU/N<2 sup |J|“1§If'|

xef InJ+0 xeJ, I nJ#3

1 )
== e € b 4 .

2dist(x_, I);Elfl Clﬁci“m)
Hengce,

| peweds < oot | Y

xg2l . xg2l [xP
Since w is doubling, we B, for p sufficiently large, ie.
- Wi _ow(l
[ <@ g,

~3
xg2f [ &*
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For such p,
| Pwdx < CI(fIPw(l) < CIULEP (x)w(x)dx.
xg2l 1
And so,
(2.6) fiflPwdx < CT (ff)Pwdx.
I 2r

Now suppose that be BMO and that ¢ is a homeomorphism of R with
derivative w. If @(J) = I, we have

= [l@b)—~J (b)) dy < (W)™ [ o= J ()P w dac) 2,
T

J
By subtracting a constant if need be, we can assume that J (D) = 0. We can
extend by, to a function b= BMO(4J) with f2r bF=0and§ vanishing off 2.7, for,
by Stegenga’s Theorem [8], there exists a smooth 1 which multiplies BMG(4J)
pointwise, which is 1 on J, vanishes off 2.7, and can be chosen so that _[ b =0.
Simply take b= yb.
Now apply (2.6) with I replaced by 2J and f replaced by b. That gives

™ 19— J @) < (W)™ [Blowdx)te
7 27
< Cw)™ [ (G117 wdx)
) 45

< Clibfismo [w (@Y w(T"? < C|b| pyo
by doubling.

So Lemma 2.4 holds here as well, and by Jones’ Lemma 2.5, w sA;o, which
finishes the proof. =

3. Characterizations of 4_

TueoreM 3.1, The following are equivalent:
(1) wed,.

2) I{|H(wy ) < CI(w), for all intervals 1.

(3) I(M*(wy,)) < CIiw), for all intervals I.

Proof. As we remarked in the introduction, condition (RH}) implies both
(2) and (3). That (2) implies (1) is contained (somewhat hidden!) in the proof of
Theorem 1 in [7]. We must show that (3) implies (1).

A weight v is an A4, weight if

(32 I(v) < Cessinfo, for all intervals I.
I

A; © A, and the constants p and C in condition (RH) depend only on the
constant C in (3.2). '

icm

Sharp weights 7

It will suffice to show that each M*{wy,}€ A, (J), in other words (3.2) holds
with v = M*(wy,) and all I = J, with the constant C independent of J._For
then {RH) holds with some universal p > 1 and C for each M*(wy;} restricted
to J. In particulat,

0wy < (M (w )P < CT (M 0w)
CJw), by 3).

TN

So weRH =4,
Now fix J. Let I < J and put

F = {xel: M*(wg)(x) = M*(wya)(x)}. G=I~F.
G will be empty, of course, if I is too large. Now

14§ M%) = 1)1 M* (wi) < 21211770 § M*(witan)
F F 2r
L CR2I7 ' [ w < C essinf M*(wy,).
2r I
Suppose xe G and yel. Let R < J be an interval with xe R and R ¢ 2L

Then there exists an interval R < J with JuJ < R and IR] < 3iR|- So

IR fw < 318! gw <3 esinnf M*{(wy,).
R

Therefore,
17§ M wgy) = 117 [ M%) + [ M)

36 .
< C-cssinfM*(wa)-l——llﬂ—l essinf M*(wy,),
T I

and indesd, M*(wy)eA,(J). »

[ ith_a new proof of Lemma
4, Hom(BMO) and Hom*{BMO). We start with, '
2.5. Assume(that o =wz0, qoeHom(BMO} = Hom*(H'). We will scale
things so that (0} =0 and (1) = 1. Define o, f and y by

ol =172, o) =2, ol—y)=-172.

As a first step, we will bound o below and y above. Let ¢ and b be the atoms

~12 f0<gx<l,
b(x) = 12

if 1<x=<2.
Since @eHom*(H'), w(¢og) and w{bo@)eH?, and hence

#.1) ([H[(@co)wli < C, [IH[po@WlI<C,

1 if0gx<12
“(x)={1 if12<x<l,
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using the Closed Graph Theorem. Now

.H[(bocp)w](—x) IW(J} (fp(y)) dy

x+y
1
L W) 5 w(y)
S .._d 1
2£x+ Y 2!x+ydy
For x =0,
]
w(y) '
1 d - L
L=z H IWU’)‘U P (J)W(y)dyéfg%‘d :
[

so Hf(bop)w](—x) = 0. From (4.1},

§ W) L w(y)
—— yd_x C.f_.l y
00 Xty 2MX+JJ v
<C+]1~_%1 ;
S O3] o7 Twhdydx = Cdlog2

The same argument with o gives

Leowy)
e "J"’“CHI frﬂdd

()

<C+” Yty dydx < 3C+log2.
But
e ) Loy o«
Mx_]_}dydx E‘;x+oﬂ‘£w(y)dydx l10g1+a
So,

1+
10g——~< 6C+2log2

and hence o 18 bounded below.

The same argument a
pplied to the . ;
below, so that y is bounded above, also. nterval [, 2] bounds «/fy + o}

Let I'=[—y,0] and J =1[0,x]. Let ¢ be the atom

c(x)={_—1 for ~1/2<x<0,
Then 1 for 0 <x < 1/2.
H(@op)w](~x) = [ P 4, 1 #0)
Pl :‘;XHF-ydy { dy = —H(wy,{—x)— j%dy,

Sharp weights

so that

1
|H (wy,)(—x)| < [H[(@o@)w](—x)|+] <+

Therefore, by (4.1},
w(y)

[IHwz dx < C (720 4oy < c 441 1+”
j wy, ) dx < .‘—I—.o[‘gx_;; +ilog| —

which we know to be bounded. Using (4.1) again with the atom ¢,
H(cop)w](x) = H(wy,)x)— H(wy)x),

so that
HH (wy ) (x) dx < j\H(wx,|d1c—|~j|H[cocp)w]|dx

1+9\,
< 2C+%log(lw%:—y) = 1:4C+10g(-?£2)]jw
I

The constants here are independent of 1, and of our scaling, so Theorem 31

gives wed,, =

We close this off by characterizing Hom* (BMO) and Hom(H 4.

TueorREM 4.2. Hom*(BMO) = Hom(H") = {¢: o(x)=a+ bx}.

Proof By rescaling, we can assume that @(0) =0 and ¢(1) = 1. The
theorem asserts that such ¢ eHom*(BMO) and e Hom(H"') if and only if
o(x) = x. Clearly that ¢ is a good homeomorphism. Since Hom*(BMO)

= {p: ¢ is differentiable ae. and ¢eHom( HY), it suffices to show that
the only such homeomorphism belonging to Hom(H') is the identity

homeomorphism.
So assume that such a peHom(H"). Let cx = @(1/2), and consider the

atom a defined above. By our assumption, aog™ ' e ', so that H(aoe™ e Ll
Let x = 2. Then

- a((p”l(y))dyl = 1 v 1
Higoo N = [l = | = [ ——dy+| ——d
I.(a o)) = 1f . gx_y v ix_y v

(x—a) 1 o
- = 14—
\1 x(x log| 1+ 1 +x2—~x
_ 2
! ZOCI+ e which is not in L' unless

For large x, this behaves like | —,
_ x—1 x"—x

o =1/2.
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Of course, the same argument applied to [0, 1/2] forces ¢(1/4) = 1/4, and
applied to [1/2, 17 forces @(3/4) = 3/4, and so on. Likewise, if ¢(—1) % —~1,
this midpoint argument applied to [—1, 1] won’t give o{0)= 0. So we
conclude:

o(x) = x whenever x is dyadic.

Continuity then finishes off the theorem. =
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An interpolation theorem with A -weighted L" spaces
by

STEVEN BLOOM (Loudonville, N.Y))

Absteact, If T and T% uL” —~BMO, for all ue A, then T: L*(w)—»L"(w) whenever we 4,
1<p<oo

In 1976, Muckenhoupt and Wheeden introduced the wqighted bounded
mean oscillation spaces, BMO, [6]. On R, feBMO, provided

IS =10 < CLw),

for all intervals I, using the notation [I| = Lebesgue measure of' I _an.d
I )=l’|11"1 [f. These spaces proved to have more than just an intrinsic
) :

interest, they turned out to be the solution spaces to some impor'gan.t 51}111g1y 3:1(1
doubly weighted norm inequalities [1]. The‘purpose 05 this note is to show tha
these spaces arise as interpolation endpoints for [P{w), weA,.

A weight we A, il

I(w)I[w™ Y1t < ¢ for all intervals [,

when p> 1. wed, if

I{w) < Cessinfw, for all intervals I.
i

The A, classes are nested, 4, < 4, if ¢>p, and a wejght b_elongsl_ tto

some ;1 class if and only if it satisfies a reverse Hélder inequa 1]y.

I (w‘”)lﬁ”a) < CI(w), for some & > 0 and all intervals I. The Hardy—ugt e-

wood maximal operator and the Hilbert transform areA bounde;l olf:m,t[:3 1{;«3
' cA, can be

if and only if wed,, 1 <p<oo [2]. Also any weA, n LCtO?

into the fojll'm W = u.vf“'"”, for some u and ved,, the Jones’ Factorization

5 ! « 4
Theo‘\l?'s(ranmlf:ﬂl] use the sharp maximal function of Fefferman and Stein [4],

£ (%) = sup I~ [/~ I(f): xel, [ an interval}.
' i

If 1< p< o, then | f*|,~f], provided [|If], is finite.



