Absolutely p-summing operators
and Banach spaces
containing all p_p^n uniformly complemented
by
ANDREAS DEFANT (Oldenburg)

Abstract. It is proved that for $p = 1, 2$ and ∞ a Banach space G contains uniformly complemented all p_p^n's if (and only if) each operator $T \in L(E,F)$ that satisfies $\|\cdot\|_p \leq \lambda$ for every p such that $1 \leq p \leq \infty$ and λ is finite.

1. S_p-spaces and T_{∞}-spaces. As usual p_p^n stands for the space R^n_p equipped with the p-norm. A real Banach space G is said to be an S_p-space if it contains all p_p^n uniformly complemented, i.e., there is a sequence (G_n) of n-dimensional subspaces of G and projections $P_n \in L_p(G,G)$ onto G_n such that

$$\sup_n d(G_n, p_p^n) < \infty, \quad \sup_n \|P_n\| < \infty$$

(here as usual $d(\cdot, \cdot)$ denotes the Banach–Mazur distance). Clearly, G is an S_p-space if and only if there is a $\lambda \geq 1$ such that for every n there are operators
$I_n \in \mathfrak{L}(\mathbb{L}_p, G)$ and $P_n \in \mathfrak{L}(G, \mathbb{L}_p)$ satisfying

$$\|I_n\| \|P_n\| \leq \lambda.$$

As an example we mention that every infinite-dimensional \mathbb{L}_p-space (in the sense of Lindenstrauss and Pełczyński) is an S_1-space. Moreover, it is well known that a Banach space is an S_1-space if its dual is an S_∞-space, and every S_∞-space is either S_1, S_2 or S_∞. Pisier [9] (answering an old question of Lindenstrauss) constructed a class of infinite-dimensional Banach spaces which are not S_∞ for any $1 \leq p \leq \infty$.

We start with a useful characterization of S_1- and S_∞-spaces.

1. Proposition. A Banach space G is an S_1-space (resp. S_∞-space) if and only if its l_2-sum

$$l_2(G) := \{(x_k) \in G^\infty | \|(x_k)\|_2 = \left(\sum_{k=1}^\infty \|x_k\|^2 \right)^{1/2} < \infty \}$$

is an S_1-space (resp. S_∞-space).

Proof. Of course, if the complemented subspace G of $l_2(G)$ is an S_1-space (resp. S_∞-space) then this also holds for $l_2(G)$ itself. Conversely, assume that $l_2(G)$ is an S_∞-space. A Banach space is an S_∞-space if and only if it contains all l_∞ uniformly, and hence by (a special case of the Maurey–Pisier theorem (see [6], p. 85 or [7], p. 85) a Banach space is S_∞ if it has no finite cotype. But then, since by [6], p. 55, the l_2-sum $l_2(G)$ has no finite cotype if and only if G has no finite cotype, G is an S_∞-space. Finally, if $l_2(G)$ is assumed to be S_1, then the assertion follows by duality. □

We shall also need a characterization of S_2-spaces which appears as a consequence of the following lemma. Let μ_{n+1} be the normalized rotation invariant Borel measure on the sphere $S_{n+1} := \{x \in \mathbb{R}^{n+2} | \|x\|_2 = 1\}$.

1.2. Lemma. For each $n \in \mathbb{N}$ let r_n be a seminorm on \mathbb{R}^{n+2}. Then $r_n(x) \leq \|x\|_2$ for all $x \in \mathbb{R}^{n+2}$. Moreover, assume that

$$\inf_{x \in S_{n+1}} r_n(x) \mu_{n+1}(dx) =: \alpha > 0.$$

Then there are a constant $c > 0$ and $n_0 \in \mathbb{N}$ such that for all $x \in S_{n+1}$, there exists a subspace E_n of \mathbb{R}^{n+2} satisfying

$$\dim E_n \geq cn$$

and $c \|x\|_2 \leq r_n(x) \leq \|x\|_2$ for all $x \in E_n$.

The proof is modeled on the proof of Milman’s important theorem [7], 4.2: Fix $n \in \mathbb{N}$ and let M_n denote the median of r_n restricted to S_{n+1}, i.e., the unique real number M_n such that

$$\mu_{n+1}[M_n \geq r_n] \geq \frac{1}{2}, \quad \mu_{n+1}[M_n \leq r_n] \geq \frac{1}{2}.$$

Put $t := \frac{1}{2}$ and $\varepsilon := \frac{1}{2}M_n$. By [7], Theorem 2.4, there is a subspace E_n of \mathbb{R}^{n+2} with

$$\dim E_n \geq \frac{c^2 n}{2 \log 12} = c'M_n^2 n$$

and a 0-net N in $S_{n+1} \cap E_n$ such that for all $x \in N$ (denote by ρ the geodesic distance on S_{n+1})

$$\rho(x) - M_n \leq \sup \{\rho(x) - \rho(y) | \rho(x, y) \leq \varepsilon\} \leq \rho(x) - \rho(y) \leq \varepsilon \leq \varepsilon.$$

Now $\ell_2(S_{n+1})$ is applied showing that $\frac{1}{2}M_n \leq r_n(x)$ for all $x \in S_{n+1} \cap E_n$ (we remark that Lemma 4.1 of [7] is only formulated for norms r_n, but its proof just uses the fact that r_n is a continuous, convex and homogeneous function). So it remains to prove that for large n the median M_n is larger than or equal to some uniform constant $d > 0$.

For $n \in \mathbb{N}$ put $A_n := \{r_n = M_n\}$ and for $t \geq 0$ let (A_n) be the set of all $x \in S_{n+1}$ such that $\rho(x, y) \leq t$ for some $y \in A_n$. Then for every $x \in S_{n+1}$ and $y \in A_n$

$$\rho(x, y) \leq \rho(x, y) \leq r_n(x) \leq [\rho(x) - M_n],$$

and hence for all $t \geq 0$\n
$$\{x \in S_{n+1} | \rho(x, y) - M_n > t\} \subseteq \text{complement } (A_n).$$

Since by Levy’s lemma (see [7], Corollary 2.3)

$$\mu_{n+1}(A_n) \geq 1 - \sqrt{\pi/2} e^{-\alpha n^2}$$

we obtain

$$\mu_{n+1}(A_n) \geq 1 - \sqrt{\pi/2} e^{-\alpha n^2}$$

and therefore

$$\frac{1}{2} \int_{S_{n+1}} r_n(x) \mu_{n+1}(dx) \leq \frac{1}{2} \int_{S_{n+1}} r_n(x) \mu_{n+1}(dx) \leq -\alpha n^2 \leq \frac{\pi}{2 \sqrt{n}} - \frac{\pi}{2 \sqrt{n}}.$$

By assumptions this implies for all n

$$\alpha \leq \int_{S_{n+1}} r_n(x) \mu_{n+1}(dx) \leq \int_{S_{n+1}} r_n(x) \mu_{n+1}(dx) \leq -\alpha n^2 \leq \frac{\pi}{2 \sqrt{n}},$$

so that for all $n \geq \pi^2/\alpha^2$

$$d := \alpha/2 \leq M_n,$$

which leads to the desired conclusion. □

This lemma implies a useful criterion for S_2-spaces.
1.3. PROPOSITION. A Banach space \(G \) is an \(S_p \)-space if and only if there is a constant \(\alpha > 0 \) such that for every \(n \) there are operators \(V \in \mathcal{L}(l_p^{n+2}, G) \) and \(U \in \mathcal{L}(G, l_p^{n+2}) \) satisfying

\[
\int_{s_{n+1}} \| U_n V_n(x) \|_{l_p^{n+1}}(dx) \geq \alpha \| U_n \| \| V_n \| > 0.
\]

Proof. If \(G \) is an \(S_p \)-space then there is \(\lambda \geq 1 \) such that for all \(n \) there are \(I_{n+1} \in \mathcal{L}(l_p^{n+2}, G) \) and \(P_{n+2} \in \mathcal{L}(G, l_p^{n+2}) \) with

\[
\text{id}_{l_p^{n+2}} = P_{n+2} I_{n+1}, \quad \| P_{n+2} \| \| I_{n+1} \| \leq \lambda.
\]

In particular, for \(\alpha := 1/\lambda \), \(V_n := I_{n+1} \) and \(U_n := P_{n+2} \)

\[
\int_{s_{n+1}} \| U_n V_n(x) \|_{l_p^{n+1}}(dx) = 1 \geq \alpha \| U_n \| \| V_n \| > 0.
\]

Conversely, we assume without loss of generality that \(\| V_n \| = \| U_n \| = 1 \).

Define

\[
T_n := U_n V_n \in \mathcal{L}(l_p^{n+2}, l_p^{n+2}), \quad r_n(x) := \| T_n x \|_{l_p^{n+2}} \quad \text{for} \quad x \in l_p^{n+2}.
\]

By the lemma there exists a constant \(c > 0 \) such that for large \(n \) there is a subspace \(E_n \) of \(R^{n+2} \) with \(\dim E_n \geq cn \) and \(c \| x \|_{l_p^{n+2}} \leq r_n(x) \) for all \(x \in E_n \). Now observe that \(T_n \) is injective on \(E_n \) and consider the following commutative diagram:

\[
\begin{array}{ccc}
(E_n, \| \cdot \|_{l_p^{n+2}}) & \xrightarrow{\text{id}_{E_n}} & (E_n, \| \cdot \|_{l_p^{n+2}}) \\
\downarrow{V_n \downarrow l_{E_n}} & & \downarrow{T_n^{-1}} \\
G & \xrightarrow{l_{P_{n+2}}} & (T_n E_n, \| \cdot \|_{l_p^{n+2}})
\end{array}
\]

where \(Q_n \) is the orthogonal projection. With \(J_n := V_n l_{E_n} \) and \(P_n := T_n^{-1} Q_n U_n \), one gets \(\text{id}_{E_n} = P_n J_n \), and, since for all \(x \in T_n E_n \)

\[
\| T_n^{-1} x \|_{l_p^{n+2}} \leq \frac{1}{c} r_n(T_n^{-1} x) = \frac{1}{c} \| x \|_{l_p^{n+2}},
\]

moreover \(\| P_n \| \| I_n \| \leq 1/c \). This proves that "\(G \) contains all \(E_n \) uniformly complemented", and hence is an \(S_p \)-space.

Now, as a technical device, a new class of Banach spaces is defined which a priori is larger than the class of all \(S_p \)-spaces. We call a real Banach space \(G \) a \(T_p \)-space \((1 < p < \infty) \) if there is a constant \(\lambda \geq 1 \) such that for every \(n \in N \) there are \(m \in N \) and operators \(I_1, \ldots, I_m \in \mathcal{L}(l_p, G) \) and \(P_1, \ldots, P_m \in \mathcal{L}(G, l_p^{m+2}) \) satisfying

\[
\text{id}_G = \sum_{k=1}^m P_k I_k, \quad \sum_{k=1}^m \| P_k \| \| I_k \| \leq \lambda.
\]

A Banach space \(G \) is a \(T_p \)-space if and only if its dual is a \(T_p \)-space (one direction is trivial and the other follows by standard arguments using (a weak form of) the principle of local reflexivity). Obviously, every \(S_p \)-space is a \(T_p \)-space. The following partial converse is the crucial step of the proof of our main result.

1.4. THEOREM. For \(p = 1, 2 \) and \(\infty \) every \(T_p \)-space is an \(S_p \)-space.

Proof. The cases \(p = 1 \) and \(\infty \): Because of the duality of \(T_1 \)- and \(T_\infty \)-spaces as well as \(S_\infty \) and \(S_1 \)-spaces it suffices to prove that every \(T_\infty \)-space is \(S_\infty \). Let \(G \) be a \(T_\infty \)-space. In view of 1.1 we show that the \(l_2 \)-sum of \(G \) is \(S_\infty \). By assumption there is \(\lambda \geq 1 \) (not depending on \(n \)) and there are operators \(I_1, \ldots, I_m \in \mathcal{L}(l_p, G) \) and \(P_1, \ldots, P_m \in \mathcal{L}(G, l_p^{m+2}) \) (where \(m \) depends on \(n \)) such that

\[
\text{id}_{l_p} = \sum_{k=1}^m P_k I_k, \quad \sum_{k=1}^m \| P_k \| \| I_k \| \leq \lambda.
\]

Without loss of generality we may assume that \(\| P_k \| = \| I_k \| \) for all \(k \). Define

\[
V_k : l_p^m \rightarrow l_2(G), \quad \xi \mapsto (I_1 \xi, \ldots, I_m \xi, 0, \ldots),
\]

\[
U_k : l_2(G) \rightarrow l_\infty^m, \quad (x_k) \mapsto \sum_{k=1}^m P_k x_k.
\]

Then obviously \(\text{id}_{l_\infty} = U_n V_n \) and \(\| V_n \| \leq \sqrt{\lambda}, \| U_n \| \leq \sqrt{\lambda} \), which proves that \(l_2(G) \) contains all \(l_p \)-spaces uniformly complemented.

The case \(p = 2 \): Let \(G \) be a \(T_2 \)-space. In order to show that \(G \) is \(S_2 \) we use criterion 1.3. Let \(n \in N \). Then there are operators \(I_1, \ldots, I_m \in \mathcal{L}(l_2, G) \) and \(P_1, \ldots, P_m \in \mathcal{L}(G, l_p^{m+2}) \) such that

\[
\text{id}_{l_2} = \sum_{k=1}^m P_k I_k, \quad \sum_{k=1}^m \| P_k \| \| I_k \| \leq \lambda,
\]

where the constant \(\lambda \geq 1 \) does not depend on \(n \). Assume that for all \(k = 1, \ldots, m \)

\[
\int_{s_{n+1}} \| P_k I_k(x) \|_{l_2} \| I_k \| (dx) < \frac{1}{\lambda} \| P_k \| \| I_k \|.
\]

Then

\[
1 = \int_{s_{n+1}} \sum_{k=1}^m \| P_k I_k(x) \|_{l_2} \| I_k \| (dx) \leq \sum_{k=1}^m \int_{s_{n+1}} \| P_k I_k(x) \|_{l_2} \| I_k \| (dx) \leq \frac{1}{\lambda} \sum_{k=1}^m \| P_k \| \| I_k \| < 1,
\]

which proves that \(G \) is an \(S_2 \)-space.
holds isometrically. Hence, if as usual \([\mathcal{F}, F]\) stands for the Banach operator ideal of all integral operators then

\[\mathcal{D}_p(E, F') = (E \otimes_{w_p} F') = (E \otimes_F F') = \mathcal{F}(E, F), \]

provided \(E\) is an \(\mathcal{L}_p\)-space or \(F\) an \(\mathcal{L}_p\)-space.

The following tensor product characterization of \(p\)-dominated operators is a slight extension of results proved in [1] and [4].

2.1. Proposition. For \(1 \leq p \leq \infty\), \(T \in \mathcal{L}(E, F)\) and a Banach space \(G\) consider the following four statements:

1. \(T \in \mathcal{D}_p(E, F)\).
2. \(\text{id}_G \otimes_T G \otimes_{w_p} E \to G \otimes_{w_p} F\) is continuous.
3. \(\text{id}_G \otimes_T G \otimes_{w_p} E \to G \otimes_{w_p} F\) is continuous.
4. \(\text{id}_G \otimes_T G \otimes_{w_p} E \to G \otimes_{w_p} F\) is continuous.

Then (1) \(\Rightarrow\) (3) \(\Rightarrow\) (4) and (1) \(\Rightarrow\) (2) \(\Rightarrow\) (4). Conversely, if \(G\) is a \(T_p\)-space then (1) \(\Rightarrow\) (4) are equivalent. In particular, if \(G\) is an infinite-dimensional \(\mathcal{L}_p\)-space then (1) is equivalent to

5. \(\text{id}_G \otimes_T G \otimes_{w_p} E \to G \otimes_{w_p} F\) is continuous.

We remark that this result in particular implies that Piets' infinite-dimensional Banach spaces \(F\) for which \(P \otimes_{w_p} F = P \otimes F\) holds isomorphically cannot be \(T_p\)-spaces for any \(1 \leq p < \infty\) (for the construction of these spaces see e.g. [9]).

Proof. Obviously, (3) \(\Rightarrow\) (4) and (2) \(\Rightarrow\) (4). The proof of (1) \(\Rightarrow\) (2) is easy. Indeed, for \(z = \sum_{i=1}^n x_i \otimes x_i \in G \otimes E\)

\[\pi(\text{id}_G \otimes_T G \otimes_{w_p} E, F, G) = \sup \left\{ \left(\langle x, u \rangle \right|_{w_p}(u, E', F') \leq 1 \right\}, \]

which as \(\varepsilon\) and \(\pi\) form tensor norms in the sense of Grothendieck, in particular:

\[\varepsilon \leq w_p, \quad \pi \leq \pi \text{ (see e.g. [2] and [3])}. \]

If \(E\) is an \(\mathcal{L}_p\)-space or \(F\) is an \(\mathcal{L}_p\)-space then isomorphically

\[E \otimes_{w_p} F = E \otimes_{w_p} F, \quad E \otimes_{w_p} F = E \otimes_{w_p} F. \]

Moreover, for arbitrary Banach spaces \(E\) and \(F\)

\[\mathcal{D}_p(E, F) = (E \otimes_{w_p} F'), \quad T \mapsto (x \otimes y \mapsto \langle y, Tk \rangle), \]

as usual \(\mathcal{D}^{(p)}(E, F)\) denotes the injective norm on the tensor product \(E \otimes F\) of two Banach spaces and \(\pi^{(p)}(E, F)\) the projective norm. Moreover, for \(1 \leq p \leq \infty\) we shall consider the norms

\[w_p(z; E, F) = \inf \left\{ w_p(x_i) w_p(y_i) : \sum_{i=1}^n x_i \otimes x_i \right\}, \]

\[w_p^{(p)}(z; E, F) = \sup \left\{ \langle x, u \rangle : w_p(u, E', F') \leq 1 \right\}, \]

which as \(\varepsilon\) and \(\pi\) form tensor norms in the sense of Grothendieck, in particular:

\[w_p \leq w_p, \quad w_p^{(p)} \leq \pi \text{ (see e.g. [2] and [3])}. \]

If \(E\) is an \(\mathcal{L}_p\)-space or \(F\) is an \(\mathcal{L}_p\)-space then isomorphically

\[E \otimes_{w_p} F = E \otimes_{w_p} F, \quad E \otimes_{w_p} F = E \otimes_{w_p} F. \]

Moreover, for arbitrary Banach spaces \(E\) and \(F\)

\[\mathcal{D}_p(E, F) = (E \otimes_{w_p} F'), \quad T \mapsto (x \otimes y \mapsto \langle y, Tk \rangle), \]

as usual \(\mathcal{D}^{(p)}(E, F)\) denotes the injective norm on the tensor product \(E \otimes F\) of two Banach spaces and \(\pi^{(p)}(E, F)\) the projective norm. Moreover, for \(1 \leq p \leq \infty\) we shall consider the norms

\[w_p(z; E, F) = \inf \left\{ w_p(x_i) w_p(y_i) : \sum_{i=1}^n x_i \otimes x_i \right\}, \]

\[w_p^{(p)}(z; E, F) = \sup \left\{ \langle x, u \rangle : w_p(u, E', F') \leq 1 \right\}, \]

which as \(\varepsilon\) and \(\pi\) form tensor norms in the sense of Grothendieck, in particular:

\[w_p \leq w_p, \quad w_p^{(p)} \leq \pi \text{ (see e.g. [2] and [3])}. \]

If \(E\) is an \(\mathcal{L}_p\)-space or \(F\) is an \(\mathcal{L}_p\)-space then isomorphically

\[E \otimes_{w_p} F = E \otimes_{w_p} F, \quad E \otimes_{w_p} F = E \otimes_{w_p} F. \]
Hence with \(e_j := \text{sgn} \langle Tx_j, y \rangle \) by use of (4)

\[
\sum_{j=1}^{n} \langle Tx_j, y \rangle = \sum_{j=1}^{n} \langle I_k e_j \otimes Tx_j, P_k e_j \otimes y_j \rangle \\
\leq \sum_{j=1}^{n} \left| \langle I_k e_j \otimes Tx_j, P_k e_j \otimes y_j \rangle \right| \\
\leq \sum_{j=1}^{n} \left(\sum_{i=1}^{k} w_i \langle I_k e_i \otimes Tx_i, G F \rangle w_i, \sum_{j=1}^{n} P_k e_j \otimes y_j \rangle; G', F' \right) \\
\leq k \| I_k \| \| I_k \otimes T : G \otimes_w E \to G \otimes \| \| F \| \| w(x_i) \otimes w(y_j),
\]

which as desired proves that \(T \) is \(p \)-dominated. \(\blacksquare \)

As a corollary this proposition implies that an operator \(T \in \mathfrak{L}(E, F) \) is \(p \)-dominated if and only if there is an \(S_p \)-space \(G \) such that \(I_k \otimes T : G \otimes_w E \to G \otimes_w F \) is continuous. In [4] Jarchow asked for a certain converse of this statement: Is a Banach space \(G \) an \(S_p \)-space if every operator \(T \in \mathfrak{L}(E, F) \) such that \(I_k \otimes T : G \otimes_w E \to G \otimes_w F \) is continuous, is already \(p \)-dominated? The following theorem gives a positive answer for \(p = 1, 2 \) and \(\infty \). Moreover, for arbitrary \(1 \leq p \leq \infty \) it is shown that the answer to Jarchow's problem is positive if one considers the class of all \(S_p \)-spaces instead of the class of all \(S_p \)-spaces.

2.2. Theorem. Let \(1 \leq p \leq \infty \) and let \(G \) be a Banach space. Then the following are equivalent:

1. Every \(T \in \mathfrak{L}(E, F) \) such that \(I_k \otimes T : G \otimes_w E \to G \otimes_w F \) is continuous, is \(p \)-dominated.
2. There is a constant \(c > 0 \) such that for each \(T \in \mathfrak{L}(l_p^m, l_p^m) \)

\[
1(T) \leq c \| I_k \otimes T : G \otimes_w l_p^m \to G \otimes_w l_p^m \|
\]

\(I(T) \) is the integral (nuclear norm) of \(T \).
3. \(G \) is a \(T_p \)-space.

Moreover, for \(p = 1, 2 \) and \(\infty \) these statements are equivalent to

4. \(G \) is an \(S_p \)-space.

Proof. Obviously, (1) \(\Rightarrow \) (2) is a consequence of the closed graph theorem and the fact that \(\mathfrak{L}(l_p^m, l_p) = \mathfrak{L}(l_p, l_p) \) (see the preliminary remarks of this section). Moreover, (3) \(\Rightarrow \) (1) follows directly from 2.1, and (3) \(\Rightarrow \) (4) (if \(p = 1, 2 \) or \(\infty \)) was already stated in 1.4. Hence it remains to prove that (2) implies (3). For \(n \in \mathbb{N} \) consider the linear surjection

\[
c_n : (l_p^m \otimes G) \otimes (G \otimes l_p^m) \to l_p^m \otimes l_p^m, \quad (\eta \otimes g') \otimes (g \otimes \xi) \mapsto \langle g, g' \rangle \eta \otimes \xi,
\]

and define the quotient norm

\[
\delta(z; l_p^m, l_p) := \text{inf} \{ \pi(w; l_p^m \otimes G', G \otimes l_p^m) | c_n(w) = z \}
\]

on \(l_p^m \otimes l_p \).

Step 1: We prove that under the hypothesis of (2) for all \(n \)

\[
\delta(z; l_p^m, l_p) \leq c \delta(z; l_p^m, l_p)
\]

or dually: For \(u = \sum x_i \otimes y_i \in l_p^m \otimes l_p \)

\[
\pi(u; l_p^m, l_p) \leq c \delta'(u; l_p^m, l_p)
\]

where

\[
\delta'(u; l_p^m, l_p) := \sup \{ \langle u, v \rangle | \delta(u; l_p^m, l_p) \leq 1 \}
\]

Consider the operator \(T_u := \sum (x_i \otimes y_i \in l_p^m \otimes l_p) \)

\[
\| I_k \otimes T_u : G \otimes l_p^m \to G \otimes l_p^m \| \leq \delta(u; l_p^m, l_p).
\]

Indeed, for \(u = \sum x_i \otimes y_i \in G \otimes l_p^m \), choose

\[
w = \sum_j (x_j \otimes y_j \in G \otimes l_p^m)
\]

with \(w \in l_p^m \), \(G \), \(l_p^m \) \(\leq 1 \), \(\pi(I_k \otimes T_u(z); G, l_p^m) = \langle I_k \otimes T_u(z), w \rangle \), and check

\[
\pi(I_k \otimes T_u(z); G, l_p^m) = \langle \sum_j x_j \otimes T_u(z_j), \sum_j x_j \otimes y_j \rangle \]

\[
= \langle u, c_n((\sum_j x_j \otimes y_j) \otimes (\sum_j x_j \otimes y_j)) \rangle \]

\[
\leq \delta(u; l_p^m, l_p) \delta(c_n(...; l_p^m, l_p)) \leq \delta(u; l_p^m, l_p) \delta(z; l_p^m, l_p).
\]

Hence by (2)

\[
\pi(u; l_p^m, l_p) = I(T_u) \otimes l_p^m \leq \delta(u; l_p^m, l_p).
\]

Step 2: Let us now prove that \(G \) is a \(T_p \)-space. For all \(n \) the following diagram commutes:

\[
\begin{array}{ccc}
(l_p^m \otimes G') \otimes (G \otimes l_p^m) & \xrightarrow{\text{nat}} & l_p^m \otimes l_p^m \\
\| & & \|
\end{array}
\]

\[
\begin{array}{ccc}
\mathfrak{L}(l_p^m, G) \otimes l_p^m & \xrightarrow{\text{nat}} & \mathfrak{L}(l_p^m, l_p^m) \\
\| & & \|
\end{array}
\]

\[
S \otimes T = TS.
\]

Therefore by step 1 there is \(w \in l_p^m \otimes (G \otimes l_p^m) \) such that \(\pi(w; l_p^m \otimes (G \otimes l_p^m) \leq (1 + c_0)w \)

which by the definition of the \(\pi \)-norm implies the assertion: For every \(n \) there is \(m \) and there are operators \(I_1, \ldots, I_m \in \mathfrak{L}(l_p^m, G) \) and \(P_1, \ldots, P_m \in \mathfrak{L}(G, l_p^m) \) satisfying

\[
\pi(I_k \otimes T_k : G \otimes l_p^m \to G \otimes l_p^m) \leq (1 + c_0)w.
\]

\(\blacksquare \)
Since $\mathcal{S}_p \subseteq \mathcal{S}_p$ for $1 < p < \infty$ (see [8], 17.4.5) one gets as an immediate consequence that every T_p-space ($1 \leq p \leq \infty$) is either S_1 or S_2 or S_∞.

We remark that the theorem holds in the complex sense also (for the definition of complex S_p- and T_p-spaces use the complex l_p^n's instead of the real ones). Indeed, it can be checked easily that the proof of the equivalences $(1)\iff(2)\iff(3)$ does not depend on the scalar field. Moreover, for $p = 1, 2$ and ∞ every complex T_p-space contains all complex l_p^n uniformly complemented. For $p = 1, \infty$ the proof is exactly that of 1.4, and for $p = 2$ the argument is as follows: Let G be a complex T_2-space. Then it is immediate that G considered as a real Banach space is T_2, and hence S_2 by 1.4. But, if a complex Banach space considered as a real one contains all real l_2^n uniformly complemented, then it also contains all complex l_2^n uniformly complemented (this was pointed out to me by Pisier; his argument is based on the facts that Theorem 5.11 of [10] is valid in the complex case also and moreover its converse is essentially true).

Finally, we state some simple reformulations of the theorem. It follows from 2.1 that for $G = l_p$ every $T \in \mathcal{L}(l_p, l_p)$ is integral ($i = p$-dominated) if and only if $\text{id}_G \otimes T : G \otimes l_p \rightarrow G \otimes l_p$ is continuous (see also [2], 5.2). By the theorem and the closed graph theorem the following partial converse holds: For $p = 1, 2, \infty$ the fact that every $T \in \mathcal{L}(l_p, l_p)$ is integral if $\text{id}_G \otimes T : G \otimes l_p \rightarrow G \otimes l_p$ is continuous, implies that G is an S_p-space.

Purely formulated in terms of operators this means

2.3. COROLLARY. Let $p = 1, 2$ or ∞ and let G be a Banach space. Then the following are equivalent:

1. Every $T \in \mathcal{L}(l_p, l_p)$ such that $T \in \mathcal{L}(G, l_p)$ is integral for every $S \in \mathcal{L}(G, l_p)$ is integral itself.

2. There is a constant $c > 0$ such that for all $T \in \mathcal{L}(l_p, l_p)$

$$I(T) \leq c \sup \{I(TS) : S \in \mathcal{L}(G, l_p) \}.$$

3. G is an S_p-space.

The equivalence of (1) and (2) follows by standard arguments (using the closed graph theorem). The proof of (2)\iff(3) is a direct consequence of 2.2 and the commutativity of the following diagram:

$$\begin{array}{c}
G \otimes l_p \xrightarrow{\text{id}_G \otimes T} G \otimes l_p \\
\| \quad \| \\
\mathcal{L}(G, l_p) \xrightarrow{I} I(G, l_p)
\end{array}$$

We remark that l_p in 2.3(1) can be replaced by any infinite-dimensional \mathcal{L}_p-space.

Acknowledgement. The author wants to thank Prof. T. Figiel who at the VIIIth Polish-GDR Seminar at Georgenthal gave some crucial hints for the proof of Theorem 1.4.