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Continuity of derivations from
radical convolution algebras

by

W. G. BADE (Berkeley, Calif) and H. G. DALES (Leeds)

Abstract. We study the question whether or not every derivation from a radical weighted
convolution algebra A = LN(R*, w), or from certain related algebras, into a Banach A-module is
necessarily continuous. We show that such a derivation must have striking continuity properties.

Introduction. This paper studies continuity properties of module deriva-
tions from radical convolution algebras defined on the non-negative real
numbers and on its subsemigroups.

First we describe our algebras and recall some standard notions which
may be found in the text of Bonsall and Duncan [6].

Let R* =[0, o). A radical weight on R* is a continuous, positive,
submultiplicative function o for which w(0)=1 and lim,_,o(t)* = 0. We
denote by IMR*, w) the set of all equivalence classes of Borel measurable
functions on R* for which [ ]| = [g+ |ADlw(t)dt < co. The set of all Radon
measures 4 on the Borel sets of R™ for which [uj = j r+ @Oul(df) < co will be
denoted by M(R™, w). Under convolution multiplication, M(R™, o) is a local
Bapach algebra having for its identity the unit point mass at zero, while
I}MR™, e} is a radical Banach algebra which is a closed ideal in M(R", w). Let
S be a subgroup of R, and let $* = S n R*. Then I'(S™, w) is the subalgebra of
M(R", w) consisting of those discrete measures f =y {f(s)8,: seS8™} for
which | f]| = Y {f(s)|o(s): se8*} < 0. _

Let 9 be a commutative Banach algebrd, and let M be an Y-module
(so that the module operations satisfy a-x = x-a (aeW, xeMN)). Then M is
a Banach W-module if M is a Banach space and if the module operation
(@, x)—ra-x satisfies

lax] < llal %] (ae¥, xeM).

For example, one can regard U as a Banach 2%-module over itself, where, of
course, the module operation is the product in . Then the dual A -of
U becomes the dual module with respect to the operation (a, A)i—a-A, where

(a-2)(b) = Aab) ~ (a, be, ieW).



60 W. G. Bade and H. G. Dales

Let 3 be a Banach M-module. A linear map D: A —M is a derivation if

Diahy = ¢-Dh+Da-bh  {a, be).

The main question that we shull study in this paper is the following.

QuisTioN. Let A be any of the algebras L'(R™.w). M{R". w), or
11(S™, w). Is every derivation from A into a Banuch 4-module necessarily
continuous?

The answer to this question is not known to us for any radical weight  or
any dense subgroup § of R. However, we shall show that derivations from these
algebras must have certain striking continuity properties.

In a companion paper [4], we have investigated derivations from the
algebras I*(Z*, w) and, more generally, from Banach and Fréchet algebras of
power series. We prove in [4] that every Fréchet algebra of power series admits
a discontinuous module derivation which vanishes on the subalgebra C[X] of
polynomials: and has infinite-dimensional range. This theorem shows, in
particular, that discontinuous module derivations abound from the algebras
Nz*, w).

We now proceed to & more detailed description of the results of this paper.
We shall use the following notation: RT = [0, «), R™ =(—~aw,0], Q% =
ONR", Q" =QnR,Z*"=ZnR", Z" =ZnR", N=Z*"\{0}.

Let w be a radical weight function on R*, and let 4= L'(R", w).
In Section 1 we represent the dual module A’ as L*(R™, ™), where a(r)
= @(—1!) (tecR*). We show that the dual module action on 4’ is given by
a@p=(a+x@)|R” (ucA, peA). By a theorem of Johnson, the question of
the continuity of derivations from A inte arbitrary Banach A-modules
is reduced to the question of the continuity of derivations from A into its
dual module A’. The dual module contains the separable submodule
X =C,(R™, @), consisting of those continuous functions ¢ in L*(R™, 0™ ")
for which lim,_, _ , ¢(t)/w(—£) = 0. We prove that w is regulated if and only if
a-peX for every ac A and pe 4. Thus for a regulated weight we need only
discuss the continuity of derivations from A4 into X, We close this section with
a discussion of the closed submodules of X and their relatior to the closed
ideals in A.

In Section 2 we recall and strengthen theorems of Groenbaek [147] which
yield a characterization of all continuous derivations from A4 into A'. Such
a derivation has the form D: fie (xf* ) | R™, where (xf)(£) = ¢/ (t) (t€R™") and
¥ is a certain measurable function on R™. A similar theorem holds for the
algebras [1(S7, w). '

The main results of the paper concerning continuity properties of module
derivations are found in Section 3. Again let @ be a radical weight function on
R*. We begin by investigating the class W of all functions ¥ which serve to
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represent continuous derivations from A to A'. The space W is a Banach
space for the norm '

Al = sup {[led, % ) | R™ [ fs(t): te RTH{O}].

We prove that W coincides with the class of measurable functions y on R™ for
which the function xiy: t—tf (1), R~ —C, belongs to A'. In [12] Ghahramani
characterized the class of all (necessarily continuous) derivations from A4 to
iisell. A map D: A— A is a continuous derivation if and only if Df = xf*u
(feA), where p is a Radon measure on R* satisfying

7
sup—— | wlt+mju/(ds) < m.
sup=s d )lulde

We prove that this class of measures coincides with the set of all Radon
measures g for which xueaAd’ for all pe A’

Using results mentioned above, we prove, under mild conditions on w,
that if D: A~ A’ is any derivation and if g & A, then D is continuous if and only
if gD is continuous (where (¢ D)(f} = g-D{f) ([ € A)). Moreover, an element
g can be found so that ¢-D is continuous on a dense subalgebra of A. As
a consequence, we obtain theorems of which the following is an example. Let
o satisfy

4

sup—— | o{t+a)dr < 0,
a>0w CI) Rj*'

and let g(t) = > (teR™). Then, for any derivation D: A A’, the derivation
gD is continuous on the dense subalgebra of all polynomials in t.

Let 9 be a commutative Banach algebra, and let 9t be a Banach
N-module. There is a standard way of constructing discontinuous derivations
from 9 into N in the case where ¥ is an integral domain and MM contains
a non-zero, A-divisible, torsion-frée submodule. Since the algebras we are
considering are all integral domains, one might hope that this method would
work at least for the algebra L' (R*, ). Howevet, in Section 4, we shall prove
that this hope is futile, for we shall show that IMRY, ) has no non-zero,
LI{R", w)-divisible submodule in any Banach L'(R™, w)-module.

This paper was written in the course of the “Semester on Automatic
Continuity and Banach Algebras”, held at the University of Leeds, England,
from February to July 1987. We are grateful to the United Kingdom Science
and Engineering Research Council for its support of this Semester. The
research of the first author was supported by the National Science Foundation
under Grant No. DMS 86-03001.
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1. Weights, algebras, and modules. A weight function on R is a con-
tinuous function w: R* —R*\{0} satisfying

(1.1) w0 =1, o+ <o) (s teR")
The weight function @ is radical if
(1.2) lim ew(2)** = 0.

t—+w

For example, let o(t) = e™* (te R™). Then e is a radical weight function
on R*.

Let § be a subgroup of the real numbers. We shall also consider radical
weight functions on §* = §nR*: these are the restrictions to §* of radical
weight functions on R*. Important cases are where S=@, §=2Z, and
S = {m+na: m, neZ}, where a is an irrational. In this paper emphasis is on
the case where § is dense in R. In a companion paper [4] we treat the case of
radical weight functions on Z~.

We also considered radical weight functions on R* in the paper [3]. Note,
however, that, on that occasion, we only required that a weight function on R*
be measurable, rather than continuous, and so we allowed weight functions
that were unbounded near the origin.

Let Ii,.(R) be the class of locally integrable functions on R. For f € L}.(R),
write supp f for the support of f, and set

x(f) = infsuppf  (f € Lio(RN\{0}).

For convenience we set a(0) = co. If f, gL (R), the convolution f*g is
defined by the formula

(f*g)(t) = ‘f! Jt—s)g(s)ds

for those values of teR such that [g|f(t—5)g(s)lds < co. For example, if
a(f) > —oo and a(g) > — oo, then (f *g)(f) exists for almost all £ R, and, by
the Titchmarsh convolution theorem, '

a(f »g) = (/) +elg).

Hereafier a function defined on R™ or R~ will be regarded as being
defined on the whole of R, having the value zero on the complementary
interval, If f is defined on R, set

JO=f(=1) (teR).
For example, if f{t} is defined for te R*, then f{t) = f(~t) for teR™, and
f©)y=0 for IEER*‘\{O}. If f, geLi,.(R"), then f+g is given by

(13) (fo)d) = | F—9)g(®)ds  (teR),
¥
and fxgeL},.(R").

icm

Continuity of derivations 63

Before describing the Banach algebras we shall discuss, it is convenient to
introduce the notion of a Radon measure on R*. Our reference for Radon
measures will be [11, Ch. 47, although we modify some of the definitions there
jn inessential ways. Let R(R™) be the linear space of all continuous, com-
plex-valued functions ¢ for which suppe is a compact subset of R™. Writing
R~ =% S,, where S, = [—n, 0], we topologize R(R™) as the strict induc-
tive limit of the Banach spaces K(S,} = C{[-~n, 0]) (see [11, p. 177 (L.]).
A Radon measure on R™ is an element p of the dual K(R™Y of K(R™). We
denote by My,.{R™) the set of all Radon measures on R*. The duality is given
by the pairing

o> = [ @) pu(dr)

fupp ¢

(He Mio,(R”), @eR(R7)).

If e Moo (R*), then the restriction of 4 to K(S,) induces, via the Riesz theorem,
a measure /i, in the usual sense on the Borel subsets of [0, n} via the pairing

(1.4) Gy = | ¢ (peR(S,).
supp¢

Thus, by varying n, we obtain a set function j which is countably additive on
the ring of all bounded Borel sets of R*. Conversely, any such “locally finite”
measure (i on the ring of bounded Borel sets determines a Radon measure
4 by the pairing (1.4), where now ¢ ranges over K(R"). Consequently, if
1E Moo (R™), its total variation |yl is defined as a Radon measure on R™ from
the total variations |4, of the measures ji,. Of course the corresponding
positive set function || can be extended to a Borel measure on the o-field of all
Borel subsets of R* (possibly taking infinite values). Hereafter we identily the
functional p and the set function i, and assume, in the case of positive
measures, that the extension has been made to all Borel sets.

Let p, ve My (R*). We define the convolution p+v of u and v by the
equation

(1.5) Cuwv, @y = | i o (s+1) u{ds) vdr) ((peR(R“)).
R R*

Since the function &: (s, h—¢(s--t) has compact support on R* xR*, the
integral exists and gxv is 2 Radon measure on R™. Clearly M, (R™) is an
algebra with respect to convolution multiplication.

8o far we have not topologized M,(R*). For each neN, define
the seminorm g, (1) = |ul([0, B]) (& Mi(R™)). Then M (R¥) is a Fréchet
space for the sequence (g,) of seminorms. Since 2. (p*V) < @ (We, () (nelV,
ty VE M o(R™)), Mioo(RT) is also a Fréchet algebra. .

If fell(R*), define the measure pu, by setting p (df) =f(f)dt. Then
176 Mio(R™), and the correspondence fi-» iy embeds L1,.(R") as a closed ideal in
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M,..(RT). Moreover,
1
(et = §ft=9)ilds)  (feLlu(RT), pe Mo (RT)).
0

If e M,o(R), we define suppy to be the support of the positive Borel
measure [y, and we define x(u) = infsuppp. It follows from the Titchmarsh
theorem for measures that a(p* v) = a(u)+ofv) (4, veE My, (R1)). Consequently
M.{R*) is an integral domain. It has an identity d,, the unit point mass at
Zero.

In an exactly similar way, one can define a Raden measure on R as an
element of K(RY via the pairing

o @y = [ p(eyldr)  (@e K(R)),
R

The convolution of Radon measures on R is more complicated. If
o K(R{\J0}, the function

@ (s, D—op(s+i), RxR-R,

does not necessarily have compact support in Rx R. For Radon measures
i, veM . (R), the convolution y * v exists as a Radon measure on R if and only

if, for each e R(R), the function @ is integrable for the product measure
ul % |vj. In this case,

Cunv, @) = | [ @ls+10) plds) vide)
RR

(peR(R).

This is the only case that we shall consider. _

Finally, we shall need the existence of cerlain more general convolutions.
Let ¢ be a Borel measurable function on R™, and let ue M, .(R). We say the
convolution ¢+ exists on R™ if

[ ot =9l ul(ds) < o
Rt
for almost all teR”, Then

(0*0@ = § ol=9ud) ek

We now introduce the Banach algebras with which we shall be concerned.
The first ones we discuss will all be subalgebras of L}, (R*) or of M. (R*).

Let w be a weight function on R™. Denote by L'(R*, w) the set of all
equivalence classes of Lebesgue measurable, complex-valued functions f on R*
such that [q. 1 f(Ole(@)dt < . It is standard that I'(R*, ) is an algebra with
respect to pointwise addition, scalar multiplication of functions, and the con-
volution product given by (1.3). Set || fI| = fg+|f (Vi) dt (fe L' (R, w)), Then
(L'(R*, @), |'|) is a Banach algebra. We shall be particularly concerned with
radical weight functions w: in this case L'(R*, w) is a radical Banach algebra,
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Let Co(R™, @ ") denote the linear space of all continuous, com-
plex-valued. functions ¢ defined on R~ for which
|G {e)l

—=—0 as t-—00.

ol = sup{m: teR*‘} <w and
w(t)

w(t)

Then Co(R™, & ') is a Banach space. The space of measures M(R*, w) is
defined to be the dual space of Cy(R™, &d™*) with respect to the pairing

<,U., (P> = R_[I‘ |(ﬁ(t)|#(dt) (LtGM(R+, (1)), pe CQ(R—‘, a“’}‘“l)).

Tt is clear that M(R™, w) is a linear subspace of M,.(R™"), and that M(R*, w) is
a Banach space for the norm.

fuall = IV w(e)ut (de)

'L

(he MR™, w)).

For example, if se R*, then §,, the unit point mass at s, belongs to M(R™, w),
and ||4,] = wfs). If u,veM(R", w), the convolution uxv belongs to
M(R*, w),and M(R*, ) is a Banach algebra with respect to this product. The
correspondence fi—+ i, where u(dt) = f (t) dt, defines an isometric embedding
of LMR*, w) into M(R™, w), and I}(R*, w) is a closed ideal in M(R", w).

Let A = L'(R™, w}. We shall represent the dual space 4" of 4 as the space
of functions L*(R™, &~ ') on R™, Thus A’ is the linear space of equivalence
classes of measurable functions ¢ on R™ for which

|6 (t)]

= . "t
el = esssup{—uww(t). teR }< 0.

The pairing defining the duality is
o= [ fsg(syds  (fed, ped).
Rt

Let fe A and @& A'. Then the convolution product f = ¢ is defined at least for
teR™ by the formula-

(f % p)t) = Rj o(t—5) f(s)ds,

and (f»@){ R~ belongs to 4’ A straightforward calculation shows that

{1.6) gy (f*@IR™> = [%g, o) (f, geA, ped).

Let § be any subgroup of R, and set §* = S~ R*. We denote by I'(S*, )
the subalgebra of M(R*, w) consisting of the discrete measures
f=Y{f(s)8,: seS*} for which [f] =3 {|f(s)lew(s) se§"} < oo. Since
IMS™, w) is closed in M(R*, w), it is a Banach algebra with respect to
convolution multiplication. We shall be mainly concerned with the cases where
§=R, Q, or Z.

5 =~ Swodin Maihomatien 95,1
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Note that, in contrast to the case of IMR*, w), each of the algebras
M{R", ®) and I*(§*, w) has an identity element: it is the point mass &, at zero.
We shall write (5,%f}s)=f(s—1) (s, teR) whenever f is a function
defined on R: the map t+—3&,+f is the right shift operator on 1. Suppose that
feI*R*, w) and that te R*. Then we regard o,/ as being defined on R™:

0 0<s<1),

f(S'_t) {S > t)s .

and §,*feI*(R*, w). Further, |5, +f| < w(®)|f] (te R*).

The question we shall be concerned with in this paper is whether or not, in
the case where  is a radical weight function on R*, every derivation from any
of the algebras A4 =I}R™,w), M(R*, w), or [*(§*, w) into a Banach
A-module is necessarily continuous. Except for the algebra I'(Z7, ), the
answer to this question is not known to us for any of the above algebras for
any radical weight function w. In the paper [4] we have constructed a variety
of discontinuous derivations from the algebra I'(Z7, w).

We now begin our study of the continuity of derivations.

We first recall some standard notation. Let 9 be a commutative Banach
algebra, and let 9 be a Banach space which is an 2l-bimodule with respect to
the operations (a, m)a-m and (a, m—m-a from 2 x M into M (see [6, p. 497).
Then we call 9 a Banach A-module if A is commutative (so that a-m =m-a
(ae A, meM)) and if the above operations are continuous; in this case we
always assume that [a-m| < |af [m] (ae¥, meM).

Throughout we write 9t for the dual of a Banach space 9. Let M be
a Banach -module. Then M’ is a Banach W-module with respect to the
operation defined by

{m,a- iy = {am, L)

(@ *f)s) = {

(ac¥W, meM, leMM):

this module is the dual module to M (see [6, p. 50])
Let % be a commutative Banach algebra, and let M be a Banach

A-module. A derivation from U into M ig a linear map D: A —M such that
D(ab) = a-Db+Da'b (a, be¥N).

Derivations of commutative Banach algebras into modules have been studied
in [1], [17], and [18], for example.

Let E and F be Banach spaces, and let T: E—~F be a linear map. The
separating space of T is ®(T), where '

&(T) = {yeF: there exists (x,) < E such that

x,—0 and Tx,—y}.
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Certainly, (T} is a closed linear subspace of F, and T is continuous if and
only if G(T) = {0}. If W is a commutative Banach algebra, 9 is a Banach
9-module, and D: % — M is a derivation, then the continuity ideal of D is J(D),
where

3I(D) = {aeWU: a-G(D) = {0}}.
Then 3(D) is a closed ideal in 2, and
J(D) = {aeW: the map br+D(ab), W—IM, is continuous}.

For these concepts from automatic continuity theory, see [20].

Let N be a commutative Banach algebra, and let M be a Banach
N-module. A bounded approximate identity (b.a.i) in ¥ is a bounded net {e,}
such that, for each ae?, e,a—a, and the net {e,} is a b.ai. for M if, further,
e, x—x for each xe¥M (sec [6, Section 11.8]).

There are essentially only two known methods for constructing discon-
tinuous derivations. These are the two methods which are exploited in [4].

The first of these methods is to use discontinuous point derivations. Let
A be a commutative Banach algebra, and let ¢ be a character on A. A point
derivation at ¢ is a linear functional d: A~ C such that

d(ab) = d(@)o(b)+d(B)p(a) (a, be ).

If ¥ has discontinuous point derivations, then there are discontinuous
derivations from . For C itself is a Banach #{-module with respect to the map
(a, 2)—p(a)z, W xC—C, and a point derivation is a derivation with respect
to this module operation. Let 2 be a commutative Banach algebra such that
A2 is not closed in A or Y? has infinite codimension in . Then there
exist discontinuous point derivations from U*, the algebra U with identity
adjoined. This method cannot work for 4 = IMR™*, w) because A has the
b.ad. (e,: neN), where e, = nyj,1, and so, by Cohen’s factorization theorem
(see [6, Section 117}, A = A% (We call (¢,) the standard b.a.i for L'(R", w).)
We do not know whether or not the method works when 2 is the unique
maximal ideal in any of the algebras M(R*, @), I'(R*, @), or IN(@", w)
becanse we do not know whether or not U2 = . (We do know that U does
not have a b.ad, in these cases.)

The second known way of constructing discontinuous derivations is
through the use of A-divisible, torsion-free modules. This method is explained
in Section 4. We will show in.Section 4 that this method cannot work for the
algebra IMRY, w).

The first result shows that the problem of the continuity of derivations
into modules can be reduced to the case where the module is the dual module.
For similar results, see [2] and [22].
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1.1. THEOREM. Let 91 be a commutative Banach algebra, and let I be
a Banach N-module. For each L&MW, the map R;: M—W defined by

(a, Ry(m)) = Mam)  (ae¥, meIM)

is a continuous module homomorphism.

Let AeV, let D: N M be a derivation, and let D=R,oD. Then D is
a derivation from W into . If D is discontinuous and if {A-G(D)} # {0}, then
D is also discontinuous.

Proof. The properties of R, and of D are straightforward to verify, The
derivation D will be discontinuous if and only if R,(G(D)) # {0}. Suppose that
AU G(D)) # {0}. Then there exists mye G(D) and a,e WU with A(ag mo) # 0.
We have (aq, Rz(m0)> = Ma,'mg) # 0, and s0 R,(my) # 0 and D is discon-
tinuous. m

It follows from Theorem 1.1 that, if 9 is a commutative Banach algebra
with a b.a.i., and if there is a discontinucus derivation from U into any Banach
9l-module, then there is a discontinuous derivation from 2 into 2. For let
IR be a Banach W-module, and let D: A - M be a discontinuous derivation.
Then G(D) # {0}. Let {e,} be a b.ai for A with bound K. We show, by an
argument of Willis [22, Lemma 3.1], that {e,} is a b.ai for &(D), and so
A G(D) = G(D) # {0}. Take (a,) = A and xeB(D)\{0} such that a,—0 and
D(a,)—x. Then, by the Cohen factorization theorem, there exists be? and
¢,—0 in A such that a, = be, (ne N). We have D(bc,) = b-D(c,}+ D{(b)c,, and
s0 b-D{c,)—x. Take &> 0 and choose N so that |x—b'D{cy)l <&. Choose
v(N) so that [[b—e,b| <z||D(cy)l™" {v = v(N)). Then, if v = v(N),

I —b-Dicw)ll + (b —e,b)-Dley)|
+le, (b Diew)—x)|| < (2+K)e.

Hence {e,} is a b.a.i. for ${D). Thus A-G(D) # {0}, and there exists 2 M’ with
MA-6(D)) # {0}

Let @ be a weight function on R™, and let 4 = L'Y(R*, w). We now
determine “the module operations in the dual module A° of A (whers
A is considered as a module over itself). Since the dual module operatipn is
defined by

lx—e, x|l <

g S o> ={f*g, 9> ([, g9€4, ped),
it follows from (1.6) that
Fo=(+p)IR™ (feAd, ped).

Now let § be any subgroup of R and let 4 = [*(S*, w), where w is
& weight function on §*. Then 4 is a local Banach algebra for convolution
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multiplication
(feg)s) = LS (s=r)g(r): reS*}  (f,ged).

Every f& A has countable support. We represent A’ as [*($~, &~"), the space
of all bounded functions ¢ on §~ for which |¢| = sup{|(,o(s)|/cu 5) se87}
< . The pairing between A and A’ is given by {f, @) = Y {¢(s) f(5): seS7}
(feA, ¢p&A). A routine calculation shows that, for all f, ge A and qo eA’, one

has {f *4, > = {g, ¥, where
W) =Y {p@E f(r—s 5687}
=3 {p—s)f(s): seS*}

Thus the dual module operation of 4 on A’ is given by f ¢
(fed, ped).

1.2, COROLLARY. Let w be a weight function on R, and let A be any one of
the algebras I*(R", »), M(R™, w), or 1'(8*, w), where § is a subgroup of R.
Suppose that there exists a discontinuous derivation from A into some Banach
A-module. Then there exists a discontinuous derivation from A into A'.

(reS™).
=(f»p)|S

Proof. Each of these algebras has either an identity or a b.ai =

Let ueM(RY, w} and pel®(R™, d~
o =u*p)|R".

The space Co(R™, &5~ introduced above will now be denoted by x.

1.3. THEOREM, Let w be a weight function on R™, and let A = L'(R™, o).

(i) The Banach A-module A’ = L*(R~,
M(R*, ), and

lw el < lal el

{ii)y The space X is a closed M(R",
(i) We have

vy = (uwv, 0> (1, ve MR, w), ped).
{iv) The standard b.a.i. (e, neN) for A is also a b.al. Jor X,

Proof We have the estimates

1), Then we set

&™) is also a module over

(reMR™, w), pe A).
w)-submodule of A'.

[( 0) ¥ (1) Gls+1) 0 o (sl :
ol RI* o0 wlds)| < HE vy w(s) |l (ds)
<ol lu]l  (ped, pe MR, w), teR™).

It follows that A’ is a Banach M(R™, o)}-module, proving (i).
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Let p e %, and let t,—t, in R™. An application of the Lebesgue dominated
convergence theorem shows that (u-@)(t,) = (- @) (t,), so that z-¢ is continuous
on R~. Given &> 0, there exists NeN such that |g(t)l/w(t) <e if t 2 N.
But then ‘ '

- 0)” ()]

o) (t = N).

< &lul

Thus J{u-@)” (H/wt)—0 as t—oo, and so p-peX. It follows that X is an’

M(R™, m)-submodule.
The proof of (iii) is straightforward.
To prove (iv), let peX. Then

1/n
e, o) ()—¢l <n | |ps+)—o@®|ds  ({teR™Y).
[}

Given £ > 0, choose T so large that |¢{f)|/w(r) < & if £ > T, and then choose
N so large that '

16+ -0l _

() e (=[0, T, se[0, YND).

Let K =sup{w(s): 0 < s< 1}. Since

[F(s+1) =) _ |p(s+o) |3 (2]
ol Swern " 0

(s, te R7),

we have |G(s+f)—@(0)jo() <e(K+1) if t>T and se[0,1/N], and so
le, @~ol < e(K+1) (1> N). Thus (¢,) is a bai. for X. '

The following definition was given in [3, Definition 1.3].

1.4. DEFINITION. A weight function w on R is regulated if

lim (s +1t)/cwo(t) =0

for every s> 0.

Certainly, a regulated weight is a radical weight [3, Lemma 1.2]. For
example, the weight o: t+—e " is a regulated weight.

The next theorem shows that for a regulated weight we may as well take
X for our module instead of A', since, for such weights, A4’ = X. Given fe A
we write T, for the map grrg*f, 4—A. A closed ideal 3 in 4 is calleci
a standard ideal if for some ye[0, 0], I has the form

I={fed: alf)>7).
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1.5, THEOREM. Let o be a weight function on R*, and let A = LN(R™, w).
Then the following statements are equivalent:

(a) @ is regulated;

(b for every feA, [A' S X

(c) for every fe A, the map T, is compact;

(d) for some fe A with x(f)=0, the map T, is compact.

Proof To prove that (a)=(b), we first observe that for each fe A, the
right shift §: ¢~>S,(f) = d+f, R" >4, is uniformly continuous: § is con-
tinuous on R* by [3, Lemma 1.6], and ||§,* /1] < @@ /]| -0 as t -0, and so
$ is uniformly continuous on R*. Now let fed and peA’. The estimate

0 G0 G < [ 16t~ b=t e et s
R

S 18, (N=S.(Nlell (1, e RY)

shows that f ¢ is uniformly continuous on R™. Moreover, as

R SE—

(RN @l 1G(s 4t} cw(s+1)
a(t) < R mw(s)w(t)]f(s)'lw(s) d:S

@w+ﬂ

ED (teR").

< llel RI IS (S eo(s) ds
the hypothesis that @ is regulated and the Lebesgue dominated convergence
theorem show that |(f-¢)Y (O)/w(f)—0 as t-»co. Thus freeX, proving (b).

The equivalence of (a} and (c) is proved in [3, Corollary 2.8], where it is
also proved that T is compact if and only if it is weakly compact, and that the
elements f € A for which T} is compact form a standard ideal. It follows that, if
(d) holds, then T, is compact for every feA, and so (¢) holds.

Thus it only remains to prove that (b)=(c). If f € 4, the adjoint TF of T,
sends @eA’' to the clement fpeX, s0 T maps an L*-space A’ into the
separable Banach space X, By a theorem of Grothendieck [8, p- 1561, T is
weakly compact, Thus T} is weskly compact (see [10, Theorem V1.4.8]); and so

T, is compact, =

1.6. COROLLARY. Let w be a regulated weight function on R, and let
A= [MR*, ) and X = Co(R™, @™ 1), Suppose that there exists a discontinuous
derlpation from A into some Banach  A-module. Then there exists a discontinuous
dertvation from A into X.

Proof, By 1.2, we need only consider derivations from A4 into 4" Let
D: A— A’ be a derivation and take feA. Since A has a b.a.i, there exist
g, heA with f=g=h, and then D(f)=g-Dh+h DgeA-A'. Since w is
regulated, A-4' = X and so DA)c k. m
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We now discuss the closed submodules of A" and of X and their
relation to the closed ideals of A. The following notations will be
convenient. If 3= 4, then 3* = {ped’: (I, > =0}, and, if M < A, then
M= {fed: {f, M =0}. Since ¥ = M(R", w) and A is a total subspace of
¥, ¥ and A form a dual pair with the relevant o(X, A}- and o{A, X)-topologies.
If IcA, we write 3, ={peX: (J, 0> =0}, and, if R X, we let
Nr={feA: {f,M)=0}. Suppose that y is any number in the interval
[0, cc]. We define 4, = {feA: a(f} =y}, (A), = {ped" alp) 2 —y} and set
X, = (A4), N X. As remarked earlier, we call the closed ideals A, the standard
ideals of A. The closed submodules (4'), and X, are called the standard
submodules of A" and X, respectively.

The proofs of the next two theorems are straightforward and will be
omitted.

1.7. THEOREM. Let © be u weight function on R*, and let A = [MR*, w).

(i) Let 3 be a norm-closed ideal in A. Then I is a o(A', A)closed
submodule of A', and J* is a o(X, A)-closed submodule of X. Also (3%) "= 3, and
(3.); is the o(A, X)-closure of 3.

(i) Let M be a norm-closed submodule of A'. Then M is a norm-closed ideal
in A, and ()" is the o(A', A)-closure of M. Further, let W be a norm-closed
submodule of X. Then N is a o{A, ¥)-closed ideal in A and (W), is the
o(¥, A)-closure of M. =

1.8. THEOREM. Let y be any number in the interval [0, o0]. Then
(A) = (4'), and (4} = A,. Also A =%, and Xy =4, n

The next result is less straightforward. For its proof and for later uses, it is
convenient to introduce the function u = x4, The convolution powers of
u are given by u*?(t)=¢""'/(n—1)! (neN), so the algebra P(u) of all
convolution polynomials in u is alse the algebra of all ordinary polynomials in
the variable . ‘

1.9. PrOPOSITION. Let v be a regulated weight function, and let A
=LY(R*, w).

(i) Let 3 be a norm-closed ideal in A, and let & be its a(A, X)-closure. If
R is a standard ideal, then T = 8. )

(i) Let N be a norm-closed submodule of X, and let M be its
o(X, A)-closure. If M is a standard submodule, then 9t = M.

Proof. To prove (i), suppose first that & = A,, where ¥ < co, and that Jis
properly contained in . Then there exists gped’ with (3, @) =0, but
{4,, @3 # 0. Since p¢(4,)* = (4),, it must be that u(p) < —y. Let = wo.
Since  is regulated, it follows from Theorem 1.5 that y ¢ X. Also ¢, Wy =0,
However, <R, y> = {4, > =0, so that Ye(d) = (4),. 1t follows that
a(¢p) = a(ty) = —y. This contradiction completes the proof in the case where
¥ < 00.If y= o0, then R = {0}, and so the result holds trivially in this case.
The proof of (i) is similar, m :
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A weight furiction w on R is unicellular if every closed ideal in L'(R™, w)
is standard. A unicellular weight is necessarily a radical weight. The existence
of unicellular weights on R* has been proved by Domar ([9]). In particular, he
proves that w{f) = e~ is unicellular. A proof that there exist non-unicellular
radical weights on R™ may be found in Dales and McClure [7]. Their
construction of such a weight is based on a deep example due to Thomas [21]
of a non-unicellular radical weight on Z7.

110, THEOREM. Let @ be a reyulated weight on RY, and let A = L'(R™, w).
Then the following statements are equivalent:

(a) every norm-closed ideal in A is standard;

(b) every a(A, X)-closed ideal in A is stundard;

{c) every o(X, A)-closed submodule of X is stondard,
(d) every norm-closed submodule of X Is standard.

Prool, Clearly (a)=(b) and (d}=-(c).

Suppose that (b) holds, and let 9 be a o(X, A)-closed submodule of X.
Then My is a a(¥, 4)-closed ideal, and hence M, = A4, for some y. However,
M = (W), so that M =(4,)" = (4),. Thus (b)=>(c).

Now suppose that (c) holds. Let 9 be a norm-closed submodule of X, and
let M be its o(X, A)-closure. Then M = X, for some y, so that 9 =X, by
Proposition 1.9(ii). Thus (¢)=-(d}. _

Suppose that (¢) holds, and let J be a o(4, %)-closed ideal in 4. Then 3, is
a o(¥, A)-closed submodule in X, so J = X, for some y. However, J = (J n:
= (%,)r = A4,. Thus (c)=>(b). _ : ' .

Finally, we prove that (b)=>(a). Let 3 be a norm-closed ideal in 4, and lc?t
% be its (A4, X)-closure. Then J = 4, for some y, so that I = A, by Proposi-
tion 1.9¢). m

We now describe the situation regarding analogous results for the algebras
1S, w).

( In T?he case that § is a dense, discrete subgroup of R the notion of
a standard ideal for {1(ST, w) is more complicated than in the above case.
Moreover, N. Groenback has shown [13, Corollary 2.6] that in I'(§*, w) there
are no non-zero elements f for which the map T,: g—f g is compact or,
equivalently, weakly compact. There is no analogue of the submodule
Co(R™, &™) of L®(R™, @™ "} in this case either. i

When S =2 and A =1Y(Z", ®), then the dual module I*(Z~, &77)
has the closed submodule MM = C,(Z~, &™), which consists of those sequences
p on Z~ for which lim,., @(—n)/o(n) = 0. However, in this case IR = A,
so that the o(dM, A)-topology on M is the ordinary weak topology,
and the o(A4, M)-topology on A is its weak-star topology. One defines w
to be regulated if Lim,...w(m+nywn) =0 for each meN. Then exact
analogues of Theorems 1.7-1.10 hold for the algebra 11(Z* ). The analogue
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of Proposition 1.9(i) was proved in [5, Theorem 5.3], while the analogue of
1.9(ii) is trivially true in this case. The analogue of Theorem 1.5 holds when 4 is
the unique maximal ideal in I*(Z™, w).

2. Representation of derivations. This section is concerned with the
concrete representation of derivations from the Banach algebra L'{(R*, w) into
either its dual module A =L*({R", &), or inte the submodule
X¥=Cy(R™, &~ '). While we will find a partial representation for arbitrary
(possibly discontinnous) derivations, it is particularly important for us to find
a useful representation for continuous derivations, for this will be the key to the
discussion of continuity properties of arbitrary derivations in Section 3.

Representation theorems have been proved by N. Groenbaek [13], [14].
We first describe Groenbaek’s results, and then in Theorem 2.5 we give
a crucial strengthening of Groenbaek’s representation theorem for continuous
derivations of A into 4': the theorem shows that the set of such derivations is in
a natural correspondence with A'.

Groenbaek’s method depends on the fact that every derivation D: 4 -+ A4’
can be extended to a derivation D: M(R™, w)— A'. The extension question
also occurs in the work of Ghahramani [127] and Willis [22]. The next theorem
is a modification of a result of Willis [22, Lemma 3.5], who works in the
context of derivations into bimodules. See [14] for an abstract development of
these ideas.

2.1. THeoreM. Let « be a weight function on R*, and let A = LMR™, w).
Let D: A— A" be a derivation. Then there exists a unigue derivation D:
M(R*, w)— A’ which extends D. If D is continuous, then D is continuous and
D} = |IDY.

Because of the importance of this result, we sketch the proof, omitting
details which can be found in [22]. Let ue M(R*, w). For each fe d, usfe A,
and so D(u=*f) is defined in A We seek to define D(u) so that D(uxf)
=f-D{y)+p-D(f). Define S,(f) = D(u+f)—p-D(f) (feA). Then S,: A—A'
is a moduie homomorphism. Let f,~+0 in 4. Since 4 has a b.a.i, there exist
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The next theorem is taken from Groenbaek [14], who proves the
analogous result in » dimensions.

22, THEOREM. Let @ be a weight function on R™, and let A = L'(R*, w).
Let D: A-+A' be a derivation, and let D be its unique extension to M{R™, w).
Then there exists a measurable, complex-valued function y on R™\{0} such that
(0, ¥)IR™ €A’ for each s> 0 and such that

D) = (s6,«y)|R™  (seQ™).
Suppose further that D is continuous. Then
@.1) (DN = M * @)  (teR™, feAd)
and
(D)) = (xpe)t)  {teR™, pe M(R", o))
Moreover, .
(2.2} IDii = | D1l = sup{{(té, » Y)IR™ | /w(t): teRT\{0}}.
Conversely, let  be any measurable function on R™\{0} such that
sup { |1z, * )| R™ |l /eo(2): teRT\{0}} < 0.
Then (2.1) defines a continuous derivation D: A—+A'. =

The function i which represents a derivation D: A — A" may be found as
follows. Raise D to a derivation D: M(R*, w)— A4’ and restrict D to the
semigroup {8,: seR*} of point masses. Then y may be defined by the formula

() = (LD /)1
for each seQ@*\{0}, where L, is the “left shift”

: e(t—s) @< —9),
(L)) = {(P(o) (—s <t <0).

(te(—o0, =5])

As in [14] we may identify the space (A, A’} of all continuous
derivations from A to A’ Clearly it is a closed linear subspace of the Banach
space B(4, A) of all continuous linear operators from A4 to Aj. The
correspondence Di—+ty given in (2.1} allows us to jdentify D(A, 4" with the
space W of representing functions, defined below.

geA and h, -0 in A such that f, = g« h, (neN). Then §,(f,) = h,'S,{g) =0,
and so S, is continuous. The element D(u) is defined by 5(,u) = lim,,,§,(e,)
for the a{A’, A)-topology. Here (g,: neN)is the standard b.a.i. for 4 which was
introduced in Section 1, The map ur-+5(x) can be shown to be a derivation
with the required properties.

Before turning to the concrete representation of derivations, we introduce
some notation that will be important throughout the rest of the paper. For
a function f on R define the function x/ on R by (x/z) = tf (t). (If f is defined
on R\{0}, we define (xf)(0) = 0.) If 4 is a locally finite measure on R, the locally 2.3
finite measure xu is defined for a bounded Borel set E by the equation .

(ep)(E) = £ t puldt).

2.3, DerNimioN, Let o be a weight function on R*. We denote by W' the
set of all equivalence classes v of measurable functions on R™\{0} for which

il = sup (e, % W) R {/ea(e): 1&R™\{0}} < 0.

it follows from Theorem 2.2 that W is a Banach space for the norm ||{-]li,
and that (W, {|\*]|)) is isometrically isomorphic to DA, A). If yeW, we say
that ¥ represents the derivation D which is defined by (2.1).
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The next theorem generalizes Groenbaek’s Theorem 2.2 and gives an
alternative and useful characterization of the space W. We show that
a measurable, complex-valued function i belongs to W if and only if it satisfies
the equation xi = ¢, where ¢ is an element of A', and we prove another
characterization of W of “closed graph theorem” type.

To prove this second characterization and a later result we will need the
following elementary fact concerning linear maps from a Banach space into
a Fréchet space of measurable functions. Let S be a bounded interval of R, and
let M(S) be the linear space of all equivalence classes of complex-valued, Borel
measurable functions on S. It is well known that with respect to the metric
¢ given by

[f{s)—g(s)l ds :
W= e =gt YE
M(8) is a Fréchet space, and that a sequence ( f,) converges 1o f, in M(S) if and
only if {f,) converges to f; in measure on §.

M(S)),

24. LeMMa. Let M(S) be as above, and let E be u Bunach space. For each
neN, let T,: E— M{(S) be a continuous linear map. Suppose that for each xe E,
the limit

T(x)(s) = lim T,(x)(s)

exists and is finite for almost all se 8. Then the linear map T: E— M(S) is continuous.

Proof. For each xeE we have lim g(T,(x), T(x)) =0, by the Lebesgue
dominated convergence theorem. Hence T is continuous by the uniform
boundedness theorem. m

2.5. THEOREM. Let w be a weight function on R*, and let A = L'(R™, w).
Let y be a measurable function defined on R™\{0}. Then the following conditions
on  are equivalent.

(@) yeW,

{b) xy¢ €4’

{c) for each feA the convolytion xf*y exists on R™, and (xf*y)|R™
belongs to A, ‘

If any of (a)-(c) hold, then the map D: fis(xf*)|R~
derivation of A into A', and |D| = IIY|l| = [xy/|.

is a continuous

Proof. Clearly (a)= (c) follows from Theorem 2.2. We shall prove that (a)
and (b) are equivalent, and that (c)=>(a).

We first prove that (a)=-(b). If \» € W, then i is integrable on each interval
(—00, ¢] with ¢ <0, and we may write (2.3} in the form

s —2)

. t N
Il = sup —-ess sup
el 1)
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Let meN and let 4, = {—cc, —1/m]. By the continuity of translation of

Yy, M L'(R), we have

lim y(s+n=y{) (ted,)

IR i
in measure on A, [t follows that there exists a sequence (s,) with 8, < 8., <0
(ke N) and s, — 0, and such that, if 5, < s < 0, then [if (s +1)— ()] < 1/2* for all
t & A,\My,, where M, is a subset of 4,, having measure iess than 1/2%. Fix
te A,,, and suppose that & > 0. Then there exists a Lebesgue null set N, < R™
(where for convenience we also suppose that OeN,) such that

Bt d St B
(3 ( = ) { =~ 5)
Select an increasing sequence (i) such that s, < w, <0 and u ¢ N, (keN).
Then the set M, has measure at most 1/2% Following a standard argument,
set By = | 21 My, and By = (|-, B,. Then the sets B, are decreasing and
m(B,) < /2", and hence m(By} = 0. Moreover,

lim (w6 = @(t)  (te A, By).

K~ .
Set s = 1, in (2.4), and pass to the limit as k — . Since  is continuous and
w(0) =1,

(24)

< Wlli+&  (seRT\N,).

— i (£)]
L - ﬂ 3
iy Sl _ |
Since m and ¢ are arbitrary, it follows that — (| (1)l/ow(—1 < Hhplll ae. on R™.
Hence xiy& A" and |lxy| < lilii. This completes the proof that {4)==(b).
If (b) holds, then

NATIMUPESIOTACD PN

(.’)(I) = R+ w(f)

(s+ ) (s 1)l u)(s—}-ﬂjl o
S-n'['[ w(s+1) }[m(s)w(t} Lf (s)ewts) s

<IxvlIfl  (eR*.fed),

so the map D: fi+{xf % w)|R~, A— A', is continuous and [l < lxye||. Thus
(b)==(a). In particular, (b)=+(c) _ _

The proof thai (¢)==(a) will be given after we have proved that the map
D: fiaxf w iy is a continuous derivation.

Suppose that {c) holds, For neN, let C, = {teR™: te[-n, -1/nJ,
Wr(t)] < n}, and let y, = e, Since ¥, is bounded and has compact support in
R™\{0}, xy,eA’, and so y,eW. Define D,: fimxf=y,, A=A Then, by
Theorem 2.2, D, is a continuous derivation. By (c), for each fe4,

[ (=)0 (t—=s)x{sfds < oo
A

(te 4,\By).
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for almost all teR™. It follows that lim,.., (D, )t} = (Df)(t) for almost all
te R™ by the Lebesgue dominated convergence theorem. Let S be any bounded
interval in R™. Then, for each n, the map T,: fi~(D, N)|S, A—M(S), is
continuous. Thus by Lemma 24, the map T: fr=(Df)|S, A—M(S), is
continuous.

We now prove D is continuous as a map from A into 4 by using the
closed graph theorem. Take (f,) & A with f, -0 and Df, - in A" It suffices to
show that # vanishes on each bounded interval § of R™. Since the map T above
is continuous, Df, converges to zero in measure on S. Hence 0|S = 0, proving
the continuity of D.

We next prove that D is a derivation. Since x{f* g} = xfx g+ xg* f and
D is bounded, it suffices to prove that

2.3) [(S % xg)+{g *Xf YDy =[x (xg %)+ g* (e % ),

as an equality in 4’, when f and g belong to the dense subspace R(R™} of A.
The difficulty in proving (2.5) lies in proving the necessary associativity of
convolution, since ¥ need not be locally integrable. However, (2.5) helds with
Y replaced by ¢, as a statement about Radon measures on R, since then all
¢lements have compact support- (see [11, Corollary 4,199]). Using the
Lebesgue deminated convergence theorem, as before, we obtain {2.5) by
passing to the limit as n—oo. Thus D is a continuous derivation from A4 to A"

We can now complete the proof by showing that (c¢)=-(a).

By Theorem 2.2, we obtain a function y, e W such that

(D)t} = (xf *4,)(1)  (teR™, [eA).
Let @ =W —y,. Then for each fe A, (xf*p)()=0 (teR”), and
| 16~ (5] ds < o

for almost all te R™. Given d > 0, take f so that Xf = yi; ). Then, for almost
all teR™,

-8 i—4d
lp(sds < oo and [ o(s)ds=0.
Since & is arbitrary, it follows that @(s) =0 ae, and so YW, m

As a consequence of Theorem 2.5, we have the following useful inequality,

which shows that (W, ||I-|l}) is a Banach 4A-module. Let e W and f e 4. Then
xp=pecA and

R e GO I

<(fT*leb(y (teR7),
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50
26) NS *lll = [e(f )] < T Axbag) | < 1S Dxiedl = TN

Hereafter we write xf-y for {(x/*¥)|R™ when feA and YeW.
Tt is now convenient to introduce the space

V={ped: ¢|R"\{0}e W}.

In the next section we shall prove that a derivation D: A— 4’ for which
D(A) & ¥ must have important continuity properties.

We now prove a commutation property of continuous derivations into V.
First we need the following lemma.

2.6. LEMMA. Let D: A— A’ be a continuous derivation for which D(A) = V.
Then, for each geA, the map [i—o(xg«D{f)|R™, A~ A’ is a continuous
derivation.

Proof Take geA. Since D(f)eV for fe A, the convolution xg *D(f)
exists on R~ and xg'D(f)=(xg*xD())IR" €A’ for each fed. Set
E: froxg-D(f), A— A"

We first note that D is continuous as a map of A into W. For take (f,) = 4
with f,—0 and D(f,)—@eW. Since D is continuous as a map into A,
D(f)(s)—0 ae. on R™. However, by Theorem 2.5,

|s[D(£,) () 04s)]]

w(—3)

D) — il = ess sup

so that D(£,}(s)— 0(s) a.e. on R™. Hence ( = 0,and so D: A—Wis continuous.
Now let yed and consider the map E. Let f,—0 in 4, so tha}t
DL~ 0. Since D(f) eV, IES) < gl IP(AII >0 as n—co and so £ is

continuous. . _
Finally, we show that the map E is a derivation. The argument will not use

the continuity of D. Let g, = gXom. 30 X¢,€A (neN). Then, if h,ked,
xg, D(hwk) = h-(xg, D(K))+ k- (xg, D(h)).
By Theorem 2.5, the map fi->xf- is continyous for each y € W, But D(h), D(k),
and, D(h«kye W, and so .
xg - Dihw k) = h(xg-D(K)+k-(xg- D) (b, ke A).

Thus £ is a derlvation. m

27, TruoreM, Let D: A— A' be any continuous derivation with D(4) € V.
Then
@n xfDg) = xg-D(f)  (f, geA).

Proof By Theorem 2.5 both sides of this equation lie in 4, and for each
g€ A, the map E: fr+xf-D(g) is continuous. Taking f = W and g = w*™, we
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see that both the left- and right-hand sides of (2.7) equal mu™™ " D{(u). Hence
(2.7} holds for f and g in the dense subalgebra of convolution polynomials in u.
Since, by Lemma 2.6, the map (f, g x/"D(g) is continuous in each variable
separately, we obtain (2.7) for all f,ge 4. n

We end this section by stating without proof the representation theorem
for derivations from the discrete convolution algebras {*(S *, w) for appropriate
subgroups § of R.

2.8. THEOREM. Let § be a subgroup of R containing Q, and let w be
a radical weight on 8%, If D: IY8™, 0)—1*(8™, &~ Y) is a derivation, then
there exists a complex-valued function b defined on §™\{0} such that & « s
belongs to 17 (87, &™) for every seS*\{0} and

D(5) = (o, y)|8™  (se Q7).
If D is comtinuous, then
(28) D) = (WIS~ (fell(S*, w),
and

1D = sup{l(s6,* ¥)|8~ | /cals}: seS*}.

Conversely, let  be any function on S™\{0} such that
sup{i(sd, x ¥)|S™ ||/w(s): se $*} < wo. Then (2.8) defines a continuous derivation
D IYS*, w)=I17 (8T, 7). m

3. Continuity properties of derivations. Let o be a weight function on R™,
and let 4 =L"(R", w). In this section we show that certain classes of
derivations from A into 4’ must have striking continuity properties. For
example, we shall prove, under mild conditions on w, that, if D: 4— A" is any
derivation and if g€ 4, then D is continuous if and only if the pre-multiplied
derivation g4-D is continuous (where (g-D)(f) = ¢-D(f) (fe A)). Moreover, an
element g can be found so that ¢- D is bounded on a dense subalgebra of 4. The
property of g that we require is that gD shall have its range in V.

To begin this section we shall characterize those functions g in 4 such that
g4’ = V. More generally, we shall characterize those measures pon R” for
which the convolution px ¢ is defined on R~, and (u* @)|(R™\{0}) belongs
to W. It is interesting that the condition on i is precisely that required by
Ghahramani [12] to characterize the (necessarily continuous) derivations of
A to itself, :

3.1. THEOREM. Let w be a weight function, and let A = L} (R*, w). Let p be
a Radon measure on R™, Then the Jollowing conditions on u are equivalent:
(a) one has

: a
(3.1) :Egmi w(s+a) |pl{ds) < o0:
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(b) for each fe A, xfxucd, and the map

(3.2) D froxfep, A-A,

efines o contiruous derivation of A into itself;
defines o continu ) .
(c) for each we A, the convolution pux ¢ is defined on R™, and the function

xlpnp): ttux @), R™=C,

helongs to A’ i _
(d) for each e A’, the convolution p¥ @ is defined on R™, and we have

(ux IR\ [0} W,
If uny of the conditions (ay-(d) hold, then t'he map J: @ —x(u* @),
A = A%, by continuous, and J = D¥, the adjoint of D.

Proof It is proved in Ghahramani [12] that thcreAis the following
bijective correspondence between Radon measures p for which (a) holds g.nd
continuous derivations on 4. If u satisfies (a), then the formula (3.2) c}efmes
A continuous derivation D: 44 whose norm is the supremum in (a).
Conversely, to every continuous derivation D: ‘AM»A the1:e gorresponds
a measure g for which the supremum in (a) is finite, and D is given by the
formula (3.2). Thus (a)} and (b} are equivalent. ) .

Suppose that (a) holds. For peA’ and teR”, define

() (1) = —t(ux@)(t) = —1 RI* @(t—5) p(ds).

Then

ool _ ¢ [@e—tles—,
eIl Rrrrun pme e

a .
< ol sup—— | o(s+a)iul(ds),
ol a,lg wle) R-r,“
and so J is a bounded map of A’ into itself. Thus (a)=-(c). '
Suppose now that (¢) holds. We will prove (a). For each ne N and pe A,
let o, = yponoptp. and let g, = Yomk- Define the map J,: ¢— —x(op, ju"),
A= A", Then (J,)(t)=0 for 1< ~n, and ool < nlp el so J, 18
continuous. Since for each peAd’ we have
[ Jott=s) [ul(ds) < o
Rr
for almost all teR", it follows from the Lebesgue doiniuated converge;me
theotem that lim, .., {J,}(t) = (J@)(t) for almost all ¢ EB 7 We now px’"l?t:fe that
J: A'-» A’ is continuous by using Lemma 2.4 exactly as in the proof of e’o‘rem
2.5, If § is a bounded interval of R™, then J is cgntinuous as a map of 4" into
M(S), and one completes the proof as before, using the closed graph theorem.

6 -~ Studin Mathematiea 951



icm

82 W. G, Bade and H. G, Dales

Now, for fe 4 and @eA’, we have {f, Jo) = {J*f, ¢}, where certainly
J*f e A”. We would [ike to know that J*fc 4, but that is beyond our reach at
this point, Suppose that fe R(R™) and ¢ e K(R™). Since f and ¢ vanish on R~
and R*, respectively, f, xf, and ¢ belong to K(R). Then ¢ * p and xf* p exist as
Radon measures on R and are, in fact, continuous functions on R ([11, p. 262]).
Moreover, we have

(p #e p2) % Xf = o we (xf % p1),

since two of the three elements have compact support ([11, Corollary 4.19.97}.
Hence

o doy=<Lf, —x(@»m> = | (—sf(—s)(@x*u)s)ds
a-

= (x/"* (g » W)(0) = (o * (x/* 1)) ()
= RI* GO+ ws)ds  (feRRT), peR(R).

Moreover, for each ¢ > 0 and fe R(R™),

o * ) @)l o) dt

O = R

= sup {|<f, Jod: gl = 1, suppo = [—a, 01} < |J*] /1,

since {f, Joy =<{J*f, @>. Lefting a—o0, we see that xfxued and
loef = el < (IS*[ 1= |JH 11, at least when feR(RY).
Define D(f) = xf+u (feR(R")). Then D is a continuous operator map-

ping K(R*} to A, and hence D has a unique extension to an operatotr
D: A—-A. Since

D(f+g)=x(fsg)xpu=(S*xg+g*xf)*u
=f«D(@)+D(f)*g (f, geK(R™)),

the extension is a continuous derivation on A. By the remarks concerning

Ghahramani's theorem at the beginning of the proof, there exists a Radon
measure v on R™ such that

sup— [ ot d
,,}Io’w(a mw + a) |v|(dr) < oo,
and D(f) = xf*v (feA). But then we have x/* i = xf+v for all feR(R"),
so that u=1y by the Titchmarsh theorem. Hence we have proved that
©=@).

The equalence of (¢) and (d) follows from Theorem 2.3,

Ft remains to show that J = D* under the hypothesis that {a)-(d) hold. Let
p satisfy (a)-(d), let e 4', and let fe A. Then |p|e 4', |fl€ A4, and | satisfies (b).
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So x|f1xlule A and {x|f[|ul, lpl) < 0, le.

I3
§ 16| ((—5)1f 19l ul(ds) de < co.
R* 0

This shows that Fubini’s theorem allows us to interchange the order of
integration in the obvious double integral to obtain {Df, @) = {f, J@>. Thus
J=DF and J*feA. m

Ghahramani [12] has proved that there exists a non-zero measure
u satisfying (3.1), and hence that there exists a non-zero, continuous derivation
D: A-»A if and only if there exists a number b > 0 such that

sup to(t+b)jwlt) < .
eR

3.2, COROLLARY. Let ged. Then g A' <V if and only if

a
(3.3) :1:}; e R.["' Ol w(t+a)dt < co. m
It follows from Corollary 3.2 that, if g satisfies (3.3), then g-D has its range
in V for every derivation D: A— A"
We now examine the question of how the continuity of a derivation D is
related to that of g-D. We first need information concerning the separating
space and continuity ideal of a discontinuous derivation.

3.3, TuroreM. Let w be a weight function on R™, and let A = L}(R", w).
Let D: A— A be a discontinuous derivation. Then 3(D) = G(DY, and G(D)
contains elements ¢ for which a(p) = —oo. Either 3(D) = {0}, or 3(D) is
4 non-standard closed ideal in A. If w is regulated and unicellular, then ® (D) = X
and 3(D) = {0}. : ‘

Proof. Let fed. If fe3(D), then f-@ = 0 (¢ G(D)), and so Fe®(D.
Conversely, if fe®(D), then §=feG(D) (teR™), so that {(f *@)(~1)
= (O nf, @) =0 (teRY, e®(D)). Thus (f* @)|R™ =0 and fe3(D).

We show that ((D) must contain elements ¢ with a(e)= —oco. For
suppose that

inf{a(p): e®D)} = —f> —w,

Since D is discontinuous, G(D) # {0}, and so f > 0. Choose a sequence (f)in
A with a(f) >0 (neN) and Ju a(f) <f. By the stability lemma [20,
Lemma 1.6] there is an integer N such that

e T w G D) = (f, .- ) 6D}

for all nz N. It follows by the Titchmaxsh convolution theorem that
Trar (=B =3 ey a(f)=F (0 = N), a contradiction. Hence we can form
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a series of elements in (D) whose sum ¢ lies in (D) and such that
a(p) = —oco.

Suppose that I(D) # {0}. If I(D) is one of the standard ideals 4,, where
0 <y < oo, then by Theorem 1.7, 4y = G(D)™ = (4'), = G(D), so we must
have the contradiction that () > —y for all e G (D). If J(D) = Ay = 4, then
D is continuous, since A4 has a bai. Thus if I(D)# {0}, J(D) must be
a non-standard ideal.

Finally, suppose that e is regulated and unicellular. Since o is uniceilular,
3(D) = {0}, and, since e is regulated, G(D) < X. Suppose that 6 (D) 5= X, Then
there exists pe¥ = M(R", ) such that g #0 and {u, 0> =0 (pe®GD)
Then uxped and {usp, @) =<{u, usd>=0 (peG(D), and so "
eI(DN\{0}, a contradiction. Thus G(D)=X. m

34. THEOREM. Let o be a requlated and unicellular welght function, und let
A =TI(R", w). Let D be a derivation of A into X, and let ge A\{O}. Then D is
continuous if and only if g-D is continuous.

Proof. If D is continuous, then gD is continuous. Converse!. . suppose
that g-D is continuous and D is discontinuous. Then ge3(D), and so, by
Theorem 3.3, g = 0, a contradiction. Thus, if gD is continuous, then D is
continuous. =

For special elements g the above result is true with fewer hypotheses on .

3.5. THEOREM. Let w be a radical weight on R*, and let D: A— A’ he
a derivation, Then the derivation w-D is continuous if and only if D is continuous.

Proof. Suppose that u-D is continuous but that D is discontinuous. Then
G(D) # {0}, ueI(D), and uwGD)= {0}. However, if ped’ and (u q))
={ ‘__w @(s)ds =0, then @ =0. This contradiction shows that D must be
continuous. m

For ve A4, we denote by PB(v) the subalgebra of all convolution polyno-
mials in v,

3.6. THEOREM. Let D: A— A’ be a derivation with D{AYE V. Let ved.
Then the derivation

D: froxoDf, A—a'

2

agrees with the continuous derivation
E fraxfDv, A A,
on the subalgebra P(v) of A.

_ Proof. Since D has range in ¥, the element xv-Df lies in A”. One shows
as in the proof of Lemma 2.6, that D is a derivation. Again, as D{(v)eV, £ i

’

icm

Continaity of derivations 85

a continuous derivation. Since D(v) = £(v), D and E must agree on P(v). m

We consider now the case where v = u. The condition (3.3) that w4’ = V

is the condition
a o

3.4 sup-—— | o(t+a)dt < o0,
GH a>n @ (“) ‘(E :
1t lollows from 3, Lemma 1.4] that a weight which satisfies (3.4) is regulated,
and hence is a radical weight. Recall that if w is regulated, then by Theorem 1.5,
every derivation D: A —A' hag its range in X.

3.7. CoroLLARY. Let w be a weight setisfying condition (3.4), and. let
D: A-+X be a devivation. Then the derivation w*-D is continuous on the dense
subalgebra B(u).

Proof The derivation D = xu'D = u*®-D is continuous on P(u) by
Theorem 3.6, m

3.8. DerINITION, We say that a derivation D: A— X is splittuble over
a subalgebra B of 4 if D = E-F, where E is a continuous derivation and F is
a derivation which vanishes on . We call F singular over 3.

3.9. TuroreMm. Let D: A~ X be a derivation. Then D is splittable over the
dense subalgebra PBu) I and only if the following conditions hold:

(a) D) is continuously differenticble on R™;
(b) D) is absolutely continuous on bounded intervals of R™;
(c) Dw)y'e W. ‘

Then the continuous part E of D iy given by
E(f)=xfDW’ (feA).

Proof First suppose that D(u) has the stated properties, and let
E(f) = xf-y (f e 4), where y = D(u)’. Then E is a continuous derivation by
Theorem 2.5, and ‘

¥

[ DW'(drds (teR7).

i
E@)(t) = @ s)(t) = |
R ]
Thus E(uw) and DY differ by a constant and E(uw) and D(u) differ by a linear
term. Since both vanish at --oo, we have E(u) = D(x). Hence D = E on Pu).
Thus D is splittable over B(u). _
Conversely, suppose that D = E+ F is splittable over P(u). Then ‘E is the
unique continuous extension of D|P(u) to A. Hence E(f) = xf ¥ (fe A). for
some € W, Since D(u) = E(u) = u** «, it follows that D(u} has the required
properties. m .
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3.10. TueoREM. Let w be a weight function satisfying condition (3.4). Let
A= IMR*, ) and X = Cy(R™, &~ *). Assume that every derivation D: A—X
which is zero on B(u) is actually zero. Then every derivation from A into any
Banach A-module is automatically continuous.

Proof Let E: A— X be a derivation. By Theorem 3.5, E is continuous if
and only if u*®"E is continuous. By Corollary 3.7, w**-E is continuous on
T(u). Let F be the continuous extension of u**-E to A. Then w*E - F iy
zero on P(u). By the special assumption, it is zero on A, so w**E is
continuous, and hence E is continuous. w

Groenbaek has also proved partial continuity results which are closely
related to our theorem. We quote the following theorem, which is a specializa-
tion to our situation of [14, Corollary 3.6].

3.11. THEOREM. Let  be a weight function such that
 tw(t+b)
teR* m(t)

for some b > 0. Let D: A— A’ be a derivation, and let D: M(R*, w)— A’ be its
unique extension. Then there is a continuous derivation E: A— A’ such that
E and 8, D coincide on the subalgebra of all finitely supported measures in
M(R*, w). = ‘

<< w

4. Non-existence of divisible submodules. Let 2 be a commutative algebra,
and let 9 be an 2-module. Suppose that ae . Then M is a-divisible if, for
each @ 9N, there exists ¥ € M such that a*yf = @. The module N is W-divisible
if it is a-divisible for each ae\{0}; M is torsion-firee if ay # 0 whenever
aeM\{0} and e W\{0}.

Now let 2 be a commutative Banach algebra, and let 9% be a Banach
N-module. Then there is a standard way of constructing discontinuous
derivations from U info M in the case where ¥ is an integral domain and
9 ‘contains a non-zero, A-divisible, torsion-free submodule. The construction
depends on the following algebraic fact, proved in [16, Section 8], Let % be an
integral domain, and let 9 be a non-zero, -divisible, torsidn-free W-module.
Suppose that B is a subalgebra of 9, that D: B -9 is a derivation, and that
asM\B. Then there is an extension of D to a derivation D from B[a], the
subalgebra of A generated by B U {a}, into 9: if a is algebraic with respect to
B, then D is uniquely determined on B[«], but if a is transeendental with
respect to %,chen D{(a) can be chosen to be any element in Y. [t is the freedom
of choice of D(g) in this construction that enables discontinnous derivations to
be built. Thus now suppose that 2 is also a Banach algebra and that Y is
a Banach -module containing 9 as a submodule, Let: B be a gubalgebra of N
and suppose that ae 2 is such that a e B and g is transcendental with respect to
B. Define D(b) = 0 {beB), and extend D to a derivation D on B[a] by taking
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D(a) to be any non-zero element of P). Then, using the above algebraic fact and
Zotn’s lemma, extend D to be a derivation from 2 into §: clearly we obtain
a discontinuous derivation from ¥ into IN.

In the paper [4] we used this method to construct discontinuous
derivations from Banach algebras of power series into modules. The purpose of
the present section is to show that this method of constructing discontinuous
derivations fails for the algebra L} (R, w): we prove that there is no non-zero,
LL(R*, w)-divisible submodule in any Banach L'(R*, w)-module.

The following simple remark shows that in looking for ¥-divisible
submodules it is sufficient to consider -divisible submodules of the dual
module 2. '

4.1. LeMmMA. If a Banach algebra % has a non-zero, A-divisible submodule in
a Banach W-module M, then there is a non-zero, N-divisible submodule in the
dual module 2.

Proof Let 9t be a non-zero, A-divisible submodule in M, and choose
7eWY with A(9) # {0}. Then the module homomorphism R, defined in -
Theorem 1.1 carries 9t onto a non-zero, A-divisible submodule of W. m

The proofs of the next theorems will involve analytic functions. We adopt
the notation I = {zeC: Rez > 0}. '

Let ¢ be a radical weight function on R*. Then L*(R™, &™) is’a Banach
LY{R*)-module. '

4.2, TuEorREM. Let w be a radical weight function. Then the LYR*)-module
L*(R™, &™) has no non-zero, L'(R™)-divisible submodule.

Proof Let A = L}(R", ), so that L*(R™, &~ Y = A To obtain a contra-
diction, suppose that 9 is a non-zero, LYR™)-divisible submodule of A"

We show first that a(p) = —oo for every non-zero element of 9. For
suppose that gpe? and that a(p) = —c, where ¢ > 0. Choose a positive
function f e L*(R*) with f increasing on {0, ¢] and a sequence (t) = R*\{0}
with 0<t,.,<t,<c¢, such that -0, lop(—c+t) >0 and
0 <f(t) <lp(—c+t,)l (neN). Since P is fdivisible, there exists Y€ \yith
f = . Since a(f) =0, a(y)= ~c. Let Wy = 8.y and @ = 3.+ ¢. Since
() = @(t) on [—c, 01, (f+y )} = ¢, () on [0, c]. But then

Uislds S OfWoIds  elo, &,
4]

O Ty

lpy () < [ f(E—3)

and so for large n we must have
lo(—c+1,) = lo, (L) <S (L),

a contradiction. Thus a(p) = —c0.
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Now fix pe¥) with w(@)= —oo. Since ¢ vanishes on R* and |p(r)
= O(a(1)) as t - — o0, s0 that [p()|e ™ e L} (R™) for each x € R, ¢ has a Laplace
transform

P(z) = ?'q;(r)e-ﬂczz (zeC)

which is an entire function. Clearly @ is bounded on each left-hand half-plane,
Since o(p) = — oo, there is a sequence (z,) < € such that x, =.Rez, — 0 and
|1®(z,)| = oo as n—co. By passing to a subsequence, we may suppose that

wi1x,/(14(2,)%) < o0, By a standard result [15] there is a Blaschke product
B with B(z,) =0 (neN) and |B(z)) € 1 on {z: Rez = —1}.

Let F(z) = B(z)exp(—(z+1)"/*). Then F is analytic on {z: Rez > —1},
F(z)=0 as z—oo in [T, and F is integrable on the imaginary axis. Let
S =27'F be the inverse Laplace transform of F. Since F is analytic near [T,
SIR™ =0 and f|RT e L}(RY).

Suppose, if possible, that there exists ye% such that -/ = @. Since
£ el(R), fxye'(R). Define g = f+i—¢. Then geL!(R), and ¢ vanishes
on R” because ¢ = f-if = (f*)|R™. Let G and ¥ be the Laplace iransforms
of g and ¥, respectively. Then we have the equation

G(z) = F()) ¥(2)—B(z) (zell).

Since F(z,) =0, G(z,) = —&(z,) (ne N). However, |G(z,)}{ »0 and |®(z,)| — o
as n—co, giving the required contradiction. Thus, 4’ has no non-zero,
IM(R™)-divisible submodule. m

4.3. COROLLARY. Let @ be a radical weight finction, and let A = L' (R, w).
Then A has no non-zero, A-divisible submodule in any Banach A-module.

Proof If 4 has a non-zero, A-divisible submodule in some Banach
A-module, then by Lemma 4.1, 4 has a non-zero, A-divisible submodule,
say %, in A’ But then 9 would be L'R*)-divisible, contradicting The-
orem 4.2. =

Recall from Theorem 1.3(i) that L*(R™, &™) is a module over M (R*, m).
Let w be a radical weight on R*, and let § be any dense subgroup of R, For
example, we might have § = Q or R or even {m+na: m, neZ}, where «
is irrational. Then I'($*)< I'(§*, w)= M(R*, w), so L*(R", & 1) is an
I*(8*)-module. For our final result, we shall prove that [*(R", 574 has no
non-zero {*(§*)-divisible submodule. We shall require the following lemma.

4.4. LemMa. Let (4,) be a sequence of disjoint open disks in C with
inf{Rez: z&4,} > as n—co. Let (1) be a sequence with 0 < Luawy << by, tnd
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t,— (. Then there exists a sequence (o) in C with % fo,| < o0 such that the

Junction

[2¢]
Fiz Y o,e

ne |
has o zere in A, for infinitely many values of n.

Prool. We may suppose that the disks 4, have disjoint closures and that
radivg(4,)—0. Let n#, =1 and define F,(2) = aye™"'% where 0 < o ]| < 1/2.
Now suppose thal we have constructed positive integers v, <n, <... <5y,
coefficients «,, ..., o, and positive numbers &, ..., &, with &, = 1, satisfying
the following conditions:

(@) 0o <277 (1 )<k

(b} Fy(z) = Yy ,e™ " has a zero in 4,, but F; has no zero on
he10d, Tor je=1,...k;

(€) &, <min{27% g._,/2, y,/4}, where

|3
v = Inf{|F -, (2): ze |} é4,,}.
m=1

Now choose &..; so small that (¢) is satisfied for k1. Censider
o1
Fk—l-] (Z) == E ot}-e"'v'z == (“Htr"”z(Gk+1(Z)+ka+ 1),
i=1

whete oy, 18 to be chosen. Since |Gy (2)| >0 as Re z— o0, we can choose
Ry 1 > My, 50 that

Sup'{le*'l(z)l: ZeAnknn}.< b1~

Set oy = — Gy (Zis 1), where zy. is the centre of 4,,, . Thus Fy., has
a zero in A, ,. By stightly shrinking the radivs of 4,,,,, we may suppose that
none of the functions F,, ..., Fy,; has a zero on é4,,,,. Then

Fia 1(2) = F(2)l = loge gy o7 "% < oy

= |G g (21 O < Erss

<p1f2 <|FE)l  (ze U1 24, ),

50 that Fy . has no zero on | J&L4 4 thus completing the inductive choice.

A2
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If k is fixed and p > k, then

p—1
Fp(2)— Fy(2) € Y IFjea(2)—F(2)
i=k

p—1
<Y 6 € 20 < Paer/2
i=k

<|F2)  (ze4,,).
Define F(z) = Y oy o,e” ™" Then, for each ke N and zed,,,
|F(z) = Fi(2)] < ve1/2 < [Fl2)

so F has a zero in 4, . This completes the proof m

Mt

4.5. THEOREM. Let w be a radical weight on R*, and let § be a dense
subgroup of R. Then L*(R™, ™%} contains no non-zero, I'(S™)-divisible sub-
module,

Proof To obtain a contradiction, suppose that R is an /*($*)-divisible
submodule of L=(R™, @~ 1), that p e M, and that ¢ 3 0. Then &, the Laplace
transform of ¢, is an entire function. Clearly, ® is bounded on each left-hand
half-plane, and @ is not bounded on C, and so there is a sequence {z,) & € with
Rez,— oo such that |®(z,)] - o0. Let (4,) be a sequence of open disks, with 4,
having centre z,, and let (t,) be a sequence in §* with t,—~0, By Lemma 4.4,
there is a sequence () = C with ) |} < oo so that

o
Fioy= Y oge ™
k=1

" has a zero in 4, for infinitely many values of n. Therefore, by passing to
a subsequence ({,) of (z,), we may suppose that F has a sequence of zeros ({,) for
which |®({,)] — co.

Letf =Y «d, . Then fel' (). Since M is I' (S*)-divisible, there exists
Ye M with /i = ¢. As in the proof of Theorem 4.2, the function g = fwy—¢
lies in [} (R ™) and vanishes on R™. Writing G = 2(g), F = £(/), and ¥ = 2(i),
we have G(z) = F(z) F(2)— $(2) (ze II), so that G(,) = — (), but |G({,) =0,
while [P{({,)|— oo. This contradiction completes the proof w
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